

    
      
          
            
  
Welcome to MMDetection’s documentation!


Get Started


	OVERVIEW

	GET STARTED






User Guides


	Train & Test
	Learn about Configs

	Inference with existing models

	Dataset Prepare

	Test existing models on standard datasets

	Train predefined models on standard datasets

	Train with customized datasets

	Train with customized models and standard datasets

	Finetuning Models

	Test Results Submission

	Weight initialization

	Use a single stage detector as RPN

	Semi-supervised Object Detection





	Useful Tools
	Log Analysis

	Result Analysis

	Fusing results from multiple models

	Visualization

	Error Analysis

	Model Serving

	Model Complexity

	Model conversion

	Dataset Conversion

	Dataset Download

	Benchmark

	Miscellaneous

	Hyper-parameter Optimization

	Confusion Matrix

	COCO Separated & Occluded Mask Metric

	Useful Hooks

	Visualization

	Corruption Benchmarking

	Model Deployment

	Semi-automatic Object Detection Annotation with MMDetection and Label-Studio

	MOT Test-time Parameter Search

	MOT Error Visualize

	Browse dataset

	Learn about Configs

	Dataset Preparation

	Inference

	Learn to train and test

	Learn about Visualization










Advanced Guides


	Basic Concepts
	Data Flow

	Structures

	Models

	Datasets

	Data Transforms (Need to update)

	Evaluation

	Engine

	Conventions





	Component Customization
	Customize Models

	Customize Losses

	Customize Datasets

	Customize Data Pipelines

	Customize Runtime Settings





	How to
	Use backbone network through MMPretrain

	Use Mosaic augmentation

	Unfreeze backbone network after freezing the backbone in the config

	Get the channels of a new backbone

	Use Detectron2 Model in MMDetection










Migration


	Migrating from MMDetection 2.x to 3.x






API Reference


	mmdet.apis

	mmdet.datasets

	mmdet.engine

	mmdet.evaluation

	mmdet.models

	mmdet.structures

	mmdet.testing

	mmdet.visualization

	mmdet.utils






Model Zoo


	Benchmark and Model Zoo






Notes


	Contribution

	Projects based on MMDetection

	Changelog of v3.x

	Changelog v2.x

	Frequently Asked Questions

	Compatibility of MMDetection 2.x






Switch Language


	English

	简体中文








Indices and tables


	Index


	Search Page








            

          

      

      

    

  

    
      
          
            
  
OVERVIEW

This chapter introduces you to the framework of MMDetection, and provides links to detailed tutorials about MMDetection.


What is MMDetection

[image: image]

MMDetection is an object detection toolbox that contains a rich set of object detection, instance segmentation, and panoptic segmentation methods as well as related components and modules, and below is its whole framework:

MMDetection consists of 7 main parts, apis, structures, datasets, models, engine, evaluation and visualization.


	apis provides high-level APIs for model inference.


	structures provides data structures like bbox, mask, and DetDataSample.


	datasets supports various dataset for object detection, instance segmentation, and panoptic segmentation.


	transforms contains a lot of useful data augmentation transforms.


	samplers defines different data loader sampling strategy.






	models is the most vital part for detectors and contains different components of a detector.


	detectors defines all of the detection model classes.


	data_preprocessors is for preprocessing the input data of the model.


	backbones contains various backbone networks.


	necks contains various neck components.


	dense_heads contains various detection heads that perform dense predictions.


	roi_heads contains various detection heads that predict from RoIs.


	seg_heads contains various segmentation heads.


	losses contains various loss functions.


	task_modules provides modules for detection tasks. E.g. assigners, samplers, box coders, and prior generators.


	layers provides some basic neural network layers.






	engine is a part for runtime components.


	runner provides extensions for MMEngine’s runner [https://mmengine.readthedocs.io/en/latest/tutorials/runner.html].


	schedulers provides schedulers for adjusting optimization hyperparameters.


	optimizers provides optimizers and optimizer wrappers.


	hooks provides various hooks of the runner.






	evaluation provides different metrics for evaluating model performance.


	visualization is for visualizing detection results.







How to Use this Guide

Here is a detailed step-by-step guide to learn more about MMDetection:


	For installation instructions, please see get_started.


	Refer to the below tutorials for the basic usage of MMDetection.


	Train and Test [https://mmdetection.readthedocs.io/en/latest/user_guides/index.html#train-test]


	Useful Tools [https://mmdetection.readthedocs.io/en/latest/user_guides/index.html#useful-tools]






	Refer to the below tutorials to dive deeper:


	Basic Concepts [https://mmdetection.readthedocs.io/en/latest/advanced_guides/index.html#basic-concepts]


	Component Customization [https://mmdetection.readthedocs.io/en/latest/advanced_guides/index.html#component-customization]






	For users of MMDetection 2.x version, we provide a guide to help you adapt to the new version. You can find it in the migration guide.










            

          

      

      

    

  

    
      
          
            
  
GET STARTED


Prerequisites

In this section, we demonstrate how to prepare an environment with PyTorch.

MMDetection works on Linux, Windows, and macOS. It requires Python 3.7+, CUDA 9.2+, and PyTorch 1.8+.


Note

If you are experienced with PyTorch and have already installed it, just skip this part and jump to the next section. Otherwise, you can follow these steps for the preparation.



Step 0. Download and install Miniconda from the official website [https://docs.conda.io/en/latest/miniconda.html].

Step 1. Create a conda environment and activate it.

conda create --name openmmlab python=3.8 -y
conda activate openmmlab





Step 2. Install PyTorch following official instructions [https://pytorch.org/get-started/locally/], e.g.

On GPU platforms:

conda install pytorch torchvision -c pytorch





On CPU platforms:

conda install pytorch torchvision cpuonly -c pytorch








Installation

We recommend that users follow our best practices to install MMDetection. However, the whole process is highly customizable. See Customize Installation section for more information.


Best Practices

Step 0. Install MMEngine [https://github.com/open-mmlab/mmengine] and MMCV [https://github.com/open-mmlab/mmcv] using MIM [https://github.com/open-mmlab/mim].

pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"





Note: In MMCV-v2.x, mmcv-full is rename to mmcv, if you want to install mmcv without CUDA ops, you can use mim install "mmcv-lite>=2.0.0rc1" to install the lite version.

Step 1. Install MMDetection.

Case a: If you develop and run mmdet directly, install it from source:

git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -v -e .
# "-v" means verbose, or more output
# "-e" means installing a project in editable mode,
# thus any local modifications made to the code will take effect without reinstallation.





Case b: If you use mmdet as a dependency or third-party package, install it with MIM:

mim install mmdet










Verify the installation

To verify whether MMDetection is installed correctly, we provide some sample codes to run an inference demo.

Step 1. We need to download config and checkpoint files.

mim download mmdet --config rtmdet_tiny_8xb32-300e_coco --dest .





The downloading will take several seconds or more, depending on your network environment. When it is done, you will find two files rtmdet_tiny_8xb32-300e_coco.py and rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth in your current folder.

Step 2. Verify the inference demo.

Case a: If you install MMDetection from source, just run the following command.

python demo/image_demo.py demo/demo.jpg rtmdet_tiny_8xb32-300e_coco.py --weights rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth --device cpu





You will see a new image demo.jpg on your ./outputs/vis folder, where bounding boxes are plotted on cars, benches, etc.

Case b: If you install MMDetection with MIM, open your python interpreter and copy&paste the following codes.

from mmdet.apis import init_detector, inference_detector

config_file = 'rtmdet_tiny_8xb32-300e_coco.py'
checkpoint_file = 'rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth'
model = init_detector(config_file, checkpoint_file, device='cpu')  # or device='cuda:0'
inference_detector(model, 'demo/demo.jpg')





You will see a list of DetDataSample, and the predictions are in the pred_instance, indicating the detected bounding boxes, labels, and scores.




Tracking Installation

We recommend that users follow our best practices to install MMDetection for tracking task.


Best Practices

Step 0. Install MMEngine [https://github.com/open-mmlab/mmengine] and MMCV [https://github.com/open-mmlab/mmcv] using MIM [https://github.com/open-mmlab/mim].

pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"





Step 1. Install MMDetection.

Case a: If you develop and run mmdet directly, install it from source:

git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -v -e . -r requirements/tracking.txt
# "-v" means verbose, or more output
# "-e" means installing a project in editable mode,
# thus any local modifications made to the code will take effect without reinstallation.





Case b: If you use mmdet as a dependency or third-party package, install it with MIM:

mim install mmdet[tracking]





Step 2. Install TrackEval.

pip install git+https://github.com/JonathonLuiten/TrackEval.git










Verify the installation

To verify whether MMDetection is installed correctly, we provide some sample codes to run an inference demo.

Step 1. We need to download config and checkpoint files.

mim download mmdet --config bytetrack_yolox_x_8xb4-amp-80e_crowdhuman-mot17halftrain_test-mot17halfval --dest .





The downloading will take several seconds or more, depending on your network environment. When it is done, you will find two files bytetrack_yolox_x_8xb4-amp-80e_crowdhuman-mot17halftrain_test-mot17halfval.py and bytetrack_yolox_x_crowdhuman_mot17-private-half_20211218_205500-1985c9f0.pth in your current folder.

Step 2. Verify the inference demo.

Case a: If you install MMDetection from source, just run the following command.

python demo/mot_demo.py demo/demo_mot.mp4 bytetrack_yolox_x_8xb4-amp-80e_crowdhuman-mot17halftrain_test-mot17halfval.py --checkpoint bytetrack_yolox_x_crowdhuman_mot17-private-half_20211218_205500-1985c9f0.pth --out mot.mp4





You will see a new video mot.mp4 on your folder, where bounding boxes are plotted on person.

Case b: If you install MMDetection with MIM, open your python interpreter and demo/mot_demo.py, then run it like Case a.


Customize Installation


CUDA versions

When installing PyTorch, you need to specify the version of CUDA. If you are not clear on which to choose, follow our recommendations:


	For Ampere-based NVIDIA GPUs, such as GeForce 30 series and NVIDIA A100, CUDA 11 is a must.


	For older NVIDIA GPUs, CUDA 11 is backward compatible, but CUDA 10.2 offers better compatibility and is more lightweight.




Please make sure the GPU driver satisfies the minimum version requirements. See this table [https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions] for more information.


Note

Installing CUDA runtime libraries is enough if you follow our best practices, because no CUDA code will be compiled locally. However, if you hope to compile MMCV from source or develop other CUDA operators, you need to install the complete CUDA toolkit from NVIDIA’s website [https://developer.nvidia.com/cuda-downloads], and its version should match the CUDA version of PyTorch. i.e., the specified version of cudatoolkit in the conda install command.






Install MMEngine without MIM

To install MMEngine with pip instead of MIM, please follow MMEngine installation guides [https://mmengine.readthedocs.io/en/latest/get_started/installation.html].

For example, you can install MMEngine by the following command.

pip install mmengine








Install MMCV without MIM

MMCV contains C++ and CUDA extensions, thus depending on PyTorch in a complex way. MIM solves such dependencies automatically and makes the installation easier. However, it is not a must.

To install MMCV with pip instead of MIM, please follow MMCV installation guides [https://mmcv.readthedocs.io/en/2.x/get_started/installation.html]. This requires manually specifying a find-url based on the PyTorch version and its CUDA version.

For example, the following command installs MMCV built for PyTorch 1.12.x and CUDA 11.6.

pip install "mmcv>=2.0.0" -f https://download.openmmlab.com/mmcv/dist/cu116/torch1.12.0/index.html








Install on CPU-only platforms

MMDetection can be built for CPU-only environments. In CPU mode you can train (requires MMCV version >= 2.0.0rc1), test, or infer a model.

However, some functionalities are gone in this mode:


	Deformable Convolution


	Modulated Deformable Convolution


	ROI pooling


	Deformable ROI pooling


	CARAFE


	SyncBatchNorm


	CrissCrossAttention


	MaskedConv2d


	Temporal Interlace Shift


	nms_cuda


	sigmoid_focal_loss_cuda


	bbox_overlaps




If you try to train/test/infer a model containing the above ops, an error will be raised.
The following table lists affected algorithms.




	Operator
	Model





	Deformable Convolution/Modulated Deformable Convolution
	DCN, Guided Anchoring, RepPoints, CentripetalNet, VFNet, CascadeRPN, NAS-FCOS, DetectoRS



	MaskedConv2d
	Guided Anchoring



	CARAFE
	CARAFE



	SyncBatchNorm
	ResNeSt








Install on Google Colab

Google Colab [https://colab.research.google.com/] usually has PyTorch installed,
thus we only need to install MMEngine, MMCV, and MMDetection with the following commands.

Step 1. Install MMEngine [https://github.com/open-mmlab/mmengine] and MMCV [https://github.com/open-mmlab/mmcv] using MIM [https://github.com/open-mmlab/mim].

!pip3 install openmim
!mim install mmengine
!mim install "mmcv>=2.0.0,<2.1.0"





Step 2. Install MMDetection from the source.

!git clone https://github.com/open-mmlab/mmdetection.git
%cd mmdetection
!pip install -e .





Step 3. Verification.

import mmdet
print(mmdet.__version__)
# Example output: 3.0.0, or an another version.






Note

Within Jupyter, the exclamation mark ! is used to call external executables and %cd is a magic command [https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-cd] to change the current working directory of Python.






Use MMDetection with Docker

We provide a Dockerfile to build an image. Ensure that your docker version [https://docs.docker.com/engine/install/] >=19.03.

# build an image with PyTorch 1.9, CUDA 11.1
# If you prefer other versions, just modified the Dockerfile
docker build -t mmdetection docker/





Run it with

docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmdetection/data mmdetection










Troubleshooting

If you have some issues during the installation, please first view the FAQ page.
You may open an issue [https://github.com/open-mmlab/mmdetection/issues/new/choose] on GitHub if no solution is found.




Use Multiple Versions of MMDetection in Development

Training and testing scripts have already been modified in PYTHONPATH in order to make sure the scripts are using their own versions of MMDetection.

To install the default version of MMDetection in your environment, you can exclude the follow code in the relative scripts:

PYTHONPATH="$(dirname $0)/..":$PYTHONPATH













            

          

      

      

    

  

    
      
          
            
  
Train & Test

MMDetection provides hundreds of pretrained detection models in Model Zoo [https://mmdetection.readthedocs.io/en/latest/model_zoo.html],
and supports multiple standard datasets, including Pascal VOC, COCO, CityScapes, LVIS, etc. This note will show how to perform common tasks on these existing models and standard datasets:



	Learn about Configs

	Inference with existing models

	Dataset Prepare

	Test existing models on standard datasets

	Train predefined models on standard datasets

	Train with customized datasets

	Train with customized models and standard datasets

	Finetuning Models

	Test Results Submission

	Weight initialization

	Use a single stage detector as RPN

	Semi-supervised Object Detection








Useful Tools



	Log Analysis

	Result Analysis

	Fusing results from multiple models

	Visualization

	Error Analysis

	Model Serving

	Model Complexity

	Model conversion

	Dataset Conversion

	Dataset Download

	Benchmark

	Miscellaneous

	Hyper-parameter Optimization

	Confusion Matrix

	COCO Separated & Occluded Mask Metric

	Useful Hooks

	Visualization

	Corruption Benchmarking

	Model Deployment

	Semi-automatic Object Detection Annotation with MMDetection and Label-Studio

	MOT Test-time Parameter Search

	MOT Error Visualize

	Browse dataset

	Learn about Configs

	Dataset Preparation

	Inference

	Learn to train and test

	Learn about Visualization









            

          

      

      

    

  

    
      
          
            
  
Learn about Configs

MMDetection and other OpenMMLab repositories use MMEngine’s config system [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html]. It has a modular and inheritance design, which is convenient to conduct various experiments.


Config file content

MMDetection uses a modular design, all modules with different functions can be configured through the config. Taking Mask R-CNN as an example, we will introduce each field in the config according to different function modules:


Model config

In MMDetection’s config, we use model to set up detection algorithm components. In addition to neural network components such as backbone, neck, etc, it also requires data_preprocessor, train_cfg, and test_cfg. data_preprocessor is responsible for processing a batch of data output by dataloader. train_cfg, and test_cfg in the model config are for training and testing hyperparameters of the components.

model = dict(
    type='MaskRCNN',  # The name of detector
    data_preprocessor=dict(  # The config of data preprocessor, usually includes image normalization and padding
        type='DetDataPreprocessor',  # The type of the data preprocessor, refer to https://mmdetection.readthedocs.io/en/latest/api.html#mmdet.models.data_preprocessors.DetDataPreprocessor
        mean=[123.675, 116.28, 103.53],  # Mean values used to pre-training the pre-trained backbone models, ordered in R, G, B
        std=[58.395, 57.12, 57.375],  # Standard variance used to pre-training the pre-trained backbone models, ordered in R, G, B
        bgr_to_rgb=True,  # whether to convert image from BGR to RGB
        pad_mask=True,  # whether to pad instance masks
        pad_size_divisor=32),  # The size of padded image should be divisible by ``pad_size_divisor``
    backbone=dict(  # The config of backbone
        type='ResNet',  # The type of backbone network. Refer to https://mmdetection.readthedocs.io/en/latest/api.html#mmdet.models.backbones.ResNet
        depth=50,  # The depth of backbone, usually it is 50 or 101 for ResNet and ResNext backbones.
        num_stages=4,  # Number of stages of the backbone.
        out_indices=(0, 1, 2, 3),  # The index of output feature maps produced in each stage
        frozen_stages=1,  # The weights in the first stage are frozen
        norm_cfg=dict(  # The config of normalization layers.
            type='BN',  # Type of norm layer, usually it is BN or GN
            requires_grad=True),  # Whether to train the gamma and beta in BN
        norm_eval=True,  # Whether to freeze the statistics in BN
        style='pytorch', # The style of backbone, 'pytorch' means that stride 2 layers are in 3x3 Conv, 'caffe' means stride 2 layers are in 1x1 Convs.
    	init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),  # The ImageNet pretrained backbone to be loaded
    neck=dict(
        type='FPN',  # The neck of detector is FPN. We also support 'NASFPN', 'PAFPN', etc. Refer to https://mmdetection.readthedocs.io/en/latest/api.html#mmdet.models.necks.FPN for more details.
        in_channels=[256, 512, 1024, 2048],  # The input channels, this is consistent with the output channels of backbone
        out_channels=256,  # The output channels of each level of the pyramid feature map
        num_outs=5),  # The number of output scales
    rpn_head=dict(
        type='RPNHead',  # The type of RPN head is 'RPNHead', we also support 'GARPNHead', etc. Refer to https://mmdetection.readthedocs.io/en/latest/api.html#mmdet.models.dense_heads.RPNHead for more details.
        in_channels=256,  # The input channels of each input feature map, this is consistent with the output channels of neck
        feat_channels=256,  # Feature channels of convolutional layers in the head.
        anchor_generator=dict(  # The config of anchor generator
            type='AnchorGenerator',  # Most of methods use AnchorGenerator, SSD Detectors uses `SSDAnchorGenerator`. Refer to https://github.com/open-mmlab/mmdetection/blob/main/mmdet/models/task_modules/prior_generators/anchor_generator.py#L18 for more details
            scales=[8],  # Basic scale of the anchor, the area of the anchor in one position of a feature map will be scale * base_sizes
            ratios=[0.5, 1.0, 2.0],  # The ratio between height and width.
            strides=[4, 8, 16, 32, 64]),  # The strides of the anchor generator. This is consistent with the FPN feature strides. The strides will be taken as base_sizes if base_sizes is not set.
        bbox_coder=dict(  # Config of box coder to encode and decode the boxes during training and testing
            type='DeltaXYWHBBoxCoder',  # Type of box coder. 'DeltaXYWHBBoxCoder' is applied for most of the methods. Refer to https://github.com/open-mmlab/mmdetection/blob/main/mmdet/models/task_modules/coders/delta_xywh_bbox_coder.py#L13 for more details.
            target_means=[0.0, 0.0, 0.0, 0.0],  # The target means used to encode and decode boxes
            target_stds=[1.0, 1.0, 1.0, 1.0]),  # The standard variance used to encode and decode boxes
        loss_cls=dict(  # Config of loss function for the classification branch
            type='CrossEntropyLoss',  # Type of loss for classification branch, we also support FocalLoss etc. Refer to https://github.com/open-mmlab/mmdetection/blob/main/mmdet/models/losses/cross_entropy_loss.py#L201 for more details
            use_sigmoid=True,  # RPN usually performs two-class classification, so it usually uses the sigmoid function.
            loss_weight=1.0),  # Loss weight of the classification branch.
        loss_bbox=dict(  # Config of loss function for the regression branch.
            type='L1Loss',  # Type of loss, we also support many IoU Losses and smooth L1-loss, etc. Refer to https://github.com/open-mmlab/mmdetection/blob/main/mmdet/models/losses/smooth_l1_loss.py#L56 for implementation.
            loss_weight=1.0)),  # Loss weight of the regression branch.
    roi_head=dict(  # RoIHead encapsulates the second stage of two-stage/cascade detectors.
        type='StandardRoIHead',
        bbox_roi_extractor=dict(  # RoI feature extractor for bbox regression.
            type='SingleRoIExtractor',  # Type of the RoI feature extractor, most of methods uses SingleRoIExtractor. Refer to https://github.com/open-mmlab/mmdetection/blob/main/mmdet/models/roi_heads/roi_extractors/single_level_roi_extractor.py#L13 for details.
            roi_layer=dict(  # Config of RoI Layer
                type='RoIAlign',  # Type of RoI Layer, DeformRoIPoolingPack and ModulatedDeformRoIPoolingPack are also supported. Refer to https://mmcv.readthedocs.io/en/latest/api.html#mmcv.ops.RoIAlign for details.
                output_size=7,  # The output size of feature maps.
                sampling_ratio=0),  # Sampling ratio when extracting the RoI features. 0 means adaptive ratio.
            out_channels=256,  # output channels of the extracted feature.
            featmap_strides=[4, 8, 16, 32]),  # Strides of multi-scale feature maps. It should be consistent with the architecture of the backbone.
        bbox_head=dict(  # Config of box head in the RoIHead.
            type='Shared2FCBBoxHead',  # Type of the bbox head, Refer to https://github.com/open-mmlab/mmdetection/blob/main/mmdet/models/roi_heads/bbox_heads/convfc_bbox_head.py#L220 for implementation details.
            in_channels=256,  # Input channels for bbox head. This is consistent with the out_channels in roi_extractor
            fc_out_channels=1024,  # Output feature channels of FC layers.
            roi_feat_size=7,  # Size of RoI features
            num_classes=80,  # Number of classes for classification
            bbox_coder=dict(  # Box coder used in the second stage.
                type='DeltaXYWHBBoxCoder',  # Type of box coder. 'DeltaXYWHBBoxCoder' is applied for most of the methods.
                target_means=[0.0, 0.0, 0.0, 0.0],  # Means used to encode and decode box
                target_stds=[0.1, 0.1, 0.2, 0.2]),  # Standard variance for encoding and decoding. It is smaller since the boxes are more accurate. [0.1, 0.1, 0.2, 0.2] is a conventional setting.
            reg_class_agnostic=False,  # Whether the regression is class agnostic.
            loss_cls=dict(  # Config of loss function for the classification branch
                type='CrossEntropyLoss',  # Type of loss for classification branch, we also support FocalLoss etc.
                use_sigmoid=False,  # Whether to use sigmoid.
                loss_weight=1.0),  # Loss weight of the classification branch.
            loss_bbox=dict(  # Config of loss function for the regression branch.
                type='L1Loss',  # Type of loss, we also support many IoU Losses and smooth L1-loss, etc.
                loss_weight=1.0)),  # Loss weight of the regression branch.
        mask_roi_extractor=dict(  # RoI feature extractor for mask generation.
            type='SingleRoIExtractor',  # Type of the RoI feature extractor, most of methods uses SingleRoIExtractor.
            roi_layer=dict(  # Config of RoI Layer that extracts features for instance segmentation
                type='RoIAlign',  # Type of RoI Layer, DeformRoIPoolingPack and ModulatedDeformRoIPoolingPack are also supported
                output_size=14,  # The output size of feature maps.
                sampling_ratio=0),  # Sampling ratio when extracting the RoI features.
            out_channels=256,  # Output channels of the extracted feature.
            featmap_strides=[4, 8, 16, 32]),  # Strides of multi-scale feature maps.
        mask_head=dict(  # Mask prediction head
            type='FCNMaskHead',  # Type of mask head, refer to https://mmdetection.readthedocs.io/en/latest/api.html#mmdet.models.roi_heads.FCNMaskHead for implementation details.
            num_convs=4,  # Number of convolutional layers in mask head.
            in_channels=256,  # Input channels, should be consistent with the output channels of mask roi extractor.
            conv_out_channels=256,  # Output channels of the convolutional layer.
            num_classes=80,  # Number of class to be segmented.
            loss_mask=dict(  # Config of loss function for the mask branch.
                type='CrossEntropyLoss',  # Type of loss used for segmentation
                use_mask=True,  # Whether to only train the mask in the correct class.
                loss_weight=1.0))),  # Loss weight of mask branch.
    train_cfg = dict(  # Config of training hyperparameters for rpn and rcnn
        rpn=dict(  # Training config of rpn
            assigner=dict(  # Config of assigner
                type='MaxIoUAssigner',  # Type of assigner, MaxIoUAssigner is used for many common detectors. Refer to https://github.com/open-mmlab/mmdetection/blob/main/mmdet/models/task_modules/assigners/max_iou_assigner.py#L14 for more details.
                pos_iou_thr=0.7,  # IoU >= threshold 0.7 will be taken as positive samples
                neg_iou_thr=0.3,  # IoU < threshold 0.3 will be taken as negative samples
                min_pos_iou=0.3,  # The minimal IoU threshold to take boxes as positive samples
                match_low_quality=True,  # Whether to match the boxes under low quality (see API doc for more details).
                ignore_iof_thr=-1),  # IoF threshold for ignoring bboxes
            sampler=dict(  # Config of positive/negative sampler
                type='RandomSampler',  # Type of sampler, PseudoSampler and other samplers are also supported. Refer to https://github.com/open-mmlab/mmdetection/blob/main/mmdet/models/task_modules/samplers/random_sampler.py#L14 for implementation details.
                num=256,  # Number of samples
                pos_fraction=0.5,  # The ratio of positive samples in the total samples.
                neg_pos_ub=-1,  # The upper bound of negative samples based on the number of positive samples.
                add_gt_as_proposals=False),  # Whether add GT as proposals after sampling.
            allowed_border=-1,  # The border allowed after padding for valid anchors.
            pos_weight=-1,  # The weight of positive samples during training.
            debug=False),  # Whether to set the debug mode
        rpn_proposal=dict(  # The config to generate proposals during training
            nms_across_levels=False,  # Whether to do NMS for boxes across levels. Only work in `GARPNHead`, naive rpn does not support do nms cross levels.
            nms_pre=2000,  # The number of boxes before NMS
            nms_post=1000,  # The number of boxes to be kept by NMS. Only work in `GARPNHead`.
            max_per_img=1000,  # The number of boxes to be kept after NMS.
            nms=dict( # Config of NMS
                type='nms',  # Type of NMS
                iou_threshold=0.7 # NMS threshold
                ),
            min_bbox_size=0),  # The allowed minimal box size
        rcnn=dict(  # The config for the roi heads.
            assigner=dict(  # Config of assigner for second stage, this is different for that in rpn
                type='MaxIoUAssigner',  # Type of assigner, MaxIoUAssigner is used for all roi_heads for now. Refer to https://github.com/open-mmlab/mmdetection/blob/main/mmdet/models/task_modules/assigners/max_iou_assigner.py#L14 for more details.
                pos_iou_thr=0.5,  # IoU >= threshold 0.5 will be taken as positive samples
                neg_iou_thr=0.5,  # IoU < threshold 0.5 will be taken as negative samples
                min_pos_iou=0.5,  # The minimal IoU threshold to take boxes as positive samples
                match_low_quality=False,  # Whether to match the boxes under low quality (see API doc for more details).
                ignore_iof_thr=-1),  # IoF threshold for ignoring bboxes
            sampler=dict(
                type='RandomSampler',  # Type of sampler, PseudoSampler and other samplers are also supported. Refer to https://github.com/open-mmlab/mmdetection/blob/main/mmdet/models/task_modules/samplers/random_sampler.py#L14 for implementation details.
                num=512,  # Number of samples
                pos_fraction=0.25,  # The ratio of positive samples in the total samples.
                neg_pos_ub=-1,  # The upper bound of negative samples based on the number of positive samples.
                add_gt_as_proposals=True
            ),  # Whether add GT as proposals after sampling.
            mask_size=28,  # Size of mask
            pos_weight=-1,  # The weight of positive samples during training.
            debug=False)),  # Whether to set the debug mode
    test_cfg = dict(  # Config for testing hyperparameters for rpn and rcnn
        rpn=dict(  # The config to generate proposals during testing
            nms_across_levels=False,  # Whether to do NMS for boxes across levels. Only work in `GARPNHead`, naive rpn does not support do nms cross levels.
            nms_pre=1000,  # The number of boxes before NMS
            nms_post=1000,  # The number of boxes to be kept by NMS. Only work in `GARPNHead`.
            max_per_img=1000,  # The number of boxes to be kept after NMS.
            nms=dict( # Config of NMS
                type='nms',  #Type of NMS
                iou_threshold=0.7 # NMS threshold
                ),
            min_bbox_size=0),  # The allowed minimal box size
        rcnn=dict(  # The config for the roi heads.
            score_thr=0.05,  # Threshold to filter out boxes
            nms=dict(  # Config of NMS in the second stage
                type='nms',  # Type of NMS
                iou_thr=0.5),  # NMS threshold
            max_per_img=100,  # Max number of detections of each image
            mask_thr_binary=0.5)))  # Threshold of mask prediction








Dataset and evaluator config

Dataloaders [https://mmengine.readthedocs.io/en/latest/tutorials/dataset.html] are required for the training, validation, and testing of the runner [https://mmengine.readthedocs.io/en/latest/tutorials/runner.html]. Dataset and data pipeline need to be set to build the dataloader. Due to the complexity of this part, we use intermediate variables to simplify the writing of dataloader configs.

dataset_type = 'CocoDataset'  # Dataset type, this will be used to define the dataset
data_root = 'data/coco/'  # Root path of data
backend_args = None # Arguments to instantiate the corresponding file backend

train_pipeline = [  # Training data processing pipeline
    dict(type='LoadImageFromFile', backend_args=backend_args),  # First pipeline to load images from file path
    dict(
        type='LoadAnnotations',  # Second pipeline to load annotations for current image
        with_bbox=True,  # Whether to use bounding box, True for detection
        with_mask=True,  # Whether to use instance mask, True for instance segmentation
        poly2mask=True),  # Whether to convert the polygon mask to instance mask, set False for acceleration and to save memory
    dict(
        type='Resize',  # Pipeline that resizes the images and their annotations
        scale=(1333, 800),  # The largest scale of the images
        keep_ratio=True  # Whether to keep the ratio between height and width
        ),
    dict(
        type='RandomFlip',  # Augmentation pipeline that flips the images and their annotations
        prob=0.5),  # The probability to flip
    dict(type='PackDetInputs')  # Pipeline that formats the annotation data and decides which keys in the data should be packed into data_samples
]
test_pipeline = [  # Testing data processing pipeline
    dict(type='LoadImageFromFile', backend_args=backend_args),  # First pipeline to load images from file path
    dict(type='Resize', scale=(1333, 800), keep_ratio=True),  # Pipeline that resizes the images
    dict(
        type='PackDetInputs',  # Pipeline that formats the annotation data and decides which keys in the data should be packed into data_samples
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor'))
]
train_dataloader = dict(   # Train dataloader config
    batch_size=2,  # Batch size of a single GPU
    num_workers=2,  # Worker to pre-fetch data for each single GPU
    persistent_workers=True,  # If ``True``, the dataloader will not shut down the worker processes after an epoch end, which can accelerate training speed.
    sampler=dict(  # training data sampler
        type='DefaultSampler',  # DefaultSampler which supports both distributed and non-distributed training. Refer to https://mmengine.readthedocs.io/en/latest/api/generated/mmengine.dataset.DefaultSampler.html#mmengine.dataset.DefaultSampler
        shuffle=True),  # randomly shuffle the training data in each epoch
    batch_sampler=dict(type='AspectRatioBatchSampler'),  # Batch sampler for grouping images with similar aspect ratio into a same batch. It can reduce GPU memory cost.
    dataset=dict(  # Train dataset config
        type=dataset_type,
        data_root=data_root,
        ann_file='annotations/instances_train2017.json',  # Path of annotation file
        data_prefix=dict(img='train2017/'),  # Prefix of image path
        filter_cfg=dict(filter_empty_gt=True, min_size=32),  # Config of filtering images and annotations
        pipeline=train_pipeline,
        backend_args=backend_args))
val_dataloader = dict(  # Validation dataloader config
    batch_size=1,  # Batch size of a single GPU. If batch-size > 1, the extra padding area may influence the performance.
    num_workers=2,  # Worker to pre-fetch data for each single GPU
    persistent_workers=True,  # If ``True``, the dataloader will not shut down the worker processes after an epoch end, which can accelerate training speed.
    drop_last=False,  # Whether to drop the last incomplete batch, if the dataset size is not divisible by the batch size
    sampler=dict(
        type='DefaultSampler',
        shuffle=False),  # not shuffle during validation and testing
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file='annotations/instances_val2017.json',
        data_prefix=dict(img='val2017/'),
        test_mode=True,  # Turn on the test mode of the dataset to avoid filtering annotations or images
        pipeline=test_pipeline,
        backend_args=backend_args))
test_dataloader = val_dataloader  # Testing dataloader config





Evaluators [https://mmengine.readthedocs.io/en/latest/tutorials/evaluation.html] are used to compute the metrics of the trained model on the validation and testing datasets. The config of evaluators consists of one or a list of metric configs:

val_evaluator = dict(  # Validation evaluator config
    type='CocoMetric',  # The coco metric used to evaluate AR, AP, and mAP for detection and instance segmentation
    ann_file=data_root + 'annotations/instances_val2017.json',  # Annotation file path
    metric=['bbox', 'segm'],  # Metrics to be evaluated, `bbox` for detection and `segm` for instance segmentation
    format_only=False,
    backend_args=backend_args)
test_evaluator = val_evaluator  # Testing evaluator config





Since the test dataset has no annotation files, the test_dataloader and test_evaluator config in MMDetection are generally equal to the val’s. If you want to save the detection results on the test dataset, you can write the config like this:

# inference on test dataset and
# format the output results for submission.
test_dataloader = dict(
    batch_size=1,
    num_workers=2,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file=data_root + 'annotations/image_info_test-dev2017.json',
        data_prefix=dict(img='test2017/'),
        test_mode=True,
        pipeline=test_pipeline))
test_evaluator = dict(
    type='CocoMetric',
    ann_file=data_root + 'annotations/image_info_test-dev2017.json',
    metric=['bbox', 'segm'],  # Metrics to be evaluated
    format_only=True,  # Only format and save the results to coco json file
    outfile_prefix='./work_dirs/coco_detection/test')  # The prefix of output json files








Training and testing config

MMEngine’s runner uses Loop to control the training, validation, and testing processes.
Users can set the maximum training epochs and validation intervals with these fields.

train_cfg = dict(
    type='EpochBasedTrainLoop',  # The training loop type. Refer to https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/loops.py
    max_epochs=12,  # Maximum training epochs
    val_interval=1)  # Validation intervals. Run validation every epoch.
val_cfg = dict(type='ValLoop')  # The validation loop type
test_cfg = dict(type='TestLoop')  # The testing loop type








Optimization config

optim_wrapper is the field to configure optimization-related settings. The optimizer wrapper not only provides the functions of the optimizer, but also supports functions such as gradient clipping, mixed precision training, etc. Find more in optimizer wrapper tutorial [https://mmengine.readthedocs.io/en/latest/tutorials/optim_wrapper.html].

optim_wrapper = dict(  # Optimizer wrapper config
    type='OptimWrapper',  # Optimizer wrapper type, switch to AmpOptimWrapper to enable mixed precision training.
    optimizer=dict(  # Optimizer config. Support all kinds of optimizers in PyTorch. Refer to https://pytorch.org/docs/stable/optim.html#algorithms
        type='SGD',  # Stochastic gradient descent optimizer
        lr=0.02,  # The base learning rate
        momentum=0.9,  # Stochastic gradient descent with momentum
        weight_decay=0.0001),  # Weight decay of SGD
    clip_grad=None,  # Gradient clip option. Set None to disable gradient clip. Find usage in https://mmengine.readthedocs.io/en/latest/tutorials/optimizer.html
    )





param_scheduler is a field that configures methods of adjusting optimization hyperparameters such as learning rate and momentum. Users can combine multiple schedulers to create a desired parameter adjustment strategy. Find more in parameter scheduler tutorial [https://mmengine.readthedocs.io/en/latest/tutorials/param_scheduler.html] and parameter scheduler API documents [https://mmengine.readthedocs.io/en/latest/api/generated/mmengine.optim._ParamScheduler.html#mmengine.optim._ParamScheduler]

param_scheduler = [
    # Linear learning rate warm-up scheduler
    dict(
        type='LinearLR',  # Use linear policy to warmup learning rate
        start_factor=0.001, # The ratio of the starting learning rate used for warmup
        by_epoch=False,  # The warmup learning rate is updated by iteration
        begin=0,  # Start from the first iteration
        end=500),  # End the warmup at the 500th iteration
    # The main LRScheduler
    dict(
        type='MultiStepLR',  # Use multi-step learning rate policy during training
        by_epoch=True,  # The learning rate is updated by epoch
        begin=0,   # Start from the first epoch
        end=12,  # End at the 12th epoch
        milestones=[8, 11],  # Epochs to decay the learning rate
        gamma=0.1)  # The learning rate decay ratio
]








Hook config

Users can attach Hooks to training, validation, and testing loops to insert some operations during running. There are two different hook fields, one is default_hooks and the other is custom_hooks.

default_hooks is a dict of hook configs, and they are the hooks must be required at the runtime. They have default priority which should not be modified. If not set, runner will use the default values. To disable a default hook, users can set its config to None. Find more in HOOK [https://mmengine.readthedocs.io/en/latest/tutorials/hook.html].

default_hooks = dict(
    timer=dict(type='IterTimerHook'),  # Update the time spent during iteration into message hub
    logger=dict(type='LoggerHook', interval=50),  # Collect logs from different components of Runner and write them to terminal, JSON file, tensorboard and wandb .etc
    param_scheduler=dict(type='ParamSchedulerHook'), # update some hyper-parameters of optimizer
    checkpoint=dict(type='CheckpointHook', interval=1), # Save checkpoints periodically
    sampler_seed=dict(type='DistSamplerSeedHook'),  # Ensure distributed Sampler shuffle is active
    visualization=dict(type='DetVisualizationHook'))  # Detection Visualization Hook. Used to visualize validation and testing process prediction results





custom_hooks is a list of all other hook configs. Users can develop their own hooks and insert them in this field.

custom_hooks = []








Runtime config

default_scope = 'mmdet'  # The default registry scope to find modules. Refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/registry.html

env_cfg = dict(
    cudnn_benchmark=False,  # Whether to enable cudnn benchmark
    mp_cfg=dict(  # Multi-processing config
        mp_start_method='fork',  # Use fork to start multi-processing threads. 'fork' usually faster than 'spawn' but maybe unsafe. See discussion in https://github.com/pytorch/pytorch/issues/1355
        opencv_num_threads=0),  # Disable opencv multi-threads to avoid system being overloaded
    dist_cfg=dict(backend='nccl'),  # Distribution configs
)

vis_backends = [dict(type='LocalVisBackend')]  # Visualization backends. Refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/visualization.html
visualizer = dict(
    type='DetLocalVisualizer', vis_backends=vis_backends, name='visualizer')
log_processor = dict(
    type='LogProcessor',  # Log processor to process runtime logs
    window_size=50,  # Smooth interval of log values
    by_epoch=True)  # Whether to format logs with epoch type. Should be consistent with the train loop's type.

log_level = 'INFO'  # The level of logging.
load_from = None  # Load model checkpoint as a pre-trained model from a given path. This will not resume training.
resume = False  # Whether to resume from the checkpoint defined in `load_from`. If `load_from` is None, it will resume the latest checkpoint in the `work_dir`.










Iter-based config

MMEngine’s Runner also provides an iter-based training loop except for epoch-based.
To use iter-based training, users should modify the train_cfg, param_scheduler, train_dataloader, default_hooks, and log_processor.
Here is an example of changing an epoch-based RetinaNet config to iter-based: configs/retinanet/retinanet_r50_fpn_90k_coco.py

# Iter-based training config
train_cfg = dict(
    _delete_=True,  # Ignore the base config setting (optional)
    type='IterBasedTrainLoop',  # Use iter-based training loop
    max_iters=90000,  # Maximum iterations
    val_interval=10000)  # Validation interval


# Change the scheduler to iter-based
param_scheduler = [
    dict(
        type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
    dict(
        type='MultiStepLR',
        begin=0,
        end=90000,
        by_epoch=False,
        milestones=[60000, 80000],
        gamma=0.1)
]

# Switch to InfiniteSampler to avoid dataloader restart
train_dataloader = dict(sampler=dict(type='InfiniteSampler'))

# Change the checkpoint saving interval to iter-based
default_hooks = dict(checkpoint=dict(by_epoch=False, interval=10000))

# Change the log format to iter-based
log_processor = dict(by_epoch=False)








Config file inheritance

There are 4 basic component types under config/_base_, dataset, model, schedule, default_runtime.
Many methods could be easily constructed with one of these models like Faster R-CNN, Mask R-CNN, Cascade R-CNN, RPN, SSD.
The configs that are composed by components from _base_ are called the primitive.

For all configs under the same folder, it is recommended to have only one primitive config. All other configs should inherit from the primitive config. In this way, the maximum of inheritance level is 3.

For easy understanding, we recommend contributors to inherit from existing methods.
For example, if some modification is made based on Faster R-CNN, users may first inherit the basic Faster R-CNN structure by specifying _base_ = ../faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py, then modify the necessary fields in the config files.

If you are building an entirely new method that does not share the structure with any of the existing methods, you may create a folder xxx_rcnn under configs,

Please refer to mmengine config tutorial [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html] for detailed documentation.

By setting the _base_ field, we can set which files the current configuration file inherits from.

When _base_ is a string of a file path, it means inheriting the contents from one config file.

_base_ = './mask-rcnn_r50_fpn_1x_coco.py'





When _base_ is a list of multiple file paths, it means inheriting from multiple files.

_base_ = [
    '../_base_/models/mask-rcnn_r50_fpn.py',
    '../_base_/datasets/coco_instance.py',
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]





If you wish to inspect the config file, you may run python tools/misc/print_config.py /PATH/TO/CONFIG to see the complete config.


Ignore some fields in the base configs

Sometimes, you may set _delete_=True to ignore some of the fields in base configs.
You may refer to mmengine config tutorial [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html] for a simple illustration.

In MMDetection, for example, to change the backbone of Mask R-CNN with the following config.

model = dict(
    type='MaskRCNN',
    backbone=dict(
        type='ResNet',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        norm_cfg=dict(type='BN', requires_grad=True),
        norm_eval=True,
        style='pytorch',
        init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
    neck=dict(...),
    rpn_head=dict(...),
    roi_head=dict(...))





ResNet and HRNet use different keywords to construct.

_base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py'
model = dict(
    backbone=dict(
        _delete_=True,
        type='HRNet',
        extra=dict(
            stage1=dict(
                num_modules=1,
                num_branches=1,
                block='BOTTLENECK',
                num_blocks=(4, ),
                num_channels=(64, )),
            stage2=dict(
                num_modules=1,
                num_branches=2,
                block='BASIC',
                num_blocks=(4, 4),
                num_channels=(32, 64)),
            stage3=dict(
                num_modules=4,
                num_branches=3,
                block='BASIC',
                num_blocks=(4, 4, 4),
                num_channels=(32, 64, 128)),
            stage4=dict(
                num_modules=3,
                num_branches=4,
                block='BASIC',
                num_blocks=(4, 4, 4, 4),
                num_channels=(32, 64, 128, 256))),
        init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w32')),
    neck=dict(...))





The _delete_=True would replace all old keys in backbone field with new keys.




Use intermediate variables in configs

Some intermediate variables are used in the configs files, like train_pipeline/test_pipeline in datasets.
It’s worth noting that when modifying intermediate variables in the children configs, users need to pass the intermediate variables into corresponding fields again.
For example, we would like to use a multi-scale strategy to train a Mask R-CNN. train_pipeline/test_pipeline are intermediate variables we would like to modify.

_base_ = './mask-rcnn_r50_fpn_1x_coco.py'

train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
    dict(
        type='RandomResize', scale=[(1333, 640), (1333, 800)],
        keep_ratio=True),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PackDetInputs')
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='Resize', scale=(1333, 800), keep_ratio=True),
    dict(
        type='PackDetInputs',
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor'))
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))





We first define the new train_pipeline/test_pipeline and pass them into dataloader fields.

Similarly, if we would like to switch from SyncBN to BN or MMSyncBN, we need to substitute every norm_cfg in the config.

_base_ = './mask-rcnn_r50_fpn_1x_coco.py'
norm_cfg = dict(type='BN', requires_grad=True)
model = dict(
    backbone=dict(norm_cfg=norm_cfg),
    neck=dict(norm_cfg=norm_cfg),
    ...)








Reuse variables in _base_ file

If the users want to reuse the variables in the base file, they can get a copy of the corresponding variable by using {{_base_.xxx}}. E.g:

_base_ = './mask-rcnn_r50_fpn_1x_coco.py'

a = {{_base_.model}} # Variable `a` is equal to the `model` defined in `_base_`










Modify config through script arguments

When submitting jobs using tools/train.py or tools/test.py, you may specify --cfg-options to in-place modify the config.


	Update config keys of dict chains.

The config options can be specified following the order of the dict keys in the original config.
For example, --cfg-options model.backbone.norm_eval=False changes the all BN modules in model backbones to train mode.



	Update keys inside a list of configs.

Some config dicts are composed as a list in your config. For example, the training pipeline train_dataloader.dataset.pipeline is normally a list
e.g. [dict(type='LoadImageFromFile'), ...]. If you want to change 'LoadImageFromFile' to 'LoadImageFromNDArray' in the pipeline,
you may specify --cfg-options data.train.pipeline.0.type=LoadImageFromNDArray.



	Update values of list/tuples.

If the value to be updated is a list or a tuple. For example, the config file normally sets model.data_preprocessor.mean=[123.675, 116.28, 103.53]. If you want to
change the mean values, you may specify --cfg-options model.data_preprocessor.mean="[127,127,127]". Note that the quotation mark " is necessary to
support list/tuple data types, and NO white space is allowed inside the quotation marks in the specified value.








Config name style

We follow the below style to name config files. Contributors are advised to follow the same style.

{algorithm name}_{model component names [component1]_[component2]_[...]}_{training settings}_{training dataset information}_{testing dataset information}.py





The file name is divided into five parts. All parts and components are connected with _ and words of each part or component should be connected with -.


	{algorithm name}: The name of the algorithm. It can be a detector name such as faster-rcnn, mask-rcnn, etc. Or can be a semi-supervised or knowledge-distillation algorithm such as soft-teacher, lad. etc.


	{model component names}: Names of the components used in the algorithm such as backbone, neck, etc. For example, r50-caffe_fpn_gn-head means using caffe-style ResNet50, FPN and detection head with Group Norm in the algorithm.


	{training settings}: Information of training settings such as batch size, augmentations, loss trick, scheduler, and epochs/iterations. For example: 4xb4-mixup-giou-coslr-100e means using 8-gpus x 4-images-per-gpu, mixup augmentation, GIoU loss, cosine annealing learning rate, and train 100 epochs.
Some abbreviations:


	{gpu x batch_per_gpu}: GPUs and samples per GPU. bN indicates N batch size per GPU. E.g. 4xb4 is the short term of 4-GPUs x 4-images-per-GPU. And 8xb2 is used by default if not mentioned.


	{schedule}: training schedule, options are 1x, 2x, 20e, etc.
1x and 2x means 12 epochs and 24 epochs respectively.
20e is adopted in cascade models, which denotes 20 epochs.
For 1x/2x, the initial learning rate decays by a factor of 10 at the 8/16th and 11/22th epochs.
For 20e, the initial learning rate decays by a factor of 10 at the 16th and 19th epochs.






	{training dataset information}: Training dataset names like coco, coco-panoptic, cityscapes, voc-0712, wider-face.


	{testing dataset information} (optional): Testing dataset name for models trained on one dataset but tested on another. If not mentioned, it means the model was trained and tested on the same dataset type.










            

          

      

      

    

  

    
      
          
            
  
Inference with existing models

MMDetection provides hundreds of pre-trained detection models in Model Zoo [https://mmdetection.readthedocs.io/en/latest/model_zoo.html].
This note will show how to inference, which means using trained models to detect objects on images.

In MMDetection, a model is defined by a configuration file [https://mmdetection.readthedocs.io/en/latest/user_guides/config.html] and existing model parameters are saved in a checkpoint file.

To start with, we recommend RTMDet [https://github.com/open-mmlab/mmdetection/tree/main/configs/rtmdet] with this configuration file [https://github.com/open-mmlab/mmdetection/blob/main/configs/rtmdet/rtmdet_l_8xb32-300e_coco.py] and this checkpoint file [https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_l_8xb32-300e_coco/rtmdet_l_8xb32-300e_coco_20220719_112030-5a0be7c4.pth]. It is recommended to download the checkpoint file to checkpoints directory.


High-level APIs for inference - Inferencer

In OpenMMLab, all the inference operations are unified into a new interface - Inferencer. Inferencer is designed to expose a neat and simple API to users, and shares very similar interface across different OpenMMLab libraries.
A notebook demo can be found in demo/inference_demo.ipynb [https://github.com/open-mmlab/mmdetection/blob/main/demo/inference_demo.ipynb].


Basic Usage

You can get inference results for an image with only 3 lines of code.

from mmdet.apis import DetInferencer

# Initialize the DetInferencer
inferencer = DetInferencer('rtmdet_tiny_8xb32-300e_coco')

# Perform inference
inferencer('demo/demo.jpg', show=True)





The resulting output will be displayed in a new window:.


    



Note

If you are running MMDetection on a server without GUI or via SSH tunnel with X11 forwarding disabled, the show option will not work. However, you can still save visualizations to files by setting out_dir arguments. Read Dumping Results for details.






Initialization

Each Inferencer must be initialized with a model. You can also choose the inference device during initialization.


Model Initialization


	To infer with MMDetection’s pre-trained model, passing its name to the argument model can work. The weights will be automatically downloaded and loaded from OpenMMLab’s model zoo.

inferencer = DetInferencer(model='rtmdet_tiny_8xb32-300e_coco')





There is a very easy to list all model names in MMDetection.

# models is a list of model names, and them will print automatically
models = DetInferencer.list_models('mmdet')





You can load another weight by passing its path/url to weights.

inferencer = DetInferencer(model='rtmdet_tiny_8xb32-300e_coco', weights='path/to/rtmdet.pth')







	To load custom config and weight, you can pass the path to the config file to model and the path to the weight to weights.

inferencer = DetInferencer(model='path/to/rtmdet_config.py', weights='path/to/rtmdet.pth')







	By default, MMEngine [https://github.com/open-mmlab/mmengine/] dumps config to the weight. If you have a weight trained on MMEngine, you can also pass the path to the weight file to weights without specifying model:

# It will raise an error if the config file cannot be found in the weight. Currently, within the MMDetection model repository, only the weights of ddq-detr-4scale_r50 can be loaded in this manner.
inferencer = DetInferencer(weights='https://download.openmmlab.com/mmdetection/v3.0/ddq/ddq-detr-4scale_r50_8xb2-12e_coco/ddq-detr-4scale_r50_8xb2-12e_coco_20230809_170711-42528127.pth')







	Passing config file to model without specifying weight will result in a randomly initialized model.









Device

Each Inferencer instance is bound to a device.
By default, the best device is automatically decided by MMEngine [https://github.com/open-mmlab/mmengine/]. You can also alter the device by specifying the device argument. For example, you can use the following code to create an Inferencer on GPU 1.

inferencer = DetInferencer(model='rtmdet_tiny_8xb32-300e_coco', device='cuda:1')





To create an Inferencer on CPU:

inferencer = DetInferencer(model='rtmdet_tiny_8xb32-300e_coco', device='cpu')





Refer to torch.device [https://pytorch.org/docs/stable/tensor_attributes.html#torch.device] for all the supported forms.




Inference

Once the Inferencer is initialized, you can directly pass in the raw data to be inferred and get the inference results from return values.


Input

Input can be either of these types:


	str: Path/URL to the image.

inferencer('demo/demo.jpg')







	array: Image in numpy array. It should be in BGR order.

import mmcv
array = mmcv.imread('demo/demo.jpg')
inferencer(array)







	list: A list of basic types above. Each element in the list will be processed separately.

inferencer(['img_1.jpg', 'img_2.jpg])
# You can even mix the types
inferencer(['img_1.jpg', array])







	str: Path to the directory. All images in the directory will be processed.

inferencer('path/to/your_imgs/')














Output

By default, each Inferencer returns the prediction results in a dictionary format.


	visualization contains the visualized predictions.


	predictions contains the predictions results in a json-serializable format. But it’s an empty list by default unless return_vis=True.




{
      'predictions' : [
        # Each instance corresponds to an input image
        {
          'labels': [...],  # int list of length (N, )
          'scores': [...],  # float list of length (N, )
          'bboxes': [...],  # 2d list of shape (N, 4), format: [min_x, min_y, max_x, max_y]
        },
        ...
      ],
      'visualization' : [
        array(..., dtype=uint8),
      ]
  }





If you wish to get the raw outputs from the model, you can set return_datasamples to True to get the original DataSample, which will be stored in predictions.


Dumping Results

Apart from obtaining predictions from the return value, you can also export the predictions/visualizations to files by setting out_dir and no_save_pred/no_save_vis arguments.

inferencer('demo/demo.jpg', out_dir='outputs/', no_save_pred=False)





Results in the directory structure like:

outputs
├── preds
│   └── demo.json
└── vis
    └── demo.jpg





The filename of each file is the same as the corresponding input image filename. If the input image is an array, the filename will be a number starting from 0.




Batch Inference

You can customize the batch size by setting batch_size. The default batch size is 1.






API

Here are extensive lists of parameters that you can use.


	DetInferencer.__init__():







	Arguments
	Type
	Type
	Description





	model
	str, optional
	None
	Path to the config file or the model name defined in metafile. For example, it could be 'rtmdet-s' or 'rtmdet_s_8xb32-300e_coco' or 'configs/rtmdet/rtmdet_s_8xb32-300e_coco.py'. If the model is not specified, the user must provide the weights saved by MMEngine which contains the config string.



	weights
	str, optional
	None
	Path to the checkpoint. If it is not specified and model is a model name of metafile, the weights will be loaded from metafile.



	device
	str, optional
	None
	Device used for inference, accepting all allowed strings by torch.device. E.g., 'cuda:0' or 'cpu'. If None, the available device will be automatically used.



	scope
	str, optional
	'mmdet'
	The scope of the model.



	palette
	str
	'none'
	Color palette used for visualization. The order of priority is palette -> config -> checkpoint.



	show_progress
	bool
	True
	Control whether to display the progress bar during the inference process.






	DetInferencer.__call__()







	Arguments
	Type
	Default
	Description





	inputs
	str/list/tuple/np.array
	required
	It can be a path to an image/a folder, an np array or a list/tuple (with img paths or np arrays)



	batch_size
	int
	1
	Inference batch size.



	print_result
	bool
	False
	Whether to print the inference result to the console.



	show
	bool
	False
	Whether to display the visualization results in a popup window.



	wait_time
	float
	0
	The interval of show(s).



	no_save_vis
	bool
	False
	Whether to force not to save prediction vis results.



	draw_pred
	bool
	True
	Whether to draw predicted bounding boxes.



	pred_score_thr
	float
	0.3
	Minimum score of bboxes to draw.



	return_datasamples
	bool
	False
	Whether to return results as DataSamples. If False, the results will be packed into a dict.



	print_result
	bool
	False
	Whether to print the inference result to the console.



	no_save_pred
	bool
	True
	Whether to force not to save prediction results.



	out_dir
	str
	''
	Output directory of results.



	texts
	str/list[str], optional
	None
	Text prompts.



	stuff_texts
	str/list[str], optional
	None
	Stuff text prompts of open panoptic task.



	custom_entities
	bool
	False
	Whether to use custom entities. Only used in GLIP.



	**kwargs
	
	
	Other keyword arguments passed to :meth:preprocess, :meth:forward, :meth:visualize and :meth:postprocess. Each key in kwargs should be in the corresponding set of preprocess_kwargs, forward_kwargs, visualize_kwargs and postprocess_kwargs.










Demos

We also provide four demo scripts, implemented with high-level APIs and supporting functionality codes.
Source codes are available here [https://github.com/open-mmlab/mmdetection/blob/main/demo].


Image demo

This script performs inference on a single image.

python demo/image_demo.py \
    ${IMAGE_FILE} \
    ${CONFIG_FILE} \
    [--weights ${WEIGHTS}] \
    [--device ${GPU_ID}] \
    [--pred-score-thr ${SCORE_THR}]





Examples:

python demo/image_demo.py demo/demo.jpg \
    configs/rtmdet/rtmdet_l_8xb32-300e_coco.py \
    --weights checkpoints/rtmdet_l_8xb32-300e_coco_20220719_112030-5a0be7c4.pth \
    --device cpu








Webcam demo

This is a live demo from a webcam.

python demo/webcam_demo.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    [--device ${GPU_ID}] \
    [--camera-id ${CAMERA-ID}] \
    [--score-thr ${SCORE_THR}]





Examples:

python demo/webcam_demo.py \
    configs/rtmdet/rtmdet_l_8xb32-300e_coco.py \
    checkpoints/rtmdet_l_8xb32-300e_coco_20220719_112030-5a0be7c4.pth








Video demo

This script performs inference on a video.

python demo/video_demo.py \
    ${VIDEO_FILE} \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    [--device ${GPU_ID}] \
    [--score-thr ${SCORE_THR}] \
    [--out ${OUT_FILE}] \
    [--show] \
    [--wait-time ${WAIT_TIME}]





Examples:

python demo/video_demo.py demo/demo.mp4 \
    configs/rtmdet/rtmdet_l_8xb32-300e_coco.py \
    checkpoints/rtmdet_l_8xb32-300e_coco_20220719_112030-5a0be7c4.pth \
    --out result.mp4






Video demo with GPU acceleration

This script performs inference on a video with GPU acceleration.

python demo/video_gpuaccel_demo.py \
    ${VIDEO_FILE} \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    [--device ${GPU_ID}] \
    [--score-thr ${SCORE_THR}] \
    [--nvdecode] \
    [--out ${OUT_FILE}] \
    [--show] \
    [--wait-time ${WAIT_TIME}]





Examples:

python demo/video_gpuaccel_demo.py demo/demo.mp4 \
    configs/rtmdet/rtmdet_l_8xb32-300e_coco.py \
    checkpoints/rtmdet_l_8xb32-300e_coco_20220719_112030-5a0be7c4.pth \
    --nvdecode --out result.mp4










Large-image inference demo

This is a script for slicing inference on large images.

python demo/large_image_demo.py \
	${IMG_PATH} \
	${CONFIG_FILE} \
	${CHECKPOINT_FILE} \
	--device ${GPU_ID}  \
	--show \
	--tta  \
	--score-thr ${SCORE_THR} \
	--patch-size ${PATCH_SIZE} \
	--patch-overlap-ratio ${PATCH_OVERLAP_RATIO} \
	--merge-iou-thr ${MERGE_IOU_THR} \
	--merge-nms-type ${MERGE_NMS_TYPE} \
	--batch-size ${BATCH_SIZE} \
	--debug \
	--save-patch





Examples:

# inferecnce without tta
wget -P checkpoint https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_2x_coco/faster_rcnn_r101_fpn_2x_coco_bbox_mAP-0.398_20200504_210455-1d2dac9c.pth

python demo/large_image_demo.py \
    demo/large_image.jpg \
    configs/faster_rcnn/faster-rcnn_r101_fpn_2x_coco.py \
    checkpoint/faster_rcnn_r101_fpn_2x_coco_bbox_mAP-0.398_20200504_210455-1d2dac9c.pth

# inference with tta
wget -P checkpoint https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_1x_coco/retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth

python demo/large_image_demo.py \
    demo/large_image.jpg \
    configs/retinanet/retinanet_r50_fpn_1x_coco.py \
    checkpoint/retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth --tta










Multi-modal algorithm inference demo and evaluation

As multimodal vision algorithms continue to evolve, MMDetection has also supported such algorithms. This section demonstrates how to use the demo and eval scripts corresponding to multimodal algorithms using the GLIP algorithm and model as the example. Moreover, MMDetection integrated a gradio_demo project, which allows developers to quickly play with all image input tasks in MMDetection on their local devices. Check the document for more details.


Preparation

Please first make sure that you have the correct dependencies installed:

# if source
pip install -r requirements/multimodal.txt

# if wheel
mim install mmdet[multimodal]





MMDetection has already implemented GLIP algorithms and provided the weights, you can download directly from urls:

cd mmdetection
wget https://download.openmmlab.com/mmdetection/v3.0/glip/glip_tiny_a_mmdet-b3654169.pth








Inference

Once the model is successfully downloaded, you can use the demo/image_demo.py script to run the inference.

python demo/image_demo.py demo/demo.jpg glip_tiny_a_mmdet-b3654169.pth --texts bench





Demo result will be similar to this:


  
    
    
    Dataset Prepare
    

    

    

    
 
  

    
      
          
            
  
Dataset Prepare


Basic Detection Dataset Preparation

MMDetection supports multiple public datasets including COCO, Pascal VOC, CityScapes, and more.

Public datasets like Pascal VOC [http://host.robots.ox.ac.uk/pascal/VOC/index.html] or mirror and COCO [https://cocodataset.org/#download] are available from official websites or mirrors. Note: In the detection task, Pascal VOC 2012 is an extension of Pascal VOC 2007 without overlap, and we usually use them together.
It is recommended to download and extract the dataset somewhere outside the project directory and symlink the dataset root to $MMDETECTION/data as below.
If your folder structure is different, you may need to change the corresponding paths in config files.

We provide a script to download datasets such as COCO, you can run python tools/misc/download_dataset.py --dataset-name coco2017 to download COCO dataset.
For users in China, more datasets can be downloaded from the opensource dataset platform: OpenDataLab [https://opendatalab.com/?source=OpenMMLab%20GitHub].

For more usage please refer to dataset-download

mmdetection
├── mmdet
├── tools
├── configs
├── data
│   ├── coco
│   │   ├── annotations
│   │   ├── train2017
│   │   ├── val2017
│   │   ├── test2017
│   ├── cityscapes
│   │   ├── annotations
│   │   ├── leftImg8bit
│   │   │   ├── train
│   │   │   ├── val
│   │   ├── gtFine
│   │   │   ├── train
│   │   │   ├── val
│   ├── VOCdevkit
│   │   ├── VOC2007
│   │   ├── VOC2012





Some models require additional COCO-stuff [http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip] datasets, such as HTC, DetectoRS and SCNet, you can download, unzip, and then move them to the coco folder. The directory should be like this.

mmdetection
├── data
│   ├── coco
│   │   ├── annotations
│   │   ├── train2017
│   │   ├── val2017
│   │   ├── test2017
│   │   ├── stuffthingmaps





Panoptic segmentation models like PanopticFPN require additional COCO Panoptic [http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip] datasets, you can download, unzip, and then move them to the coco annotation folder. The directory should be like this.

mmdetection
├── data
│   ├── coco
│   │   ├── annotations
│   │   │   ├── panoptic_train2017.json
│   │   │   ├── panoptic_train2017
│   │   │   ├── panoptic_val2017.json
│   │   │   ├── panoptic_val2017
│   │   ├── train2017
│   │   ├── val2017
│   │   ├── test2017





The cityscapes [https://www.cityscapes-dataset.com/] annotations need to be converted into the coco format using tools/dataset_converters/cityscapes.py:

pip install cityscapesscripts

python tools/dataset_converters/cityscapes.py \
    ./data/cityscapes \
    --nproc 8 \
    --out-dir ./data/cityscapes/annotations








COCO Caption Dataset Preparation

COCO Caption uses the COCO2014 dataset image and uses the annotation of karpathy.

At first, you need to download the COCO2014 dataset.

python tools/misc/download_dataset.py --dataset-name coco2014 --unzip





The dataset will be downloaded to data/coco under the current path. Then download the annotation of karpathy.

cd data/coco/annotations
wget https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_train.json
wget https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json
wget https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json
wget https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val_gt.json
wget https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test_gt.json





The final directory structure of the dataset folder that can be directly used for training and testing is as follows:

mmdetection
├── data
│   ├── coco
│   │   ├── annotations
│   │   │   ├── coco_karpathy_train.json
│   │   │   ├── coco_karpathy_test.json
│   │   │   ├── coco_karpathy_val.json
│   │   │   ├── coco_karpathy_val_gt.json
│   │   │   ├── coco_karpathy_test_gt.json
│   │   ├── train2014
│   │   ├── val2014
│   │   ├── test2014








COCO Semantic Dataset Preparation

There are two types of annotations for COCO semantic segmentation, which differ mainly in the definition of category names, so there are two ways to handle them. The first is to directly use the stuffthingmaps dataset, and the second is to use the panoptic dataset.

(1) Use stuffthingmaps dataset

The download link for this dataset is stuffthingmaps_trainval2017 [http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip]. Please download and extract it to the data/coco folder.

mmdetection
├── data
│   ├── coco
│   │   ├── annotations
│   │   ├── train2017
│   │   ├── val2017
│   │   ├── test2017
│   │   ├── stuffthingmaps





This dataset is different from the standard COCO category annotation in that it includes 172 classes: 80 “thing” classes, 91 “stuff” classes, and 1 “unlabeled” class. The description of each class can be found at https://github.com/nightrome/cocostuff/blob/master/labels.md.

Although only 172 categories are annotated, the maximum label ID in stuffthingmaps is 182, and some categories in the middle are not annotated. In addition, the “unlabeled” category of class 0 is removed. Therefore, the relationship between the value at each position in the final stuffthingmaps image can be found at https://github.com/kazuto1011/deeplab-pytorch/blob/master/data/datasets/cocostuff/labels.txt.

To train efficiently and conveniently for users, we need to remove 12 unannotated classes before starting training or evaluation. The names of these 12 classes are: street sign, hat, shoe, eye glasses, plate, mirror, window, desk, door, blender, hair brush. The category information that can be used for training and evaluation can be found in mmdet/datasets/coco_semantic.py.

You can use tools/dataset_converters/coco_stuff164k.py to convert the downloaded stuffthingmaps to a dataset that can be directly used for training and evaluation. The directory structure of the converted dataset is as follows:

mmdetection
├── data
│   ├── coco
│   │   ├── annotations
│   │   ├── train2017
│   │   ├── val2017
│   │   ├── test2017
│   │   ├── stuffthingmaps
│   │   ├── stuffthingmaps_semseg





stuffthingmaps_semseg is the newly generated COCO semantic segmentation dataset that can be directly used for training and testing.

(2) use panoptic dataset

The number of categories in the semantic segmentation dataset generated through panoptic annotation will be less than that generated using the stuffthingmaps dataset. First, you need to prepare the panoptic segmentation annotations, and then use the following script to complete the conversion.

python tools/dataset_converters/prepare_coco_semantic_annos_from_panoptic_annos.py data/coco





The directory structure of the converted dataset is as follows:

mmdetection
├── data
│   ├── coco
│   │   ├── annotations
│   │   │   ├── panoptic_train2017.json
│   │   │   ├── panoptic_train2017
│   │   │   ├── panoptic_val2017.json
│   │   │   ├── panoptic_val2017
│   │   │   ├── panoptic_semseg_train2017
│   │   │   ├── panoptic_semseg_val2017
│   │   ├── train2017
│   │   ├── val2017
│   │   ├── test2017





panoptic_semseg_train2017 and panoptic_semseg_val2017 are the newly generated COCO semantic segmentation datasets that can be directly used for training and testing. Note that their category information is the same as that of COCO panoptic segmentation, including both “thing” and “stuff” categories.




RefCOCO Dataset Preparation

The images and annotations of RefCOCO [https://github.com/lichengunc/refer] series datasets can be download by running tools/misc/download_dataset.py:

python tools/misc/download_dataset.py --dataset-name refcoco --save-dir data/coco --unzip





Then the directory should be like this:

data
├── coco
│   ├── refcoco
│   │   ├── instances.json
│   │   ├── refs(google).p
│   │   └── refs(unc).p
│   ├── refcoco+
│   │   ├── instances.json
│   │   └── refs(unc).p
│   ├── refcocog
│   │   ├── instances.json
│   │   ├── refs(google).p
│   │   └── refs(umd).p
│   │── train2014








ADE20K 2016 Dataset Preparation

The images and annotations of ADE20K [https://groups.csail.mit.edu/vision/datasets/ADE20K/] dataset can be download by running tools/misc/download_dataset.py:

python tools/misc/download_dataset.py --dataset-name ade20k_2016 --save-dir data --unzip





Then move the annotations to the data/ADEChallengeData2016 directory and run the preprocess script to produce the coco format annotations:

mv data/annotations_instance data/ADEChallengeData2016/
mv data/categoryMapping.txt data/ADEChallengeData2016/
mv data/imgCatIds.json data/ADEChallengeData2016/
python tools/dataset_converters/ade20k2coco.py data/ADEChallengeData2016 --task panoptic
python tools/dataset_converters/ade20k2coco.py data/ADEChallengeData2016 --task instance





The directory should be like this.

data
├── ADEChallengeData2016
│   ├── ade20k_instance_train.json
│   ├── ade20k_instance_val.json
│   ├── ade20k_panoptic_train
│   │   ├── ADE_train_00000001.png
│   │   ├── ADE_train_00000002.png
│   │   ├── ...
│   ├── ade20k_panoptic_train.json
│   ├── ade20k_panoptic_val
│   │   ├── ADE_val_00000001.png
│   │   ├── ADE_val_00000002.png
│   │   ├── ...
│   ├── ade20k_panoptic_val.json
│   ├── annotations
│   │   ├── training
│   │   │   ├── ADE_train_00000001.png
│   │   │   ├── ADE_train_00000002.png
│   │   │   ├── ...
│   │   ├── validation
│   │   │   ├── ADE_val_00000001.png
│   │   │   ├── ADE_val_00000002.png
│   │   │   ├── ...
│   ├── annotations_instance
│   │   ├── training
│   │   │   ├── ADE_train_00000001.png
│   │   │   ├── ADE_train_00000002.png
│   │   │   ├── ...
│   │   ├── validation
│   │   │   ├── ADE_val_00000001.png
│   │   │   ├── ADE_val_00000002.png
│   │   │   ├── ...
│   ├── categoryMapping.txt
│   ├── images
│   │   ├── training
│   │   │   ├── ADE_train_00000001.jpg
│   │   │   ├── ADE_train_00000002.jpg
│   │   │   ├── ...
│   │   ├── validation
│   │   │   ├── ADE_val_00000001.jpg
│   │   │   ├── ADE_val_00000002.jpg
│   │   │   ├── ...
│   ├── imgCatIds.json
│   ├── objectInfo150.txt
│   │── sceneCategories.txt





The above folders include all data of ADE20K’s semantic segmentation, instance segmentation, and panoptic segmentation.




Download from OpenDataLab

By using OpenDataLab [https://opendatalab.com/], researchers can obtain free formatted datasets in various fields. Through the search function of the platform, researchers may address the dataset they look for quickly and easily. Using the formatted datasets from the platform, researchers can efficiently conduct tasks across datasets.

Currently, MIM supports downloading VOC and COCO datasets from OpenDataLab with one command line. More datasets will be supported in the future. You can also directly download the datasets you need from the OpenDataLab platform and then convert them to the format required by MMDetection.

If you use MIM to download, make sure that the version is greater than v0.3.8. You can use the following command to update:

pip install -U openmim





# install OpenXLab CLI tools
pip install -U openxlab
# log in OpenXLab, registry
openxlab login

# download voc2007 and preprocess by MIM
mim download mmdet --dataset voc2007

# download voc2012 and preprocess by MIM
mim download mmdet --dataset voc2012

# download coco2017 and preprocess by MIM
mim download mmdet --dataset coco2017











            

          

      

      

    

  

  
    
    
    Test existing models on standard datasets
    

    

    

    
 
  

    
      
          
            
  
Test existing models on standard datasets

To evaluate a model’s accuracy, one usually tests the model on some standard datasets, please refer to dataset prepare guide to prepare the dataset.

This section will show how to test existing models on supported datasets.


Test existing models

We provide testing scripts for evaluating an existing model on the whole dataset (COCO, PASCAL VOC, Cityscapes, etc.).
The following testing environments are supported:


	single GPU


	CPU


	single node multiple GPUs


	multiple nodes




Choose the proper script to perform testing depending on the testing environment.

# Single-gpu testing
python tools/test.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    [--out ${RESULT_FILE}] \
    [--show]

# CPU: disable GPUs and run single-gpu testing script
export CUDA_VISIBLE_DEVICES=-1
python tools/test.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    [--out ${RESULT_FILE}] \
    [--show]

# Multi-gpu testing
bash tools/dist_test.sh \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    ${GPU_NUM} \
    [--out ${RESULT_FILE}]





tools/dist_test.sh also supports multi-node testing, but relies on PyTorch’s launch utility [https://pytorch.org/docs/stable/distributed.html#launch-utility].

Optional arguments:


	RESULT_FILE: Filename of the output results in pickle format. If not specified, the results will not be saved to a file.


	--show: If specified, detection results will be plotted on the images and shown in a new window. It is only applicable to single GPU testing and used for debugging and visualization. Please make sure that GUI is available in your environment. Otherwise, you may encounter an error like cannot connect to X server.


	--show-dir: If specified, detection results will be plotted on the images and saved to the specified directory. It is only applicable to single GPU testing and used for debugging and visualization. You do NOT need a GUI available in your environment for using this option.


	--work-dir: If specified, detection results containing evaluation metrics will be saved to the specified directory.


	--cfg-options:  If specified, the key-value pair optional cfg will be merged into config file







Examples

Assuming that you have already downloaded the checkpoints to the directory checkpoints/.


	Test RTMDet and visualize the results. Press any key for the next image.
Config and checkpoint files are available here [https://github.com/open-mmlab/mmdetection/tree/main/configs/rtmdet].

python tools/test.py \
    configs/rtmdet/rtmdet_l_8xb32-300e_coco.py \
    checkpoints/rtmdet_l_8xb32-300e_coco_20220719_112030-5a0be7c4.pth \
    --show







	Test RTMDet and save the painted images for future visualization.
Config and checkpoint files are available here [https://github.com/open-mmlab/mmdetection/tree/main/configs/rtmdet].

python tools/test.py \
    configs/rtmdet/rtmdet_l_8xb32-300e_coco.py \
    checkpoints/rtmdet_l_8xb32-300e_coco_20220719_112030-5a0be7c4.pth \
    --show-dir faster_rcnn_r50_fpn_1x_results







	Test Faster R-CNN on PASCAL VOC (without saving the test results).
Config and checkpoint files are available here.

python tools/test.py \
    configs/pascal_voc/faster-rcnn_r50_fpn_1x_voc0712.py \
    checkpoints/faster_rcnn_r50_fpn_1x_voc0712_20200624-c9895d40.pth







	Test Mask R-CNN with 8 GPUs, and evaluate.
Config and checkpoint files are available here.

./tools/dist_test.sh \
    configs/mask-rcnn_r50_fpn_1x_coco.py \
    checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
    8 \
    --out results.pkl







	Test Mask R-CNN with 8 GPUs, and evaluate the metric class-wise.
Config and checkpoint files are available here.

./tools/dist_test.sh \
    configs/mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py \
    checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
    8 \
    --out results.pkl \
    --cfg-options test_evaluator.classwise=True







	Test Mask R-CNN on COCO test-dev with 8 GPUs, and generate JSON files for submitting to the official evaluation server.
Config and checkpoint files are available here.

Replace the original test_evaluator and test_dataloader with test_evaluator and test_dataloader in the comment in config and run:

./tools/dist_test.sh \
    configs/mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py \
    checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
    8





This command generates two JSON files ./work_dirs/coco_instance/test.bbox.json and ./work_dirs/coco_instance/test.segm.json.



	Test Mask R-CNN on Cityscapes test with 8 GPUs, and generate txt and png files for submitting to the official evaluation server.
Config and checkpoint files are available here.

Replace the original test_evaluator and test_dataloader with test_evaluator and test_dataloader in the comment in config and run:

./tools/dist_test.sh \
    configs/cityscapes/mask-rcnn_r50_fpn_1x_cityscapes.py \
    checkpoints/mask_rcnn_r50_fpn_1x_cityscapes_20200227-afe51d5a.pth \
    8





The generated png and txt would be under ./work_dirs/cityscapes_metric/ directory.








Test without Ground Truth Annotations

MMDetection supports to test models without ground-truth annotations using CocoDataset. If your dataset format is not in COCO format, please convert them to COCO format. For example, if your dataset format is VOC, you can directly convert it to COCO format by the script in tools. If your dataset format is Cityscapes, you can directly convert it to COCO format by the script in tools. The rest of the formats can be converted using this script.

python tools/dataset_converters/images2coco.py \
    ${IMG_PATH} \
    ${CLASSES} \
    ${OUT} \
    [--exclude-extensions]





arguments:


	IMG_PATH: The root path of images.


	CLASSES: The text file with a list of categories.


	OUT: The output annotation json file name. The save dir is in the same directory as IMG_PATH.


	exclude-extensions: The suffix of images to be excluded, such as ‘png’ and ‘bmp’.




After the conversion is complete, you need to replace the original test_evaluator and test_dataloader with test_evaluator and test_dataloader in the comment in config(find which dataset in ‘configs/base/datasets’ the current config corresponds to) and run:

# Single-gpu testing
python tools/test.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    [--show]

# CPU: disable GPUs and run single-gpu testing script
export CUDA_VISIBLE_DEVICES=-1
python tools/test.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    [--out ${RESULT_FILE}] \
    [--show]

# Multi-gpu testing
bash tools/dist_test.sh \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    ${GPU_NUM} \
    [--show]





Assuming that the checkpoints in the model zoo [https://mmdetection.readthedocs.io/en/latest/modelzoo_statistics.html] have been downloaded to the directory checkpoints/, we can test Mask R-CNN on COCO test-dev with 8 GPUs, and generate JSON files using the following command.

./tools/dist_test.sh \
    configs/mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py \
    checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
    8





This command generates two JSON files ./work_dirs/coco_instance/test.bbox.json and ./work_dirs/coco_instance/test.segm.json.




Batch Inference

MMDetection supports inference with a single image or batched images in test mode. By default, we use single-image inference and you can use batch inference by modifying samples_per_gpu in the config of test data. You can do that either by modifying the config as below.

data = dict(train_dataloader=dict(...), val_dataloader=dict(...), test_dataloader=dict(batch_size=2, ...))





Or you can set it through --cfg-options as --cfg-options test_dataloader.batch_size=2




Test Time Augmentation (TTA)

Test time augmentation (TTA) is a data augmentation strategy used during the test phase. It applies different augmentations, such as flipping and scaling, to the same image for model inference, and then merges the predictions of each augmented image to obtain more accurate predictions. To make it easier for users to use TTA, MMEngine provides BaseTTAModel [https://mmengine.readthedocs.io/en/latest/api/generated/mmengine.model.BaseTTAModel.html#mmengine.model.BaseTTAModel] class, which allows users to implement different TTA strategies by simply extending the BaseTTAModel class according to their needs.

In MMDetection, we provides DetTTAModel class, which inherits from BaseTTAModel.


Use case

Using TTA requires two steps. First, you need to add tta_model and tta_pipeline in the configuration file:

tta_model = dict(
    type='DetTTAModel',
    tta_cfg=dict(nms=dict(
                   type='nms',
                   iou_threshold=0.5),
                   max_per_img=100))

tta_pipeline = [
    dict(type='LoadImageFromFile',
        backend_args=None),
    dict(
        type='TestTimeAug',
        transforms=[[
            dict(type='Resize', scale=(1333, 800), keep_ratio=True)
        ], [ # It uses 2 flipping transformations (flipping and not flipping).
            dict(type='RandomFlip', prob=1.),
            dict(type='RandomFlip', prob=0.)
        ], [
            dict(
               type='PackDetInputs',
               meta_keys=('img_id', 'img_path', 'ori_shape',
                       'img_shape', 'scale_factor', 'flip',
                       'flip_direction'))
       ]])]





Second, set --tta when running the test scripts as examples below:

# Single-gpu testing
python tools/test.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    [--tta]

# CPU: disable GPUs and run single-gpu testing script
export CUDA_VISIBLE_DEVICES=-1
python tools/test.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    [--out ${RESULT_FILE}] \
    [--tta]

# Multi-gpu testing
bash tools/dist_test.sh \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    ${GPU_NUM} \
    [--tta]





You can also modify the TTA config by yourself, such as adding scaling enhancement:

tta_model = dict(
    type='DetTTAModel',
    tta_cfg=dict(nms=dict(
                   type='nms',
                   iou_threshold=0.5),
                   max_per_img=100))

img_scales = [(1333, 800), (666, 400), (2000, 1200)]
tta_pipeline = [
    dict(type='LoadImageFromFile',
         backend_args=None),
    dict(
        type='TestTimeAug',
        transforms=[[
            dict(type='Resize', scale=s, keep_ratio=True) for s in img_scales
        ], [
            dict(type='RandomFlip', prob=1.),
            dict(type='RandomFlip', prob=0.)
        ], [
            dict(
               type='PackDetInputs',
               meta_keys=('img_id', 'img_path', 'ori_shape',
                       'img_shape', 'scale_factor', 'flip',
                       'flip_direction'))
       ]])]





The above data augmentation pipeline will first perform 3 multi-scaling transformations on the image, followed by 2 flipping transformations (flipping and not flipping). Finally, the image is packaged into the final result using PackDetInputs.

Here are more TTA use cases for your reference:


	RetinaNet


	CenterNet


	YOLOX


	RTMDet




For more advanced usage and data flow of TTA, please refer to MMEngine [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/test_time_augmentation.html#data-flow]. We will support instance segmentation TTA latter.









            

          

      

      

    

  

  
    
    
    Train predefined models on standard datasets
    

    

    

    
 
  

    
      
          
            
  
Train predefined models on standard datasets

MMDetection also provides out-of-the-box tools for training detection models.
This section will show how to train predefined models (under configs) on standard datasets i.e. COCO.


Prepare datasets

Preparing datasets is also necessary for training. See section Prepare datasets above for details.

Note:
Currently, the config files under configs/cityscapes use COCO pre-trained weights to initialize.
If your network connection is slow or unavailable, it’s advisable to download existing models before beginning training to avoid errors.




Learning rate auto scaling

Important: The default learning rate in config files is for 8 GPUs and 2 sample per GPU (batch size = 8 * 2 = 16). And it had been set to auto_scale_lr.base_batch_size in config/_base_/schedules/schedule_1x.py. The learning rate will be automatically scaled based on the value at a batch size of 16. Meanwhile, to avoid affecting other codebases that use mmdet, the default setting for the auto_scale_lr.enable flag is False.

If you want to enable this feature, you need to add argument --auto-scale-lr. And you need to check the config name which you want to use before you process the command, because the config name indicates the default batch size.
By default, it is 8 x 2 = 16 batch size, like faster_rcnn_r50_caffe_fpn_90k_coco.py or pisa_faster_rcnn_x101_32x4d_fpn_1x_coco.py. In other cases, you will see the config file name have _NxM_ in dictating, like cornernet_hourglass104_mstest_32x3_210e_coco.py which batch size is 32 x 3 = 96, or scnet_x101_64x4d_fpn_8x1_20e_coco.py which batch size is 8 x 1 = 8.

Please remember to check the bottom of the specific config file you want to use, it will have auto_scale_lr.base_batch_size if the batch size is not 16. If you can’t find those values, check the config file which in _base_=[xxx] and you will find it. Please do not modify its values if you want to automatically scale the LR.

The basic usage of learning rate auto scaling is as follows.

python tools/train.py \
    ${CONFIG_FILE} \
    --auto-scale-lr \
    [optional arguments]





If you enabled this feature, the learning rate will be automatically scaled according to the number of GPUs on the machine and the batch size of training. See linear scaling rule [https://arxiv.org/abs/1706.02677] for details. For example, If there are 4 GPUs and 2 pictures on each GPU, lr = 0.01, then if there are 16 GPUs and 4 pictures on each GPU, it will automatically scale to lr = 0.08.

If you don’t want to use it, you need to calculate the learning rate according to the linear scaling rule [https://arxiv.org/abs/1706.02677] manually then change optimizer.lr in specific config file.




Training on a single GPU

We provide tools/train.py to launch training jobs on a single GPU.
The basic usage is as follows.

python tools/train.py \
    ${CONFIG_FILE} \
    [optional arguments]





During training, log files and checkpoints will be saved to the working directory, which is specified by work_dir in the config file or via CLI argument --work-dir.

By default, the model is evaluated on the validation set every epoch, the evaluation interval can be specified in the config file as shown below.

# evaluate the model every 12 epochs.
train_cfg = dict(val_interval=12)





This tool accepts several optional arguments, including:


	--work-dir ${WORK_DIR}: Override the working directory.


	--resume: resume from the latest checkpoint in the work_dir automatically.


	--resume ${CHECKPOINT_FILE}: resume from the specific checkpoint.


	--cfg-options 'Key=value': Overrides other settings in the used config.




Note:

There is a difference between resume and load-from:

resume loads both the weights of the model and the state of the optimizer, and it inherits the iteration number from the specified checkpoint, so training does not start again from scratch. load-from, on the other hand, only loads the weights of the model, and its training starts from scratch. It is often used for fine-tuning a model. load-from needs to be written in the config file, while resume is passed as a command line argument.




Training on CPU

The process of training on the CPU is consistent with single GPU training. We just need to disable GPUs before the training process.

export CUDA_VISIBLE_DEVICES=-1





And then run the script above.

Note:

We do not recommend users to use the CPU for training because it is too slow. We support this feature to allow users to debug on machines without GPU for convenience.




Training on multiple GPUs

We provide tools/dist_train.sh to launch training on multiple GPUs.
The basic usage is as follows.

bash ./tools/dist_train.sh \
    ${CONFIG_FILE} \
    ${GPU_NUM} \
    [optional arguments]





Optional arguments remain the same as stated above.


Launch multiple jobs simultaneously

If you would like to launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs,
you need to specify different ports (29500 by default) for each job to avoid communication conflict.

If you use dist_train.sh to launch training jobs, you can set the port in the commands.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh ${CONFIG_FILE} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh ${CONFIG_FILE} 4










Train with multiple machines

If you launch with multiple machines simply connected with ethernet, you can simply run the following commands:

On the first machine:

NNODES=2 NODE_RANK=0 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh $CONFIG $GPUS





On the second machine:

NNODES=2 NODE_RANK=1 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh $CONFIG $GPUS





Usually, it is slow if you do not have high-speed networking like InfiniBand.




Manage jobs with Slurm

Slurm [https://slurm.schedmd.com/] is a good job scheduling system for computing clusters.
On a cluster managed by Slurm, you can use slurm_train.sh to spawn training jobs. It supports both single-node and multi-node training.

The basic usage is as follows.

[GPUS=${GPUS}] ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR}





Below is an example of using 16 GPUs to train Mask R-CNN on a Slurm partition named dev, and set the work-dir to some shared file systems.

GPUS=16 ./tools/slurm_train.sh dev mask_r50_1x configs/mask-rcnn_r50_fpn_1x_coco.py /nfs/xxxx/mask_rcnn_r50_fpn_1x





You can check the source code to review full arguments and environment variables.

When using Slurm, the port option needs to be set in one of the following ways:


	Set the port through --options. This is more recommended since it does not change the original configs.

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config1.py ${WORK_DIR} --cfg-options 'dist_params.port=29500'
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config2.py ${WORK_DIR} --cfg-options 'dist_params.port=29501'







	Modify the config files to set different communication ports.

In config1.py, set

dist_params = dict(backend='nccl', port=29500)





In config2.py, set

dist_params = dict(backend='nccl', port=29501)





Then you can launch two jobs with config1.py and config2.py.

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config1.py ${WORK_DIR}
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config2.py ${WORK_DIR}














Train with customized datasets

In this part, you will know how to train predefined models with customized datasets and then test it. We use the balloon dataset [https://github.com/matterport/Mask_RCNN/tree/master/samples/balloon] as an example to describe the whole process.

The basic steps are as below:


	Prepare the customized dataset


	Prepare a config


	Train, test, and infer models on the customized dataset.





Prepare the customized dataset

There are three ways to support a new dataset in MMDetection:


	Reorganize the dataset into COCO format.


	Reorganize the dataset into a middle format.


	Implement a new dataset.




Usually, we recommend using the first two methods which are usually easier than the third.

In this note, we give an example of converting the data into COCO format.

Note: Datasets and metrics have been decoupled except CityScapes since MMDetection 3.0. Therefore, users can use any kind of evaluation metrics for any format of datasets during validation. For example: evaluate on COCO dataset with VOC metric, or evaluate on OpenImages dataset with both VOC and COCO metrics.


COCO annotation format

The necessary keys of COCO format for instance segmentation are as below, for the complete details, please refer here [https://cocodataset.org/#format-data].

{
    "images": [image],
    "annotations": [annotation],
    "categories": [category]
}

image = {
    "id": int,
    "width": int,
    "height": int,
    "file_name": str,
}

annotation = {
    "id": int,
    "image_id": int,
    "category_id": int,
    "segmentation": RLE or [polygon],
    "area": float,
    "bbox": [x,y,width,height], # (x, y) are the coordinates of the upper left corner of the bbox
    "iscrowd": 0 or 1,
}

categories = [{
    "id": int,
    "name": str,
    "supercategory": str,
}]





Assume we use the balloon dataset.
After downloading the data, we need to implement a function to convert the annotation format into the COCO format. Then we can use implemented CocoDataset to load the data and perform training and evaluation.

If you take a look at the dataset, you will find the dataset format is as below:

{'base64_img_data': '',
 'file_attributes': {},
 'filename': '34020010494_e5cb88e1c4_k.jpg',
 'fileref': '',
 'regions': {'0': {'region_attributes': {},
   'shape_attributes': {'all_points_x': [1020,
     1000,
     994,
     1003,
     1023,
     1050,
     1089,
     1134,
     1190,
     1265,
     1321,
     1361,
     1403,
     1428,
     1442,
     1445,
     1441,
     1427,
     1400,
     1361,
     1316,
     1269,
     1228,
     1198,
     1207,
     1210,
     1190,
     1177,
     1172,
     1174,
     1170,
     1153,
     1127,
     1104,
     1061,
     1032,
     1020],
    'all_points_y': [963,
     899,
     841,
     787,
     738,
     700,
     663,
     638,
     621,
     619,
     643,
     672,
     720,
     765,
     800,
     860,
     896,
     942,
     990,
     1035,
     1079,
     1112,
     1129,
     1134,
     1144,
     1153,
     1166,
     1166,
     1150,
     1136,
     1129,
     1122,
     1112,
     1084,
     1037,
     989,
     963],
    'name': 'polygon'}}},
 'size': 1115004}





The annotation is a JSON file where each key indicates an image’s all annotations.
The code to convert the balloon dataset into coco format is as below.

import os.path as osp

import mmcv

from mmengine.fileio import dump, load
from mmengine.utils import track_iter_progress


def convert_balloon_to_coco(ann_file, out_file, image_prefix):
    data_infos = load(ann_file)

    annotations = []
    images = []
    obj_count = 0
    for idx, v in enumerate(track_iter_progress(data_infos.values())):
        filename = v['filename']
        img_path = osp.join(image_prefix, filename)
        height, width = mmcv.imread(img_path).shape[:2]

        images.append(
            dict(id=idx, file_name=filename, height=height, width=width))

        for _, obj in v['regions'].items():
            assert not obj['region_attributes']
            obj = obj['shape_attributes']
            px = obj['all_points_x']
            py = obj['all_points_y']
            poly = [(x + 0.5, y + 0.5) for x, y in zip(px, py)]
            poly = [p for x in poly for p in x]

            x_min, y_min, x_max, y_max = (min(px), min(py), max(px), max(py))

            data_anno = dict(
                image_id=idx,
                id=obj_count,
                category_id=0,
                bbox=[x_min, y_min, x_max - x_min, y_max - y_min],
                area=(x_max - x_min) * (y_max - y_min),
                segmentation=[poly],
                iscrowd=0)
            annotations.append(data_anno)
            obj_count += 1

    coco_format_json = dict(
        images=images,
        annotations=annotations,
        categories=[{
            'id': 0,
            'name': 'balloon'
        }])
    dump(coco_format_json, out_file)


if __name__ == '__main__':
    convert_balloon_to_coco(ann_file='data/balloon/train/via_region_data.json',
                            out_file='data/balloon/train/annotation_coco.json',
                            image_prefix='data/balloon/train')
    convert_balloon_to_coco(ann_file='data/balloon/val/via_region_data.json',
                            out_file='data/balloon/val/annotation_coco.json',
                            image_prefix='data/balloon/val')






Using the function above, users can successfully convert the annotation file into json format, then we can use CocoDataset to train and evaluate the model with CocoMetric.






Prepare a config

The second step is to prepare a config thus the dataset could be successfully loaded. Assume that we want to use Mask R-CNN with FPN, the config to train the detector on balloon dataset is as below. Assume the config is under directory configs/balloon/ and named as mask-rcnn_r50-caffe_fpn_ms-poly-1x_balloon.py, the config is as below. Please refer Learn about Configs - MMDetection 3.0.0 documentation [https://mmdetection.readthedocs.io/en/latest/user_guides/config.html] to get detailed information about config files.

# The new config inherits a base config to highlight the necessary modification
_base_ = '../mask_rcnn/mask-rcnn_r50-caffe_fpn_ms-poly-1x_coco.py'

# We also need to change the num_classes in head to match the dataset's annotation
model = dict(
    roi_head=dict(
        bbox_head=dict(num_classes=1), mask_head=dict(num_classes=1)))

# Modify dataset related settings
data_root = 'data/balloon/'
metainfo = {
    'classes': ('balloon', ),
    'palette': [
        (220, 20, 60),
    ]
}
train_dataloader = dict(
    batch_size=1,
    dataset=dict(
        data_root=data_root,
        metainfo=metainfo,
        ann_file='train/annotation_coco.json',
        data_prefix=dict(img='train/')))
val_dataloader = dict(
    dataset=dict(
        data_root=data_root,
        metainfo=metainfo,
        ann_file='val/annotation_coco.json',
        data_prefix=dict(img='val/')))
test_dataloader = val_dataloader

# Modify metric related settings
val_evaluator = dict(ann_file=data_root + 'val/annotation_coco.json')
test_evaluator = val_evaluator

# We can use the pre-trained Mask RCNN model to obtain higher performance
load_from = 'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth'









Train a new model

To train a model with the new config, you can simply run

python tools/train.py configs/balloon/mask-rcnn_r50-caffe_fpn_ms-poly-1x_balloon.py





For more detailed usages, please refer to the training guide [https://mmdetection.readthedocs.io/en/latest/user_guides/train.html#train-predefined-models-on-standard-datasets].




Test and inference

To test the trained model, you can simply run

python tools/test.py configs/balloon/mask-rcnn_r50-caffe_fpn_ms-poly-1x_balloon.py work_dirs/mask-rcnn_r50-caffe_fpn_ms-poly-1x_balloon/epoch_12.pth





For more detailed usages, please refer to the testing guide [https://mmdetection.readthedocs.io/en/latest/user_guides/test.html].







            

          

      

      

    

  

  
    
    
    Train with customized models and standard datasets
    

    

    

    
 
  

    
      
          
            
  
Train with customized models and standard datasets

In this note, you will know how to train, test and inference your own customized models under standard datasets. We use the cityscapes dataset to train a customized Cascade Mask R-CNN R50 model as an example to demonstrate the whole process, which using AugFPN [https://github.com/Gus-Guo/AugFPN] to replace the default FPN as neck, and add Rotate or TranslateX as training-time auto augmentation.

The basic steps are as below:


	Prepare the standard dataset


	Prepare your own customized model


	Prepare a config


	Train, test, and inference models on the standard dataset.





Prepare the standard dataset

In this note, as we use the standard cityscapes dataset as an example.

It is recommended to symlink the dataset root to $MMDETECTION/data.
If your folder structure is different, you may need to change the corresponding paths in config files.

mmdetection
├── mmdet
├── tools
├── configs
├── data
│   ├── coco
│   │   ├── annotations
│   │   ├── train2017
│   │   ├── val2017
│   │   ├── test2017
│   ├── cityscapes
│   │   ├── annotations
│   │   ├── leftImg8bit
│   │   │   ├── train
│   │   │   ├── val
│   │   ├── gtFine
│   │   │   ├── train
│   │   │   ├── val
│   ├── VOCdevkit
│   │   ├── VOC2007
│   │   ├── VOC2012






Or you can set your dataset root through

export MMDET_DATASETS=$data_root





We will replace dataset root with $MMDET_DATASETS, so you don’t have to modify the corresponding path in config files.

The cityscapes annotations have to be converted into the coco format using tools/dataset_converters/cityscapes.py:

pip install cityscapesscripts
python tools/dataset_converters/cityscapes.py ./data/cityscapes --nproc 8 --out-dir ./data/cityscapes/annotations





Currently, the config files in cityscapes use COCO pre-trained weights to initialize.
You could download the pre-trained models in advance if the network is unavailable or slow, otherwise, it would cause errors at the beginning of training.




Prepare your own customized model

The second step is to use your own module or training setting. Assume that we want to implement a new neck called AugFPN to replace with the default FPN under the existing detector Cascade Mask R-CNN R50. The following implements AugFPN under MMDetection.


1. Define a new neck (e.g. AugFPN)

Firstly create a new file mmdet/models/necks/augfpn.py.

import torch.nn as nn
from mmdet.registry import MODELS


@MODELS.register_module()
class AugFPN(nn.Module):

    def __init__(self,
                in_channels,
                out_channels,
                num_outs,
                start_level=0,
                end_level=-1,
                add_extra_convs=False):
        pass

    def forward(self, inputs):
        # implementation is ignored
        pass








2. Import the module

You can either add the following line to mmdet/models/necks/__init__.py,

from .augfpn import AugFPN





or alternatively add

custom_imports = dict(
    imports=['mmdet.models.necks.augfpn'],
    allow_failed_imports=False)





to the config file and avoid modifying the original code.




3. Modify the config file

neck=dict(
    type='AugFPN',
    in_channels=[256, 512, 1024, 2048],
    out_channels=256,
    num_outs=5)





For more detailed usages about customizing your own models (e.g. implement a new backbone, head, loss, etc) and runtime training settings (e.g. define a new optimizer, use gradient clip, customize training schedules and hooks, etc), please refer to the guideline Customize Models and Customize Runtime Settings respectively.






Prepare a config

The third step is to prepare a config for your own training setting. Assume that we want to add AugFPN and Rotate or Translate augmentation to existing Cascade Mask R-CNN R50 to train the cityscapes dataset, and assume the config is under directory configs/cityscapes/ and named as cascade-mask-rcnn_r50_augfpn_autoaug-10e_cityscapes.py, the config is as below.

# The new config inherits the base configs to highlight the necessary modification
_base_ = [
    '../_base_/models/cascade-mask-rcnn_r50_fpn.py',
    '../_base_/datasets/cityscapes_instance.py', '../_base_/default_runtime.py'
]

model = dict(
    # set None to avoid loading ImageNet pre-trained backbone,
    # instead here we set `load_from` to load from COCO pre-trained detectors.
    backbone=dict(init_cfg=None),
    # replace neck from defaultly `FPN` to our new implemented module `AugFPN`
    neck=dict(
        type='AugFPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        num_outs=5),
    # We also need to change the num_classes in head from 80 to 8, to match the
    # cityscapes dataset's annotation. This modification involves `bbox_head` and `mask_head`.
    roi_head=dict(
        bbox_head=[
            dict(
                type='Shared2FCBBoxHead',
                in_channels=256,
                fc_out_channels=1024,
                roi_feat_size=7,
                # change the number of classes from defaultly COCO to cityscapes
                num_classes=8,
                bbox_coder=dict(
                    type='DeltaXYWHBBoxCoder',
                    target_means=[0., 0., 0., 0.],
                    target_stds=[0.1, 0.1, 0.2, 0.2]),
                reg_class_agnostic=True,
                loss_cls=dict(
                    type='CrossEntropyLoss',
                    use_sigmoid=False,
                    loss_weight=1.0),
                loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
                               loss_weight=1.0)),
            dict(
                type='Shared2FCBBoxHead',
                in_channels=256,
                fc_out_channels=1024,
                roi_feat_size=7,
                # change the number of classes from defaultly COCO to cityscapes
                num_classes=8,
                bbox_coder=dict(
                    type='DeltaXYWHBBoxCoder',
                    target_means=[0., 0., 0., 0.],
                    target_stds=[0.05, 0.05, 0.1, 0.1]),
                reg_class_agnostic=True,
                loss_cls=dict(
                    type='CrossEntropyLoss',
                    use_sigmoid=False,
                    loss_weight=1.0),
                loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
                               loss_weight=1.0)),
            dict(
                type='Shared2FCBBoxHead',
                in_channels=256,
                fc_out_channels=1024,
                roi_feat_size=7,
                # change the number of classes from defaultly COCO to cityscapes
                num_classes=8,
                bbox_coder=dict(
                    type='DeltaXYWHBBoxCoder',
                    target_means=[0., 0., 0., 0.],
                    target_stds=[0.033, 0.033, 0.067, 0.067]),
                reg_class_agnostic=True,
                loss_cls=dict(
                    type='CrossEntropyLoss',
                    use_sigmoid=False,
                    loss_weight=1.0),
                loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
        ],
        mask_head=dict(
            type='FCNMaskHead',
            num_convs=4,
            in_channels=256,
            conv_out_channels=256,
            # change the number of classes from default COCO to cityscapes
            num_classes=8,
            loss_mask=dict(
                type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))))

# over-write `train_pipeline` for new added `AutoAugment` training setting
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
    dict(
        type='AutoAugment',
        policies=[
            [dict(
                 type='Rotate',
                 level=5,
                 img_border_value=(124, 116, 104),
                 prob=0.5)
            ],
            [dict(type='Rotate', level=7, img_border_value=(124, 116, 104)),
             dict(
                 type='TranslateX',
                 level=5,
                 prob=0.5,
                 img_border_value=(124, 116, 104))
            ],
        ]),
    dict(
        type='RandomResize',
        scale=[(2048, 800), (2048, 1024)],
        keep_ratio=True),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PackDetInputs'),
]

# set batch_size per gpu, and set new training pipeline
train_dataloader = dict(
    batch_size=1,
    num_workers=3,
    # over-write `pipeline` with new training pipeline setting
    dataset=dict(pipeline=train_pipeline))

# Set optimizer
optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))

# Set customized learning policy
param_scheduler = [
    dict(
        type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
    dict(
        type='MultiStepLR',
        begin=0,
        end=10,
        by_epoch=True,
        milestones=[8],
        gamma=0.1)
]

# train, val, test loop config
train_cfg = dict(max_epochs=10, val_interval=1)

# We can use the COCO pre-trained Cascade Mask R-CNN R50 model for a more stable performance initialization
load_from = 'https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco/cascade_mask_rcnn_r50_fpn_1x_coco_20200203-9d4dcb24.pth'








Train a new model

To train a model with the new config, you can simply run

python tools/train.py configs/cityscapes/cascade-mask-rcnn_r50_augfpn_autoaug-10e_cityscapes.py





For more detailed usages, please refer to the training guide.




Test and inference

To test the trained model, you can simply run

python tools/test.py configs/cityscapes/cascade-mask-rcnn_r50_augfpn_autoaug-10e_cityscapes.py work_dirs/cascade-mask-rcnn_r50_augfpn_autoaug-10e_cityscapes/epoch_10.pth





For more detailed usages, please refer to the testing guide.







            

          

      

      

    

  

  
    
    
    Finetuning Models
    

    

    

    
 
  

    
      
          
            
  
Finetuning Models

Detectors pre-trained on the COCO dataset can serve as a good pre-trained model for other datasets, e.g., CityScapes and KITTI Dataset.
This tutorial provides instructions for users to use the models provided in the Model Zoo for other datasets to obtain better performance.

There are two steps to finetune a model on a new dataset.


	Add support for the new dataset following Customize Datasets.


	Modify the configs as will be discussed in this tutorial.




Take the finetuning process on Cityscapes Dataset as an example, the users need to modify five parts in the config.


Inherit base configs

To release the burden and reduce bugs in writing the whole configs, MMDetection V3.0 support inheriting configs from multiple existing configs. To finetune a Mask RCNN model, the new config needs to inherit
_base_/models/mask-rcnn_r50_fpn.py to build the basic structure of the model. To use the Cityscapes Dataset, the new config can also simply inherit _base_/datasets/cityscapes_instance.py. For runtime settings such as logger settings, the new config needs to inherit _base_/default_runtime.py. For training schedules, the new config can to inherit _base_/schedules/schedule_1x.py. These configs are in the configs directory and the users can also choose to write the whole contents rather than use inheritance.

_base_ = [
    '../_base_/models/mask-rcnn_r50_fpn.py',
    '../_base_/datasets/cityscapes_instance.py', '../_base_/default_runtime.py',
    '../_base_/schedules/schedule_1x.py'
]








Modify head

Then the new config needs to modify the head according to the class numbers of the new datasets. By only changing num_classes in the roi_head, the weights of the pre-trained models are mostly reused except for the final prediction head.

model = dict(
    roi_head=dict(
        bbox_head=dict(
            type='Shared2FCBBoxHead',
            in_channels=256,
            fc_out_channels=1024,
            roi_feat_size=7,
            num_classes=8,
            bbox_coder=dict(
                type='DeltaXYWHBBoxCoder',
                target_means=[0., 0., 0., 0.],
                target_stds=[0.1, 0.1, 0.2, 0.2]),
            reg_class_agnostic=False,
            loss_cls=dict(
                type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
            loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
        mask_head=dict(
            type='FCNMaskHead',
            num_convs=4,
            in_channels=256,
            conv_out_channels=256,
            num_classes=8,
            loss_mask=dict(
                type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))))








Modify dataset

The users may also need to prepare the dataset and write the configs about dataset, refer to Customize Datasets for more detail. MMDetection V3.0 already supports VOC, WIDERFACE, COCO, LIVS, OpenImages, DeepFashion, Objects365, and Cityscapes Dataset.




Modify training schedule

The finetuning hyperparameters vary from the default schedule. It usually requires a smaller learning rate and fewer training epochs

# optimizer
# lr is set for a batch size of 8
optim_wrapper = dict(optimizer=dict(lr=0.01))

# learning rate
param_scheduler = [
    dict(
        type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
    dict(
        type='MultiStepLR',
        begin=0,
        end=8,
        by_epoch=True,
        milestones=[7],
        gamma=0.1)
]

# max_epochs
train_cfg = dict(max_epochs=8)

# log config
default_hooks = dict(logger=dict(interval=100)),








Use pre-trained model

To use the pre-trained model, the new config adds the link of pre-trained models in the load_from. The users might need to download the model weights before training to avoid the download time during training.

load_from = 'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth'  # noqa











            

          

      

      

    

  

  
    
    
    Test Results Submission
    

    

    

    
 
  

    
      
          
            
  
Test Results Submission


Panoptic segmentation test results submission

The following sections introduce how to produce the prediction results of panoptic segmentation models on the COCO test-dev set and submit the predictions to COCO evaluation server [https://competitions.codalab.org/competitions/19507].


Prerequisites


	Download COCO test dataset images [http://images.cocodataset.org/zips/test2017.zip], testing image info [http://images.cocodataset.org/annotations/image_info_test2017.zip], and panoptic train/val annotations [http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip], then unzip them, put ‘test2017’ to data/coco/, put json files and annotation files to data/coco/annotations/.




# suppose data/coco/ does not exist
mkdir -pv data/coco/

# download test2017
wget -P data/coco/ http://images.cocodataset.org/zips/test2017.zip
wget -P data/coco/ http://images.cocodataset.org/annotations/image_info_test2017.zip
wget -P data/coco/ http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip

# unzip them
unzip data/coco/test2017.zip -d data/coco/
unzip data/coco/image_info_test2017.zip -d data/coco/
unzip data/coco/panoptic_annotations_trainval2017.zip -d data/coco/

# remove zip files (optional)
rm -rf data/coco/test2017.zip data/coco/image_info_test2017.zip data/coco/panoptic_annotations_trainval2017.zip






	Run the following code to update category information in testing image info. Since the attribute isthing is missing in category information of ‘image_info_test-dev2017.json’, we need to update it with the category information in ‘panoptic_val2017.json’.




python tools/misc/gen_coco_panoptic_test_info.py data/coco/annotations





After completing the above preparations, your directory structure of data should be like this:

data
`-- coco
    |-- annotations
    |   |-- image_info_test-dev2017.json
    |   |-- image_info_test2017.json
    |   |-- panoptic_image_info_test-dev2017.json
    |   |-- panoptic_train2017.json
    |   |-- panoptic_train2017.zip
    |   |-- panoptic_val2017.json
    |   `-- panoptic_val2017.zip
    `-- test2017








Inference on coco test-dev

To do inference on coco test-dev, we should update the setting of test_dataloder and test_evaluator first. There two ways to do this: 1. update them in config file; 2. update them in command line.


Update them in config file

The relevant settings are provided at the end of configs/_base_/datasets/coco_panoptic.py, as below.

test_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file='annotations/panoptic_image_info_test-dev2017.json',
        data_prefix=dict(img='test2017/'),
        test_mode=True,
        pipeline=test_pipeline))
test_evaluator = dict(
    type='CocoPanopticMetric',
    format_only=True,
    ann_file=data_root + 'annotations/panoptic_image_info_test-dev2017.json',
    outfile_prefix='./work_dirs/coco_panoptic/test')





Any of the following way can be used to update the setting for inference on coco test-dev set.

Case 1: Directly uncomment the setting in configs/_base_/datasets/coco_panoptic.py.

Case 2: Copy the following setting to the config file you used now.

test_dataloader = dict(
    dataset=dict(
        ann_file='annotations/panoptic_image_info_test-dev2017.json',
        data_prefix=dict(img='test2017/', _delete_=True)))
test_evaluator = dict(
    format_only=True,
    ann_file=data_root + 'annotations/panoptic_image_info_test-dev2017.json',
    outfile_prefix='./work_dirs/coco_panoptic/test')





Then infer on coco test-dev et by the following command.

python tools/test.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE}








Update them in command line

The command for update of the related settings and inference on coco test-dev are as below.

# test with single gpu
CUDA_VISIBLE_DEVICES=0 python tools/test.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    --cfg-options \
    test_dataloader.dataset.ann_file=annotations/panoptic_image_info_test-dev2017.json \
    test_dataloader.dataset.data_prefix.img=test2017 \
    test_dataloader.dataset.data_prefix._delete_=True \
    test_evaluator.format_only=True \
    test_evaluator.ann_file=data/coco/annotations/panoptic_image_info_test-dev2017.json \
    test_evaluator.outfile_prefix=${WORK_DIR}/results

# test with four gpus
CUDA_VISIBLE_DEVICES=0,1,3,4 bash tools/dist_test.sh \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    8 \  # eights gpus
    --cfg-options \
    test_dataloader.dataset.ann_file=annotations/panoptic_image_info_test-dev2017.json \
    test_dataloader.dataset.data_prefix.img=test2017 \
    test_dataloader.dataset.data_prefix._delete_=True \
    test_evaluator.format_only=True \
    test_evaluator.ann_file=data/coco/annotations/panoptic_image_info_test-dev2017.json \
    test_evaluator.outfile_prefix=${WORK_DIR}/results

# test with slurm
GPUS=8 tools/slurm_test.sh \
    ${Partition} \
    ${JOB_NAME} \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    --cfg-options \
    test_dataloader.dataset.ann_file=annotations/panoptic_image_info_test-dev2017.json \
    test_dataloader.dataset.data_prefix.img=test2017 \
    test_dataloader.dataset.data_prefix._delete_=True \
    test_evaluator.format_only=True \
    test_evaluator.ann_file=data/coco/annotations/panoptic_image_info_test-dev2017.json \
    test_evaluator.outfile_prefix=${WORK_DIR}/results





Example

Suppose we perform inference on test2017 using pretrained MaskFormer with ResNet-50 backbone.

# test with single gpu
CUDA_VISIBLE_DEVICES=0 python tools/test.py \
    configs/maskformer/maskformer_r50_mstrain_16x1_75e_coco.py \
    checkpoints/maskformer_r50_mstrain_16x1_75e_coco_20220221_141956-bc2699cb.pth \
    --cfg-options \
    test_dataloader.dataset.ann_file=annotations/panoptic_image_info_test-dev2017.json \
    test_dataloader.dataset.data_prefix.img=test2017 \
    test_dataloader.dataset.data_prefix._delete_=True \
    test_evaluator.format_only=True \
    test_evaluator.ann_file=data/coco/annotations/panoptic_image_info_test-dev2017.json \
    test_evaluator.outfile_prefix=work_dirs/maskformer/results










Rename files and zip results

After inference, the panoptic segmentation results (a json file and a directory where the masks are stored) will be in WORK_DIR. We should rename them according to the naming convention described on COCO’s Website [https://cocodataset.org/#upload]. Finally, we need to compress the json and the directory where the masks are stored into a zip file, and rename the zip file according to the naming convention. Note that the zip file should directly contains the above two files.

The commands to rename files and zip results:

# In WORK_DIR, we have panoptic segmentation results: 'panoptic' and 'results.panoptic.json'.
cd ${WORK_DIR}

# replace '[algorithm_name]' with the name of algorithm you used.
mv ./panoptic ./panoptic_test-dev2017_[algorithm_name]_results
mv ./results.panoptic.json ./panoptic_test-dev2017_[algorithm_name]_results.json
zip panoptic_test-dev2017_[algorithm_name]_results.zip -ur panoptic_test-dev2017_[algorithm_name]_results panoptic_test-dev2017_[algorithm_name]_results.json













            

          

      

      

    

  

  
    
    
    Weight initialization
    

    

    

    
 
  

    
      
          
            
  
Weight initialization

During training, a proper initialization strategy is beneficial to speeding up the training or obtaining a higher performance. MMCV [https://github.com/open-mmlab/mmcv/blob/master/mmcv/cnn/utils/weight_init.py] provide some commonly used methods for initializing modules like nn.Conv2d. Model initialization in MMdetection mainly uses init_cfg. Users can initialize models with following two steps:


	Define init_cfg for a model or its components in model_cfg,  but init_cfg of children components have higher priority and will override init_cfg of parents modules.


	Build model as usual, but call model.init_weights() method explicitly, and model parameters will be initialized as configuration.




The high-level workflow of initialization in MMdetection is :

model_cfg(init_cfg) -> build_from_cfg -> model -> init_weight() -> initialize(self, self.init_cfg) -> children’s init_weight()


Description

It is dict or list[dict], and contains the following keys and values:


	type (str), containing the initializer name in INTIALIZERS, and followed by arguments of the initializer.


	layer (str or list[str]), containing the names of basic layers in Pytorch or MMCV with learnable parameters that will be initialized, e.g. 'Conv2d','DeformConv2d'.


	override (dict or list[dict]),  containing the sub-modules that not inherit from BaseModule and whose initialization configuration is different from other layers’ which are in 'layer' key. Initializer defined in type will work for all layers defined in layer, so if sub-modules are not derived Classes of BaseModule but can be initialized as same ways of layers in layer, it does not need to use override. override contains:


	type followed by arguments of initializer;


	name to indicate sub-module which will be initialized.











Initialize parameters

Inherit a new model from mmcv.runner.BaseModule or mmdet.models  Here we show an example of FooModel.

import torch.nn as nn
from mmcv.runner import BaseModule

class FooModel(BaseModule)
	def __init__(self,
                 arg1,
                 arg2,
                 init_cfg=None):
    	super(FooModel, self).__init__(init_cfg)
		...






	Initialize model by using init_cfg directly in code

import torch.nn as nn
from mmcv.runner import BaseModule
# or directly inherit mmdet models

class FooModel(BaseModule)
	def __init__(self,
                arg1,
                arg2,
                init_cfg=XXX):
		super(FooModel, self).__init__(init_cfg)
	    ...







	Initialize model by using init_cfg directly in mmcv.Sequential or mmcv.ModuleList code

from mmcv.runner import BaseModule, ModuleList

class FooModel(BaseModule)
	def __init__(self,
            	arg1,
            	arg2,
            	init_cfg=None):
		super(FooModel, self).__init__(init_cfg)
    	...
    	self.conv1 = ModuleList(init_cfg=XXX)







	Initialize model by using init_cfg in config file

model = dict(
	...
	model = dict(
    	type='FooModel',
    	arg1=XXX,
    	arg2=XXX,
    	init_cfg=XXX),
        ...












Usage of init_cfg


	Initialize model by layer key

If we only define layer, it just initialize the layer in layer key.

NOTE: Value of layer key is the class name with attributes weights and bias of Pytorch, (so such as  MultiheadAttention layer is not supported).






	Define layer key for initializing module with same configuration.

init_cfg = dict(type='Constant', layer=['Conv1d', 'Conv2d', 'Linear'], val=1)
# initialize whole module with same configuration







	Define layer key for initializing layer with different configurations.




init_cfg = [dict(type='Constant', layer='Conv1d', val=1),
            dict(type='Constant', layer='Conv2d', val=2),
            dict(type='Constant', layer='Linear', val=3)]
# nn.Conv1d will be initialized with dict(type='Constant', val=1)
# nn.Conv2d will be initialized with dict(type='Constant', val=2)
# nn.Linear will be initialized with dict(type='Constant', val=3)






	Initialize model by override key





	When initializing some specific part with its attribute name, we can use override key, and the value in override will ignore the value in init_cfg.

# layers:
# self.feat = nn.Conv1d(3, 1, 3)
# self.reg = nn.Conv2d(3, 3, 3)
# self.cls = nn.Linear(1,2)

init_cfg = dict(type='Constant',
                layer=['Conv1d','Conv2d'], val=1, bias=2,
                override=dict(type='Constant', name='reg', val=3, bias=4))
# self.feat and self.cls will be initialized with 	dict(type='Constant', val=1, bias=2)
# The module called 'reg' will be initialized with dict(type='Constant', val=3, bias=4)







	If layer is None in init_cfg, only sub-module with the name in override will be initialized, and type and other args in override can be omitted.

# layers:
# self.feat = nn.Conv1d(3, 1, 3)
# self.reg = nn.Conv2d(3, 3, 3)
# self.cls = nn.Linear(1,2)

init_cfg = dict(type='Constant', val=1, bias=2, 	override=dict(name='reg'))

# self.feat and self.cls will be initialized by Pytorch
# The module called 'reg' will be initialized with dict(type='Constant', val=1, bias=2)







	If we don’t define layer key or override key, it will not initialize anything.


	Invalid usage

# It is invalid that override don't have name key
init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'], val=1, bias=2,
            	override=dict(type='Constant', val=3, bias=4))

# It is also invalid that override has name and other args except type
init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'], val=1, bias=2,
                override=dict(name='reg', val=3, bias=4))










	Initialize model with the pretrained model

init_cfg = dict(type='Pretrained',
            checkpoint='torchvision://resnet50')









More details can refer to the documentation in MMEngine [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/initialize.html]







            

          

      

      

    

  

  
    
    
    Use a single stage detector as RPN
    

    

    

    
 
  

    
      
          
            
  
Use a single stage detector as RPN

Region proposal network (RPN) is a submodule in Faster R-CNN [https://arxiv.org/abs/1506.01497], which generates proposals for the second stage of Faster R-CNN. Most two-stage detectors in MMDetection use RPNHead to generate proposals as RPN. However, any single-stage detector can serve as an RPN since their bounding box predictions can also be regarded as region proposals and thus be refined in the R-CNN. Therefore, MMDetection v3.0 supports that.

To illustrate the whole process, here we give an example of how to use an anchor-free single-stage model FCOS as an RPN in Faster R-CNN.

The outline of this tutorial is as below:


	Use FCOSHead as an RPNHead in Faster R-CNN


	Evaluate proposals


	Train the customized Faster R-CNN with pre-trained FCOS





Use FCOSHead as an RPNHead in Faster R-CNN

To set FCOSHead as an RPNHead in Faster R-CNN, we should create a new config file named configs/faster_rcnn/faster-rcnn_r50_fpn_fcos-rpn_1x_coco.py, and replace with the setting of rpn_head with the setting of bbox_head in configs/fcos/fcos_r50-caffe_fpn_gn-head_1x_coco.py. Besides, we still use the neck setting of FCOS with strides of [8, 16, 32, 64, 128], and update featmap_strides of bbox_roi_extractor to [8, 16, 32, 64, 128]. To avoid loss goes NAN, we apply warmup during the first 1000 iterations instead of the first 500 iterations, which means that the lr increases more slowly. The config is as follows:

_base_ = [
    '../_base_/models/faster-rcnn_r50_fpn.py',
    '../_base_/datasets/coco_detection.py',
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]

model = dict(
    # copied from configs/fcos/fcos_r50-caffe_fpn_gn-head_1x_coco.py
    neck=dict(
        start_level=1,
        add_extra_convs='on_output',  # use P5
        relu_before_extra_convs=True),
    rpn_head=dict(
        _delete_=True,  # ignore the unused old settings
        type='FCOSHead',
        num_classes=1,  # num_classes = 1 for rpn, if num_classes > 1, it will be set to 1 in TwoStageDetector automatically
        in_channels=256,
        stacked_convs=4,
        feat_channels=256,
        strides=[8, 16, 32, 64, 128],
        loss_cls=dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
        loss_bbox=dict(type='IoULoss', loss_weight=1.0),
        loss_centerness=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
    roi_head=dict(  # update featmap_strides due to the strides in neck
        bbox_roi_extractor=dict(featmap_strides=[8, 16, 32, 64, 128])))

# learning rate
param_scheduler = [
    dict(
        type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
        end=1000),  # Slowly increase lr, otherwise loss becomes NAN
    dict(
        type='MultiStepLR',
        begin=0,
        end=12,
        by_epoch=True,
        milestones=[8, 11],
        gamma=0.1)
]





Then, we could use the following command to train our customized model. For more training commands, please refer to here.

# training with 8 GPUS
bash tools/dist_train.sh configs/faster_rcnn/faster-rcnn_r50_fpn_fcos-rpn_1x_coco.py \
    8 \
    --work-dir ./work_dirs/faster-rcnn_r50_fpn_fcos-rpn_1x_coco








Evaluate proposals

The quality of proposals is of great importance to the performance of detector, therefore, we also provide a way to evaluate proposals. Same as above, create a new config file named configs/rpn/fcos-rpn_r50_fpn_1x_coco.py, and replace with setting of rpn_head with the setting of bbox_head in configs/fcos/fcos_r50-caffe_fpn_gn-head_1x_coco.py.

_base_ = [
    '../_base_/models/rpn_r50_fpn.py', '../_base_/datasets/coco_detection.py',
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]

val_evaluator = dict(metric='proposal_fast')
test_evaluator = val_evaluator

model = dict(
    # copied from configs/fcos/fcos_r50-caffe_fpn_gn-head_1x_coco.py
    neck=dict(
        start_level=1,
        add_extra_convs='on_output',  # use P5
        relu_before_extra_convs=True),
    rpn_head=dict(
        _delete_=True,  # ignore the unused old settings
        type='FCOSHead',
        num_classes=1,  # num_classes = 1 for rpn, if num_classes > 1, it will be set to 1 in RPN automatically
        in_channels=256,
        stacked_convs=4,
        feat_channels=256,
        strides=[8, 16, 32, 64, 128],
        loss_cls=dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
        loss_bbox=dict(type='IoULoss', loss_weight=1.0),
        loss_centerness=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)))





Suppose we have the checkpoint ./work_dirs/faster-rcnn_r50_fpn_fcos-rpn_1x_coco/epoch_12.pth after training, then we can evaluate the quality of proposals with the following command.

# testing with 8 GPUs
bash tools/dist_test.sh \
    configs/rpn/fcos-rpn_r50_fpn_1x_coco.py \
    ./work_dirs/faster-rcnn_r50_fpn_fcos-rpn_1x_coco/epoch_12.pth \
    8








Train the customized Faster R-CNN with pre-trained FCOS

Pre-training not only speeds up convergence of training, but also improves the performance of the detector. Therefore, here we give an example to illustrate how to do use a pre-trained FCOS as an RPN to accelerate training and improve the accuracy. Suppose we want to use FCOSHead as an rpn head in Faster R-CNN and train with the pre-trained fcos_r50-caffe_fpn_gn-head_1x_coco [https://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco/fcos_r50_caffe_fpn_gn-head_1x_coco-821213aa.pth]. The content of config file named configs/faster_rcnn/faster-rcnn_r50-caffe_fpn_fcos-rpn_1x_coco.py is as the following. Note that fcos_r50-caffe_fpn_gn-head_1x_coco uses a caffe version of ResNet50, the pixel mean and std in data_preprocessor thus need to be updated.

_base_ = [
    '../_base_/models/faster-rcnn_r50_fpn.py',
    '../_base_/datasets/coco_detection.py',
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]

model = dict(
    data_preprocessor=dict(
        mean=[103.530, 116.280, 123.675],
        std=[1.0, 1.0, 1.0],
        bgr_to_rgb=False),
    backbone=dict(
        norm_cfg=dict(type='BN', requires_grad=False),
        style='caffe',
        init_cfg=None),  # the checkpoint in ``load_from`` contains the weights of backbone
    neck=dict(
        start_level=1,
        add_extra_convs='on_output',  # use P5
        relu_before_extra_convs=True),
    rpn_head=dict(
        _delete_=True,  # ignore the unused old settings
        type='FCOSHead',
        num_classes=1,  # num_classes = 1 for rpn, if num_classes > 1, it will be set to 1 in TwoStageDetector automatically
        in_channels=256,
        stacked_convs=4,
        feat_channels=256,
        strides=[8, 16, 32, 64, 128],
        loss_cls=dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
        loss_bbox=dict(type='IoULoss', loss_weight=1.0),
        loss_centerness=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
    roi_head=dict(  # update featmap_strides due to the strides in neck
        bbox_roi_extractor=dict(featmap_strides=[8, 16, 32, 64, 128])))

load_from = 'https://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco/fcos_r50_caffe_fpn_gn-head_1x_coco-821213aa.pth'





The command for training is as below.

bash tools/dist_train.sh \
    configs/faster_rcnn/faster-rcnn_r50-caffe_fpn_fcos-rpn_1x_coco.py \
    8 \
    --work-dir ./work_dirs/faster-rcnn_r50-caffe_fpn_fcos-rpn_1x_coco











            

          

      

      

    

  

  
    
    
    Semi-supervised Object Detection
    

    

    

    
 
  

    
      
          
            
  
Semi-supervised Object Detection

Semi-supervised object detection uses both labeled data and unlabeled data for training. It not only reduces the annotation burden for training high-performance object detectors but also further improves the object detector by using a large number of unlabeled data.

A typical procedure to train a semi-supervised object detector is as below:


	Semi-supervised Object Detection


	Prepare and split dataset


	Configure multi-branch pipeline


	Configure semi-supervised dataloader


	Configure semi-supervised model


	Configure MeanTeacherHook


	Configure TeacherStudentValLoop









Prepare and split dataset

We provide a dataset download script, which downloads the coco2017 dataset by default and decompresses it automatically.

python tools/misc/download_dataset.py





The decompressed dataset directory structure is as below:

mmdetection
├── data
│   ├── coco
│   │   ├── annotations
│   │   │   ├── image_info_unlabeled2017.json
│   │   │   ├── instances_train2017.json
│   │   │   ├── instances_val2017.json
│   │   ├── test2017
│   │   ├── train2017
│   │   ├── unlabeled2017
│   │   ├── val2017





There are two common experimental settings for semi-supervised object detection on the coco2017 dataset:

(1) Split train2017 according to a fixed percentage (1%, 2%, 5% and 10%) as a labeled dataset, and the rest of train2017 as an unlabeled dataset. Because the different splits of train2017 as labeled datasets will cause significant fluctuation on the accuracy of the semi-supervised detectors, five-fold cross-validation is used in practice to evaluate the algorithm. We provide the dataset split script:

python tools/misc/split_coco.py





By default, the script will split train2017 according to the labeled data ratio  1%, 2%, 5% and 10%, and each split will be randomly repeated 5 times for cross-validation. The generated semi-supervised annotation file name format is as below:


	the name format of labeled dataset: instances_train2017.{fold}@{percent}.json


	the name format of unlabeled dataset: instances_train2017.{fold}@{percent}-unlabeled.json




Here, fold is used for cross-validation, and percent represents the ratio of labeled data. The directory structure of the divided dataset is as below:

mmdetection
├── data
│   ├── coco
│   │   ├── annotations
│   │   │   ├── image_info_unlabeled2017.json
│   │   │   ├── instances_train2017.json
│   │   │   ├── instances_val2017.json
│   │   ├── semi_anns
│   │   │   ├── instances_train2017.1@1.json
│   │   │   ├── instances_train2017.1@1-unlabeled.json
│   │   │   ├── instances_train2017.1@2.json
│   │   │   ├── instances_train2017.1@2-unlabeled.json
│   │   │   ├── instances_train2017.1@5.json
│   │   │   ├── instances_train2017.1@5-unlabeled.json
│   │   │   ├── instances_train2017.1@10.json
│   │   │   ├── instances_train2017.1@10-unlabeled.json
│   │   │   ├── instances_train2017.2@1.json
│   │   │   ├── instances_train2017.2@1-unlabeled.json
│   │   ├── test2017
│   │   ├── train2017
│   │   ├── unlabeled2017
│   │   ├── val2017





(2) Use train2017 as the labeled dataset and unlabeled2017 as the unlabeled dataset. Since image_info_unlabeled2017.json does not contain categories information, the CocoDataset cannot be initialized, so you need to write the categories of instances_train2017.json into image_info_unlabeled2017.json and save it as instances_unlabeled2017.json, the relevant script is as below:

from mmengine.fileio import load, dump

anns_train = load('instances_train2017.json')
anns_unlabeled = load('image_info_unlabeled2017.json')
anns_unlabeled['categories'] = anns_train['categories']
dump(anns_unlabeled, 'instances_unlabeled2017.json')





The processed dataset directory is as below:

mmdetection
├── data
│   ├── coco
│   │   ├── annotations
│   │   │   ├── image_info_unlabeled2017.json
│   │   │   ├── instances_train2017.json
│   │   │   ├── instances_unlabeled2017.json
│   │   │   ├── instances_val2017.json
│   │   ├── test2017
│   │   ├── train2017
│   │   ├── unlabeled2017
│   │   ├── val2017








Configure multi-branch pipeline

There are two main approaches to semi-supervised learning,
consistency regularization [https://research.nvidia.com/sites/default/files/publications/laine2017iclr_paper.pdf]
and pseudo label [https://www.researchgate.net/profile/Dong-Hyun-Lee/publication/280581078_Pseudo-Label_The_Simple_and_Efficient_Semi-Supervised_Learning_Method_for_Deep_Neural_Networks/links/55bc4ada08ae092e9660b776/Pseudo-Label-The-Simple-and-Efficient-Semi-Supervised-Learning-Method-for-Deep-Neural-Networks.pdf].
Consistency regularization often requires some careful design, while pseudo label have a simpler form and are easier to extend to downstream tasks.
We adopt a teacher-student joint training semi-supervised object detection framework based on pseudo label, so labeled data and unlabeled data need to configure different data pipeline:

(1) Pipeline for labeled data:

# pipeline used to augment labeled data,
# which will be sent to student model for supervised training.
sup_pipeline = [
    dict(type='LoadImageFromFile', backend_args=backend_args),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='RandomResize', scale=scale, keep_ratio=True),
    dict(type='RandomFlip', prob=0.5),
    dict(type='RandAugment', aug_space=color_space, aug_num=1),
    dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)),
    dict(type='MultiBranch', sup=dict(type='PackDetInputs'))
]





(2) Pipeline for unlabeled data:

# pipeline used to augment unlabeled data weakly,
# which will be sent to teacher model for predicting pseudo instances.
weak_pipeline = [
    dict(type='RandomResize', scale=scale, keep_ratio=True),
    dict(type='RandomFlip', prob=0.5),
    dict(
        type='PackDetInputs',
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor', 'flip', 'flip_direction',
                   'homography_matrix')),
]

# pipeline used to augment unlabeled data strongly,
# which will be sent to student model for unsupervised training.
strong_pipeline = [
    dict(type='RandomResize', scale=scale, keep_ratio=True),
    dict(type='RandomFlip', prob=0.5),
    dict(
        type='RandomOrder',
        transforms=[
            dict(type='RandAugment', aug_space=color_space, aug_num=1),
            dict(type='RandAugment', aug_space=geometric, aug_num=1),
        ]),
    dict(type='RandomErasing', n_patches=(1, 5), ratio=(0, 0.2)),
    dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)),
    dict(
        type='PackDetInputs',
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor', 'flip', 'flip_direction',
                   'homography_matrix')),
]

# pipeline used to augment unlabeled data into different views
unsup_pipeline = [
    dict(type='LoadImageFromFile', backend_args=backend_args),
    dict(type='LoadEmptyAnnotations'),
    dict(
        type='MultiBranch',
        unsup_teacher=weak_pipeline,
        unsup_student=strong_pipeline,
    )
]








Configure semi-supervised dataloader

(1) Build a semi-supervised dataset. Use ConcatDataset to concatenate labeled and unlabeled datasets.

labeled_dataset = dict(
    type=dataset_type,
    data_root=data_root,
    ann_file='annotations/instances_train2017.json',
    data_prefix=dict(img='train2017/'),
    filter_cfg=dict(filter_empty_gt=True, min_size=32),
    pipeline=sup_pipeline)

unlabeled_dataset = dict(
    type=dataset_type,
    data_root=data_root,
    ann_file='annotations/instances_unlabeled2017.json',
    data_prefix=dict(img='unlabeled2017/'),
    filter_cfg=dict(filter_empty_gt=False),
    pipeline=unsup_pipeline)

train_dataloader = dict(
    batch_size=batch_size,
    num_workers=num_workers,
    persistent_workers=True,
    sampler=dict(
        type='GroupMultiSourceSampler',
        batch_size=batch_size,
        source_ratio=[1, 4]),
    dataset=dict(
        type='ConcatDataset', datasets=[labeled_dataset, unlabeled_dataset]))





(2) Use multi-source dataset sampler. Use GroupMultiSourceSampler to sample data form batches from labeled_dataset and labeled_dataset, source_ratio controls the proportion of labeled data and unlabeled data in the batch. GroupMultiSourceSampler also ensures that the images in the same batch have similar aspect ratios. If you don’t need to guarantee the aspect ratio of the images in the batch, you can use MultiSourceSampler. The sampling diagram of GroupMultiSourceSampler is as below:


  
    
    
    Log Analysis
    

    

    

    
 
  

    
      
          
            
  Apart from training/testing scripts, We provide lots of useful tools under the
tools/ directory.


Log Analysis

tools/analysis_tools/analyze_logs.py plots loss/mAP curves given a training
log file. Run pip install seaborn first to install the dependency.

python tools/analysis_tools/analyze_logs.py plot_curve [--keys ${KEYS}] [--eval-interval ${EVALUATION_INTERVAL}] [--title ${TITLE}] [--legend ${LEGEND}] [--backend ${BACKEND}] [--style ${STYLE}] [--out ${OUT_FILE}]





[image: loss curve image]

Examples:


	Plot the classification loss of some run.

python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_cls --legend loss_cls







	Plot the classification and regression loss of some run, and save the figure to a pdf.

python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_cls loss_bbox --out losses.pdf







	Compare the bbox mAP of two runs in the same figure.

python tools/analysis_tools/analyze_logs.py plot_curve log1.json log2.json --keys bbox_mAP --legend run1 run2







	Compute the average training speed.

python tools/analysis_tools/analyze_logs.py cal_train_time log.json [--include-outliers]





The output is expected to be like the following.

-----Analyze train time of work_dirs/some_exp/20190611_192040.log.json-----
slowest epoch 11, average time is 1.2024
fastest epoch 1, average time is 1.1909
time std over epochs is 0.0028
average iter time: 1.1959 s/iter












Result Analysis

tools/analysis_tools/analyze_results.py calculates single image mAP and saves or shows the topk images with the highest and lowest scores based on prediction results.

Usage

python tools/analysis_tools/analyze_results.py \
      ${CONFIG} \
      ${PREDICTION_PATH} \
      ${SHOW_DIR} \
      [--show] \
      [--wait-time ${WAIT_TIME}] \
      [--topk ${TOPK}] \
      [--show-score-thr ${SHOW_SCORE_THR}] \
      [--cfg-options ${CFG_OPTIONS}]





Description of all arguments:


	config : The path of a model config file.


	prediction_path:  Output result file in pickle format from tools/test.py


	show_dir: Directory where painted GT and detection images will be saved


	--show: Determines whether to show painted images, If not specified, it will be set to False


	--wait-time: The interval of show (s), 0 is block


	--topk: The number of saved images that have the highest and lowest topk scores after sorting. If not specified, it will be set to 20.


	--show-score-thr:  Show score threshold. If not specified, it will be set to 0.


	--cfg-options: If specified, the key-value pair optional cfg will be merged into config file




Examples:

Assume that you have got result file in pickle format from tools/test.py  in the path ‘./result.pkl’.


	Test Faster R-CNN and visualize the results, save images to the directory results/




python tools/analysis_tools/analyze_results.py \
       configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py \
       result.pkl \
       results \
       --show






	Test Faster R-CNN and specified topk to 50, save images to the directory results/




python tools/analysis_tools/analyze_results.py \
       configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py \
       result.pkl \
       results \
       --topk 50






	If you want to filter the low score prediction results, you can specify the show-score-thr parameter




python tools/analysis_tools/analyze_results.py \
       configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py \
       result.pkl \
       results \
       --show-score-thr 0.3








Fusing results from multiple models

tools/analysis_tools/fusion_results.py can fusing predictions using Weighted Boxes Fusion(WBF) from different object detection models. (Currently support coco format only)

Usage

python tools/analysis_tools/fuse_results.py \
       ${PRED_RESULTS} \
       [--annotation ${ANNOTATION}] \
       [--weights ${WEIGHTS}] \
       [--fusion-iou-thr ${FUSION_IOU_THR}] \
       [--skip-box-thr ${SKIP_BOX_THR}] \
       [--conf-type ${CONF_TYPE}] \
       [--eval-single ${EVAL_SINGLE}] \
       [--save-fusion-results ${SAVE_FUSION_RESULTS}] \
       [--out-dir ${OUT_DIR}]





Description of all arguments:


	pred-results: Paths of detection results from different models.(Currently support coco format only)


	--annotation: Path of ground-truth.


	--weights: List of weights for each model. Default: None, which means weight == 1 for each model.


	--fusion-iou-thr: IoU value for boxes to be a match。Default: 0.55。


	--skip-box-thr: The confidence threshold that needs to be excluded in the WBF algorithm. bboxes whose confidence is less than this value will be excluded.。Default: 0。


	--conf-type: How to calculate confidence in weighted boxes.


	avg: average value，default.


	max: maximum value.


	box_and_model_avg: box and model wise hybrid weighted average.


	absent_model_aware_avg: weighted average that takes into account the absent model.






	--eval-single: Whether evaluate every single model. Default: False.


	--save-fusion-results: Whether save fusion results. Default: False.


	--out-dir: Path of fusion results.




Examples:
Assume that you have got 3 result files from corresponding models through tools/test.py, which paths are ‘./faster-rcnn_r50-caffe_fpn_1x_coco.json’, ‘./retinanet_r50-caffe_fpn_1x_coco.json’, ‘./cascade-rcnn_r50-caffe_fpn_1x_coco.json’ respectively. The ground-truth file path is ‘./annotation.json’.


	Fusion of predictions from three models and evaluation of their effectiveness




python tools/analysis_tools/fuse_results.py \
       ./faster-rcnn_r50-caffe_fpn_1x_coco.json \
       ./retinanet_r50-caffe_fpn_1x_coco.json \
       ./cascade-rcnn_r50-caffe_fpn_1x_coco.json \
       --annotation ./annotation.json \
       --weights 1 2 3 \






	Simultaneously evaluate each single model and fusion results




python tools/analysis_tools/fuse_results.py \
       ./faster-rcnn_r50-caffe_fpn_1x_coco.json \
       ./retinanet_r50-caffe_fpn_1x_coco.json \
       ./cascade-rcnn_r50-caffe_fpn_1x_coco.json \
       --annotation ./annotation.json \
       --weights 1 2 3 \
       --eval-single






	Fusion of prediction results from three models and save




python tools/analysis_tools/fuse_results.py \
       ./faster-rcnn_r50-caffe_fpn_1x_coco.json \
       ./retinanet_r50-caffe_fpn_1x_coco.json \
       ./cascade-rcnn_r50-caffe_fpn_1x_coco.json \
       --annotation ./annotation.json \
       --weights 1 2 3 \
       --save-fusion-results \
       --out-dir outputs/fusion








Visualization


Visualize Datasets

tools/analysis_tools/browse_dataset.py helps the user to browse a detection dataset (both
images and bounding box annotations) visually, or save the image to a
designated directory.

python tools/analysis_tools/browse_dataset.py ${CONFIG} [-h] [--skip-type ${SKIP_TYPE[SKIP_TYPE...]}] [--output-dir ${OUTPUT_DIR}] [--not-show] [--show-interval ${SHOW_INTERVAL}]








Visualize Models

First, convert the model to ONNX as described
here.
Note that currently only RetinaNet is supported, support for other models
will be coming in later versions.
The converted model could be visualized by tools like Netron [https://github.com/lutzroeder/netron].




Visualize Predictions

If you need a lightweight GUI for visualizing the detection results, you can refer DetVisGUI project [https://github.com/Chien-Hung/DetVisGUI/tree/mmdetection].






Error Analysis

tools/analysis_tools/coco_error_analysis.py analyzes COCO results per category and by
different criterion. It can also make a plot to provide useful information.

python tools/analysis_tools/coco_error_analysis.py ${RESULT} ${OUT_DIR} [-h] [--ann ${ANN}] [--types ${TYPES[TYPES...]}]





Example:

Assume that you have got Mask R-CNN checkpoint file [https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth] in the path ‘checkpoint’. For other checkpoints, please refer to our model zoo.

You can modify the test_evaluator to save the results bbox by:


	Find which dataset in ‘configs/base/datasets’ the current config corresponds to.


	Replace the original test_evaluator and test_dataloader with test_evaluator and test_dataloader in the comment in dataset config.


	Use the following command to get the results bbox and segmentation json file.




python tools/test.py \
       configs/mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py \
       checkpoint/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \






	Get COCO bbox error results per category , save analyze result images to the directory(In  config the default directory is ‘./work_dirs/coco_instance/test’)




python tools/analysis_tools/coco_error_analysis.py \
       results.bbox.json \
       results \
       --ann=data/coco/annotations/instances_val2017.json \






	Get COCO segmentation error results per category , save analyze result images to the directory




python tools/analysis_tools/coco_error_analysis.py \
       results.segm.json \
       results \
       --ann=data/coco/annotations/instances_val2017.json \
       --types='segm'








Model Serving

In order to serve an MMDetection model with TorchServe [https://pytorch.org/serve/], you can follow the steps:


1. Install TorchServe

Suppose you have a Python environment with PyTorch and MMDetection successfully installed,
then you could run the following command to install TorchServe and its dependencies.
For more other installation options, please refer to the quick start [https://github.com/pytorch/serve/blob/master/README.md#serve-a-model].

python -m pip install torchserve torch-model-archiver torch-workflow-archiver nvgpu





Note: Please refer to torchserve docker [https://github.com/pytorch/serve/blob/master/docker/README.md] if you want to use TorchServe in docker.




2. Convert model from MMDetection to TorchServe

python tools/deployment/mmdet2torchserve.py ${CONFIG_FILE} ${CHECKPOINT_FILE} \
--output-folder ${MODEL_STORE} \
--model-name ${MODEL_NAME}








3. Start TorchServe

torchserve --start --ncs \
  --model-store ${MODEL_STORE} \
  --models  ${MODEL_NAME}.mar








4. Test deployment

curl -O curl -O https://raw.githubusercontent.com/pytorch/serve/master/docs/images/3dogs.jpg
curl http://127.0.0.1:8080/predictions/${MODEL_NAME} -T 3dogs.jpg





You should obtain a response similar to:

[
  {
    "class_label": 16,
    "class_name": "dog",
    "bbox": [
      294.63409423828125,
      203.99111938476562,
      417.048583984375,
      281.62744140625
    ],
    "score": 0.9987992644309998
  },
  {
    "class_label": 16,
    "class_name": "dog",
    "bbox": [
      404.26019287109375,
      126.0080795288086,
      574.5091552734375,
      293.6662292480469
    ],
    "score": 0.9979367256164551
  },
  {
    "class_label": 16,
    "class_name": "dog",
    "bbox": [
      197.2144775390625,
      93.3067855834961,
      307.8505554199219,
      276.7560119628906
    ],
    "score": 0.993338406085968
  }
]






Compare results

And you can use test_torchserver.py to compare result of TorchServe and PyTorch, and visualize them.

python tools/deployment/test_torchserver.py ${IMAGE_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} ${MODEL_NAME}
[--inference-addr ${INFERENCE_ADDR}] [--device ${DEVICE}] [--score-thr ${SCORE_THR}] [--work-dir ${WORK_DIR}]





Example:

python tools/deployment/test_torchserver.py \
demo/demo.jpg \
configs/yolo/yolov3_d53_8xb8-320-273e_coco.py \
checkpoint/yolov3_d53_320_273e_coco-421362b6.pth \
yolov3 \
--work-dir ./work-dir










5. Stop TorchServe

torchserve --stop










Model Complexity

tools/analysis_tools/get_flops.py is a script adapted from flops-counter.pytorch [https://github.com/sovrasov/flops-counter.pytorch] to compute the FLOPs and params of a given model.

python tools/analysis_tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]





You will get the results like this.

==============================
Input shape: (3, 1280, 800)
Flops: 239.32 GFLOPs
Params: 37.74 M
==============================





Note: This tool is still experimental and we do not guarantee that the
number is absolutely correct. You may well use the result for simple
comparisons, but double check it before you adopt it in technical reports or papers.


	FLOPs are related to the input shape while parameters are not. The default
input shape is (1, 3, 1280, 800).


	Some operators are not counted into FLOPs like GN and custom operators. Refer to mmcv.cnn.get_model_complexity_info() [https://github.com/open-mmlab/mmcv/blob/2.x/mmcv/cnn/utils/flops_counter.py] for details.


	The FLOPs of two-stage detectors is dependent on the number of proposals.







Model conversion


MMDetection model to ONNX

We provide a script to convert model to ONNX [https://github.com/onnx/onnx] format. We also support comparing the output results between Pytorch and ONNX model for verification. More details can refer to mmdeploy [https://github.com/open-mmlab/mmdeploy]




MMDetection 1.x model to MMDetection 2.x

tools/model_converters/upgrade_model_version.py upgrades a previous MMDetection checkpoint
to the new version. Note that this script is not guaranteed to work as some
breaking changes are introduced in the new version. It is recommended to
directly use the new checkpoints.

python tools/model_converters/upgrade_model_version.py ${IN_FILE} ${OUT_FILE} [-h] [--num-classes NUM_CLASSES]








RegNet model to MMDetection

tools/model_converters/regnet2mmdet.py convert keys in pycls pretrained RegNet models to
MMDetection style.

python tools/model_converters/regnet2mmdet.py ${SRC} ${DST} [-h]








Detectron ResNet to Pytorch

tools/model_converters/detectron2pytorch.py converts keys in the original detectron pretrained
ResNet models to PyTorch style.

python tools/model_converters/detectron2pytorch.py ${SRC} ${DST} ${DEPTH} [-h]








Prepare a model for publishing

tools/model_converters/publish_model.py helps users to prepare their model for publishing.

Before you upload a model to AWS, you may want to


	convert model weights to CPU tensors


	delete the optimizer states and


	compute the hash of the checkpoint file and append the hash id to the
filename.




python tools/model_converters/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}





E.g.,

python tools/model_converters/publish_model.py work_dirs/faster_rcnn/latest.pth faster_rcnn_r50_fpn_1x_20190801.pth





The final output filename will be faster_rcnn_r50_fpn_1x_20190801-{hash id}.pth.






Dataset Conversion

tools/data_converters/ contains tools to convert the Cityscapes dataset
and Pascal VOC dataset to the COCO format.

python tools/dataset_converters/cityscapes.py ${CITYSCAPES_PATH} [-h] [--img-dir ${IMG_DIR}] [--gt-dir ${GT_DIR}] [-o ${OUT_DIR}] [--nproc ${NPROC}]
python tools/dataset_converters/pascal_voc.py ${DEVKIT_PATH} [-h] [-o ${OUT_DIR}]








Dataset Download

tools/misc/download_dataset.py supports downloading datasets such as COCO, VOC, and LVIS.

python tools/misc/download_dataset.py --dataset-name coco2017
python tools/misc/download_dataset.py --dataset-name voc2007
python tools/misc/download_dataset.py --dataset-name lvis





For users in China, these datasets can also be downloaded from OpenDataLab [https://opendatalab.com/?source=OpenMMLab%20GitHub] with high speed:


	COCO2017 [https://opendatalab.com/COCO_2017/download?source=OpenMMLab%20GitHub]


	VOC2007 [https://opendatalab.com/PASCAL_VOC2007/download?source=OpenMMLab%20GitHub]


	VOC2012 [https://opendatalab.com/PASCAL_VOC2012/download?source=OpenMMLab%20GitHub]


	LVIS [https://opendatalab.com/LVIS/download?source=OpenMMLab%20GitHub]







Benchmark


Robust Detection Benchmark

tools/analysis_tools/test_robustness.py andtools/analysis_tools/robustness_eval.py  helps users to evaluate model robustness. The core idea comes from Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming [https://arxiv.org/abs/1907.07484]. For more information how to evaluate models on corrupted images and results for a set of standard models please refer to robustness_benchmarking.md.




FPS Benchmark

tools/analysis_tools/benchmark.py helps users to calculate FPS. The FPS value includes model forward and post-processing. In order to get a more accurate value, currently only supports single GPU distributed startup mode.

python -m torch.distributed.launch --nproc_per_node=1 --master_port=${PORT} tools/analysis_tools/benchmark.py \
    ${CONFIG} \
    [--checkpoint ${CHECKPOINT}] \
    [--repeat-num ${REPEAT_NUM}] \
    [--max-iter ${MAX_ITER}] \
    [--log-interval ${LOG_INTERVAL}] \
    --launcher pytorch





Examples: Assuming that you have already downloaded the Faster R-CNN model checkpoint to the directory checkpoints/.

python -m torch.distributed.launch --nproc_per_node=1 --master_port=29500 tools/analysis_tools/benchmark.py \
       configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py \
       checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
       --launcher pytorch










Miscellaneous


Evaluating a metric

tools/analysis_tools/eval_metric.py evaluates certain metrics of a pkl result file
according to a config file.

python tools/analysis_tools/eval_metric.py ${CONFIG} ${PKL_RESULTS} [-h] [--format-only] [--eval ${EVAL[EVAL ...]}]
                      [--cfg-options ${CFG_OPTIONS [CFG_OPTIONS ...]}]
                      [--eval-options ${EVAL_OPTIONS [EVAL_OPTIONS ...]}]








Print the entire config

tools/misc/print_config.py prints the whole config verbatim, expanding all its
imports.

python tools/misc/print_config.py ${CONFIG} [-h] [--options ${OPTIONS [OPTIONS...]}]










Hyper-parameter Optimization


YOLO Anchor Optimization

tools/analysis_tools/optimize_anchors.py provides two method to optimize YOLO anchors.

One is k-means anchor cluster which refers from darknet [https://github.com/AlexeyAB/darknet/blob/master/src/detector.c#L1421].

python tools/analysis_tools/optimize_anchors.py ${CONFIG} --algorithm k-means --input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} --output-dir ${OUTPUT_DIR}





Another is using differential evolution to optimize anchors.

python tools/analysis_tools/optimize_anchors.py ${CONFIG} --algorithm differential_evolution --input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} --output-dir ${OUTPUT_DIR}





E.g.,

python tools/analysis_tools/optimize_anchors.py configs/yolo/yolov3_d53_8xb8-320-273e_coco.py --algorithm differential_evolution --input-shape 608 608 --device cuda --output-dir work_dirs





You will get:

loading annotations into memory...
Done (t=9.70s)
creating index...
index created!
2021-07-19 19:37:20,951 - mmdet - INFO - Collecting bboxes from annotation...
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 117266/117266, 15874.5 task/s, elapsed: 7s, ETA:     0s

2021-07-19 19:37:28,753 - mmdet - INFO - Collected 849902 bboxes.
differential_evolution step 1: f(x)= 0.506055
differential_evolution step 2: f(x)= 0.506055
......

differential_evolution step 489: f(x)= 0.386625
2021-07-19 19:46:40,775 - mmdet - INFO Anchor evolution finish. Average IOU: 0.6133754253387451
2021-07-19 19:46:40,776 - mmdet - INFO Anchor differential evolution result:[[10, 12], [15, 30], [32, 22], [29, 59], [61, 46], [57, 116], [112, 89], [154, 198], [349, 336]]
2021-07-19 19:46:40,798 - mmdet - INFO Result saved in work_dirs/anchor_optimize_result.json










Confusion Matrix

A confusion matrix is a summary of prediction results.

tools/analysis_tools/confusion_matrix.py can analyze the prediction results and plot a confusion matrix table.

First, run tools/test.py to save the .pkl detection results.

Then, run

python tools/analysis_tools/confusion_matrix.py ${CONFIG}  ${DETECTION_RESULTS}  ${SAVE_DIR} --show





And you will get a confusion matrix like this:

[image: confusion_matrix_example]




COCO Separated & Occluded Mask Metric

Detecting occluded objects still remains a challenge for state-of-the-art object detectors.
We implemented the metric presented in paper A Tri-Layer Plugin to Improve Occluded Detection [https://arxiv.org/abs/2210.10046] to calculate the recall of separated and occluded masks.

There are two ways to use this metric:


Offline evaluation

We provide a script to calculate the metric with a dumped prediction file.

First, use the tools/test.py script to dump the detection results:

python tools/test.py ${CONFIG} ${MODEL_PATH} --out results.pkl





Then, run the tools/analysis_tools/coco_occluded_separated_recall.py script to get the recall of separated and occluded masks:

python tools/analysis_tools/coco_occluded_separated_recall.py results.pkl --out occluded_separated_recall.json





The output should be like this:

loading annotations into memory...
Done (t=0.51s)
creating index...
index created!
processing detection results...
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 5000/5000, 109.3 task/s, elapsed: 46s, ETA:     0s
computing occluded mask recall...
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 5550/5550, 780.5 task/s, elapsed: 7s, ETA:     0s
COCO occluded mask recall: 58.79%
COCO occluded mask success num: 3263
computing separated mask recall...
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 3522/3522, 778.3 task/s, elapsed: 5s, ETA:     0s
COCO separated mask recall: 31.94%
COCO separated mask success num: 1125

+-----------+--------+-------------+
| mask type | recall | num correct |
+-----------+--------+-------------+
| occluded  | 58.79% | 3263        |
| separated | 31.94% | 1125        |
+-----------+--------+-------------+
Evaluation results have been saved to occluded_separated_recall.json.








Online evaluation

We implement CocoOccludedSeparatedMetric which inherits from the CocoMetic.
To evaluate the recall of separated and occluded masks during training, just replace the evaluator metric type with 'CocoOccludedSeparatedMetric' in your config:

val_evaluator = dict(
    type='CocoOccludedSeparatedMetric',  # modify this
    ann_file=data_root + 'annotations/instances_val2017.json',
    metric=['bbox', 'segm'],
    format_only=False)
test_evaluator = val_evaluator





Please cite the paper if you use this metric:

@article{zhan2022triocc,
    title={A Tri-Layer Plugin to Improve Occluded Detection},
    author={Zhan, Guanqi and Xie, Weidi and Zisserman, Andrew},
    journal={British Machine Vision Conference},
    year={2022}
}











            

          

      

      

    

  

  
    
    
    Useful Hooks
    

    

    

    
 
  

    
      
          
            
  
Useful Hooks

MMDetection and MMEngine provide users with various useful hooks including log hooks, NumClassCheckHook, etc. This tutorial introduces the functionalities and usages of hooks implemented in MMDetection. For using hooks in MMEngine, please read the API documentation in MMEngine [https://github.com/open-mmlab/mmengine/tree/main/docs/en/tutorials/hook.md].


CheckInvalidLossHook




NumClassCheckHook




MemoryProfilerHook

Memory profiler hook [https://github.com/open-mmlab/mmdetection/blob/main/mmdet/engine/hooks/memory_profiler_hook.py] records memory information including virtual memory, swap memory, and the memory of the current process. This hook helps grasp the memory usage of the system and discover potential memory leak bugs. To use this hook, users should install memory_profiler and psutil by pip install memory_profiler psutil first.


Usage

To use this hook, users should add the following code to the config file.

custom_hooks = [
    dict(type='MemoryProfilerHook', interval=50)
]








Result

During training, you can see the messages in the log recorded by MemoryProfilerHook as below.

The system has 250 GB (246360 MB + 9407 MB) of memory and 8 GB (5740 MB + 2452 MB) of swap memory in total. Currently 9407 MB (4.4%) of memory and 5740 MB (29.9%) of swap memory were consumed. And the current training process consumed 5434 MB of memory.





2022-04-21 08:49:56,881 - mmengine - INFO - Memory information available_memory: 246360 MB, used_memory: 9407 MB, memory_utilization: 4.4 %, available_swap_memory: 5740 MB, used_swap_memory: 2452 MB, swap_memory_utilization: 29.9 %, current_process_memory: 5434 MB










SetEpochInfoHook




SyncNormHook




SyncRandomSizeHook




YOLOXLrUpdaterHook




YOLOXModeSwitchHook




How to implement a custom hook

In general, there are 20 points where hooks can be inserted from the beginning to the end of model training. The users can implement custom hooks and insert them at different points in the process of training to do what they want.


	global points: before_run, after_run


	points in training: before_train, before_train_epoch, before_train_iter, after_train_iter, after_train_epoch, after_train


	points in validation: before_val, before_val_epoch, before_val_iter, after_val_iter, after_val_epoch, after_val


	points at testing: before_test, before_test_epoch, before_test_iter, after_test_iter, after_test_epoch,  after_test


	other points: before_save_checkpoint, after_save_checkpoint




For example, users can implement a hook to check loss and terminate training when loss goes NaN. To achieve that, there are three steps to go:


	Implement a new hook that inherits the Hook class in MMEngine, and implement after_train_iter method which checks whether loss goes NaN after every n training iterations.


	The implemented hook should be registered in HOOKS by @HOOKS.register_module() as shown in the code below.


	Add custom_hooks = [dict(type='MemoryProfilerHook', interval=50)] in the config file.




from typing import Optional

import torch
from mmengine.hooks import Hook
from mmengine.runner import Runner

from mmdet.registry import HOOKS


@HOOKS.register_module()
class CheckInvalidLossHook(Hook):
    """Check invalid loss hook.

    This hook will regularly check whether the loss is valid
    during training.

    Args:
        interval (int): Checking interval (every k iterations).
            Default: 50.
    """

    def __init__(self, interval: int = 50) -> None:
        self.interval = interval

    def after_train_iter(self,
                         runner: Runner,
                         batch_idx: int,
                         data_batch: Optional[dict] = None,
                         outputs: Optional[dict] = None) -> None:
        """Regularly check whether the loss is valid every n iterations.

        Args:
            runner (:obj:`Runner`): The runner of the training process.
            batch_idx (int): The index of the current batch in the train loop.
            data_batch (dict, Optional): Data from dataloader.
                Defaults to None.
            outputs (dict, Optional): Outputs from model. Defaults to None.
        """
        if self.every_n_train_iters(runner, self.interval):
            assert torch.isfinite(outputs['loss']), \
                runner.logger.info('loss become infinite or NaN!')





Please read customize_runtime for more about implementing a custom hook.







            

          

      

      

    

  

  
    
    
    Visualization
    

    

    

    
 
  

    
      
          
            
  
Visualization

Before reading this tutorial, it is recommended to read MMEngine’s Visualization [https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/visualization.md] documentation to get a first glimpse of the Visualizer definition and usage.

In brief, the Visualizer is implemented in MMEngine to meet the daily visualization needs, and contains three main functions:


	Implement common drawing APIs, such as draw_bboxes which implements bounding box drawing functions, draw_lines implements the line drawing function.


	Support writing visualization results, learning rate curves, loss function curves, and verification accuracy curves to various backends, including local disks and common deep learning training logging tools such as TensorBoard [https://www.tensorflow.org/tensorboard] and Wandb [https://wandb.ai/site].


	Support calling anywhere in the code to visualize or record intermediate states of the model during training or testing, such as feature maps and validation results.




Based on MMEngine’s Visualizer, MMDet comes with a variety of pre-built visualization tools that can be used by the user by simply modifying the following configuration files.


	The tools/analysis_tools/browse_dataset.py script provides a dataset visualization function that draws images and corresponding annotations after Data Transforms, as described in browse_dataset.py.


	MMEngine implements LoggerHook, which uses Visualizer to write the learning rate, loss and evaluation results to the backend set by Visualizer. Therefore, by modifying the Visualizer backend in the configuration file, for example to  TensorBoardVISBackend or WandbVISBackend, you can implement logging to common training logging tools such as TensorBoard or WandB, thus making it easy for users to use these visualization tools to analyze and monitor the training process.


	The VisualizerHook is implemented in MMDet, which uses the Visualizer to visualize or store the prediction results of the validation or prediction phase into the backend set by the Visualizer, so by modifying the Visualizer backend in the configuration file, for example, to  TensorBoardVISBackend or WandbVISBackend, you can implement storing the predicted images to TensorBoard or Wandb.





Configuration

Thanks to the use of the registration mechanism, in MMDet we can set the behavior of the Visualizer by modifying the configuration file. Usually, we define the default configuration for the visualizer in configs/_base_/default_runtime.py, see configuration tutorial for details.

vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
    type='DetLocalVisualizer',
    vis_backends=vis_backends,
    name='visualizer')





Based on the above example, we can see that the configuration of Visualizer consists of two main parts, namely, the type of Visualizer and the visualization backend vis_backends it uses.


	Users can directly use DetLocalVisualizer to visualize labels or predictions for support tasks.


	MMDet sets the visualization backend vis_backend to the local visualization backend LocalVisBackend by default, saving all visualization results and other training information in a local folder.







Storage

MMDet uses the local visualization backend LocalVisBackend by default, and the model loss, learning rate, model evaluation accuracy and visualization The information stored in VisualizerHook and LoggerHook, including loss, learning rate, evaluation accuracy will be saved to the {work_dir}/{config_name}/{time}/{vis_data} folder by default. In addition, MMDet also supports other common visualization backends, such as TensorboardVisBackend and WandbVisBackend, and you only need to change the vis_backends type in the configuration file to the corresponding visualization backend. For example, you can store data to TensorBoard and Wandb by simply inserting the following code block into the configuration file.

# https://mmengine.readthedocs.io/en/latest/api/visualization.html
_base_.visualizer.vis_backends = [
    dict(type='LocalVisBackend'), #
    dict(type='TensorboardVisBackend'),
    dict(type='WandbVisBackend'),]








Plot


Plot the prediction results

MMDet mainly uses DetVisualizationHook to plot the prediction results of validation and test, by default DetVisualizationHook is off, and the default configuration is as follows.

visualization=dict( # user visualization of validation and test results
    type='DetVisualizationHook',
    draw=False,
    interval=1,
    show=False)





The following table shows the parameters supported by DetVisualizationHook.




	Parameters
	Description





	draw
	The DetVisualizationHook is turned on and off by the enable parameter, which is the default state.



	interval
	Controls how much iteration to store or display the results of a val or test if VisualizationHook is enabled.



	show
	Controls whether to visualize the results of val or test.





If you want to enable DetVisualizationHook related functions and configurations during training or testing, you only need to modify the configuration, take configs/rtmdet/rtmdet_tiny_8xb32-300e_coco.py as an example, draw annotations and predictions at the same time, and display the images, the configuration can be modified as follows

visualization = _base_.default_hooks.visualization
visualization.update(dict(draw=True, show=True))






  
    
    
    Corruption Benchmarking
    

    

    

    
 
  

    
      
          
            
  
Corruption Benchmarking


Introduction

We provide tools to test object detection and instance segmentation models on the image corruption benchmark defined in Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming [https://arxiv.org/abs/1907.07484].
This page provides basic tutorials how to use the benchmark.

@article{michaelis2019winter,
  title={Benchmarking Robustness in Object Detection:
    Autonomous Driving when Winter is Coming},
  author={Michaelis, Claudio and Mitzkus, Benjamin and
    Geirhos, Robert and Rusak, Evgenia and
    Bringmann, Oliver and Ecker, Alexander S. and
    Bethge, Matthias and Brendel, Wieland},
  journal={arXiv:1907.07484},
  year={2019}
}





[image: image corruption example]




About the benchmark

To submit results to the benchmark please visit the benchmark homepage [https://github.com/bethgelab/robust-detection-benchmark]

The benchmark is modelled after the imagenet-c benchmark [https://github.com/hendrycks/robustness] which was originally
published in Benchmarking Neural Network Robustness to Common Corruptions and Perturbations [https://arxiv.org/abs/1903.12261] (ICLR 2019) by Dan Hendrycks and Thomas Dietterich.

The image corruption functions are included in this library but can be installed separately using:

pip install imagecorruptions





Compared to imagenet-c a few changes had to be made to handle images of arbitrary size and greyscale images.
We also modified the ‘motion blur’ and ‘snow’ corruptions to remove dependency from a linux specific library,
which would have to be installed separately otherwise. For details please refer to the imagecorruptions repository [https://github.com/bethgelab/imagecorruptions].




Inference with pretrained models

We provide a testing script to evaluate a models performance on any combination of the corruptions provided in the benchmark.


Test a dataset


	[x] single GPU testing


	[ ] multiple GPU testing


	[ ] visualize detection results




You can use the following commands to test a models performance under the 15 corruptions used in the benchmark.

# single-gpu testing
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}]





Alternatively different group of corruptions can be selected.

# noise
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] --corruptions noise

# blur
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] --corruptions blur

# wetaher
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] --corruptions weather

# digital
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] --corruptions digital





Or a costom set of corruptions e.g.:

# gaussian noise, zoom blur and snow
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --corruptions gaussian_noise zoom_blur snow





Finally the corruption severities to evaluate can be chosen.
Severity 0 corresponds to clean data and the effect increases from 1 to 5.

# severity 1
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --severities 1

# severities 0,2,4
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --severities 0 2 4










Results for modelzoo models

The results on COCO 2017val are shown in the below table.




	Model
	Backbone
	Style
	Lr schd
	box AP clean
	box AP corr.
	box %
	mask AP clean
	mask AP corr.
	mask %





	Faster R-CNN
	R-50-FPN
	pytorch
	1x
	36.3
	18.2
	50.2
	-
	-
	-



	Faster R-CNN
	R-101-FPN
	pytorch
	1x
	38.5
	20.9
	54.2
	-
	-
	-



	Faster R-CNN
	X-101-32x4d-FPN
	pytorch
	1x
	40.1
	22.3
	55.5
	-
	-
	-



	Faster R-CNN
	X-101-64x4d-FPN
	pytorch
	1x
	41.3
	23.4
	56.6
	-
	-
	-



	Faster R-CNN
	R-50-FPN-DCN
	pytorch
	1x
	40.0
	22.4
	56.1
	-
	-
	-



	Faster R-CNN
	X-101-32x4d-FPN-DCN
	pytorch
	1x
	43.4
	26.7
	61.6
	-
	-
	-



	Mask R-CNN
	R-50-FPN
	pytorch
	1x
	37.3
	18.7
	50.1
	34.2
	16.8
	49.1



	Mask R-CNN
	R-50-FPN-DCN
	pytorch
	1x
	41.1
	23.3
	56.7
	37.2
	20.7
	55.7



	Cascade R-CNN
	R-50-FPN
	pytorch
	1x
	40.4
	20.1
	49.7
	-
	-
	-



	Cascade Mask R-CNN
	R-50-FPN
	pytorch
	1x
	41.2
	20.7
	50.2
	35.7
	17.6
	49.3



	RetinaNet
	R-50-FPN
	pytorch
	1x
	35.6
	17.8
	50.1
	-
	-
	-



	Hybrid Task Cascade
	X-101-64x4d-FPN-DCN
	pytorch
	1x
	50.6
	32.7
	64.7
	43.8
	28.1
	64.0





Results may vary slightly due to the stochastic application of the corruptions.







            

          

      

      

    

  

  
    
    
    Model Deployment
    

    

    

    
 
  

    
      
          
            
  
Model Deployment

The deployment of OpenMMLab codebases, including MMDetection, MMPretrain and so on are supported by MMDeploy [https://github.com/open-mmlab/mmdeploy].
The latest deployment guide for MMDetection can be found from here [https://mmdeploy.readthedocs.io/en/dev-1.x/04-supported-codebases/mmdet.html].

This tutorial is organized as follows:


	Installation


	Convert model


	Model specification


	Model inference


	Backend model inference


	SDK model inference






	Supported models





Installation

Please follow the guide [https://mmdetection.readthedocs.io/en/latest/get_started.html] to install mmdet. And then install mmdeploy from source by following this [https://mmdeploy.readthedocs.io/en/1.x/get_started.html#installation] guide.


Note

If you install mmdeploy prebuilt package, please also clone its repository by ‘git clone https://github.com/open-mmlab/mmdeploy.git –depth=1’ to get the deployment config files.






Convert model

Suppose mmdetection and mmdeploy repositories are in the same directory, and the working directory is the root path of mmdetection.

Take Faster R-CNN [https://github.com/open-mmlab/mmdetection/blob/main/configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py] model as an example. You can download its checkpoint from here [https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth], and then convert it to onnx model as follows:

from mmdeploy.apis import torch2onnx
from mmdeploy.backend.sdk.export_info import export2SDK

img = 'demo/demo.jpg'
work_dir = 'mmdeploy_models/mmdet/onnx'
save_file = 'end2end.onnx'
deploy_cfg = '../mmdeploy/configs/mmdet/detection/detection_onnxruntime_dynamic.py'
model_cfg = 'configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py'
model_checkpoint = 'faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
device = 'cpu'

# 1. convert model to onnx
torch2onnx(img, work_dir, save_file, deploy_cfg, model_cfg,
           model_checkpoint, device)

# 2. extract pipeline info for inference by MMDeploy SDK
export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint,
           device=device)





It is crucial to specify the correct deployment config during model conversion. MMDeploy has already provided builtin deployment config files [https://github.com/open-mmlab/mmdeploy/tree/1.x/configs/mmdet] of all supported backends for mmdetection, under which the config file path follows the pattern:

{task}/{task}_{backend}-{precision}_{static | dynamic}_{shape}.py






	{task}: task in mmdetection.

There are two of them. One is detection and the other is instance-seg, indicating instance segmentation.

mmdet models like RetinaNet, Faster R-CNN and DETR and so on belongs to detection task. While Mask R-CNN is one of instance-seg models.

DO REMEMBER TO USE detection/detection_*.py deployment config file when trying to convert detection models and use instance-seg/instance-seg_*.py to deploy instance segmentation models.



	{backend}: inference backend, such as onnxruntime, tensorrt, pplnn, ncnn, openvino, coreml etc.


	{precision}: fp16, int8. When it’s empty, it means fp32


	{static | dynamic}: static shape or dynamic shape


	{shape}: input shape or shape range of a model




Therefore, in the above example, you can also convert Faster R-CNN to tensorrt-fp16 model by detection_tensorrt-fp16_dynamic-320x320-1344x1344.py.


Tip

When converting mmdet models to tensorrt models, –device should be set to “cuda”






Model specification

Before moving on to model inference chapter, let’s know more about the converted model structure which is very important for model inference.

The converted model locates in the working directory like mmdeploy_models/mmdet/onnx in the previous example. It includes:

mmdeploy_models/mmdet/onnx
├── deploy.json
├── detail.json
├── end2end.onnx
└── pipeline.json





in which,


	end2end.onnx: backend model which can be inferred by ONNX Runtime


	xxx.json: the necessary information for mmdeploy SDK




The whole package mmdeploy_models/mmdet/onnx is defined as mmdeploy SDK model, i.e., mmdeploy SDK model includes both backend model and inference meta information.




Model inference


Backend model inference

Take the previous converted end2end.onnx model as an example, you can use the following code to inference the model and visualize the results.

from mmdeploy.apis.utils import build_task_processor
from mmdeploy.utils import get_input_shape, load_config
import torch

deploy_cfg = '../mmdeploy/configs/mmdet/detection/detection_onnxruntime_dynamic.py'
model_cfg = 'configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py'
device = 'cpu'
backend_model = ['mmdeploy_models/mmdet/onnx/end2end.onnx']
image = 'demo/demo.jpg'

# read deploy_cfg and model_cfg
deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg)

# build task and backend model
task_processor = build_task_processor(model_cfg, deploy_cfg, device)
model = task_processor.build_backend_model(backend_model)

# process input image
input_shape = get_input_shape(deploy_cfg)
model_inputs, _ = task_processor.create_input(image, input_shape)

# do model inference
with torch.no_grad():
    result = model.test_step(model_inputs)

# visualize results
task_processor.visualize(
    image=image,
    model=model,
    result=result[0],
    window_name='visualize',
    output_file='output_detection.png')








SDK model inference

You can also perform SDK model inference like following,

from mmdeploy_python import Detector
import cv2

img = cv2.imread('demo/demo.jpg')

# create a detector
detector = Detector(model_path='mmdeploy_models/mmdet/onnx',
                    device_name='cpu', device_id=0)
# perform inference
bboxes, labels, masks = detector(img)

# visualize inference result
indices = [i for i in range(len(bboxes))]
for index, bbox, label_id in zip(indices, bboxes, labels):
    [left, top, right, bottom], score = bbox[0:4].astype(int), bbox[4]
    if score < 0.3:
        continue

    cv2.rectangle(img, (left, top), (right, bottom), (0, 255, 0))

cv2.imwrite('output_detection.png', img)





Besides python API, mmdeploy SDK also provides other FFI (Foreign Function Interface), such as C, C++, C#, Java and so on. You can learn their usage from demos [https://github.com/open-mmlab/mmdeploy/tree/1.x/demo].






Supported models

Please refer to here [https://mmdeploy.readthedocs.io/en/1.x/04-supported-codebases/mmdet.html#supported-models] for the supported model list.







            

          

      

      

    

  

  
    
    
    Semi-automatic Object Detection Annotation with MMDetection and Label-Studio
    

    

    

    
 
  

    
      
          
            
  
Semi-automatic Object Detection Annotation with MMDetection and Label-Studio

Annotation data is a time-consuming and laborious task. This article introduces how to perform semi-automatic annotation using the RTMDet algorithm in MMDetection in conjunction with Label-Studio software. Specifically, using RTMDet to predict image annotations and then refining the annotations with Label-Studio. Community users can refer to this process and methodology and apply it to other fields.


	RTMDet: RTMDet is a high-precision single-stage object detection algorithm developed by OpenMMLab, open-sourced in the MMDetection object detection toolbox. Its open-source license is Apache 2.0, and it can be used freely without restrictions by industrial users.


	Label Studio [https://github.com/heartexlabs/label-studio] is an excellent annotation software covering the functionality of dataset annotation in areas such as image classification, object detection, and segmentation.




In this article, we will use cat [https://download.openmmlab.com/mmyolo/data/cat_dataset.zip] images for semi-automatic annotation.


Environment Configuration

To begin with, you need to create a virtual environment and then install PyTorch and MMCV. In this article, we will specify the versions of PyTorch and MMCV. Next, you can install MMDetection, Label-Studio, and label-studio-ml-backend using the following steps:

Create a virtual environment:

conda create -n rtmdet python=3.9 -y
conda activate rtmdet





Install PyTorch:

# Linux and Windows CPU only
pip install torch==1.10.1+cpu torchvision==0.11.2+cpu torchaudio==0.10.1 -f https://download.pytorch.org/whl/cpu/torch_stable.html
# Linux and Windows CUDA 11.3
pip install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu113/torch_stable.html
# OSX
pip install torch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1





Install MMCV:

pip install -U openmim
mim install "mmcv>=2.0.0"
# Installing mmcv will automatically install mmengine





Install MMDetection:

git clone https://github.com/open-mmlab/mmdetection
cd mmdetection
pip install -v -e .





Install Label-Studio and label-studio-ml-backend:

# Installing Label-Studio may take some time, if the version is not found, please use the official source
pip install label-studio==1.7.2
pip install label-studio-ml==1.0.9





Download the rtmdet weights:

cd path/to/mmetection
mkdir work_dirs
cd work_dirs
wget https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_m_8xb32-300e_coco/rtmdet_m_8xb32-300e_coco_20220719_112220-229f527c.pth








Start the Service

Start the RTMDet backend inference service:

cd path/to/mmetection

label-studio-ml start projects/LabelStudio/backend_template --with \
config_file=configs/rtmdet/rtmdet_m_8xb32-300e_coco.py \
checkpoint_file=./work_dirs/rtmdet_m_8xb32-300e_coco_20220719_112220-229f527c.pth \
device=cpu \
--port 8003
# Set device=cpu to use CPU inference, and replace cpu with cuda:0 to use GPU inference.





[image: ]

The RTMDet backend inference service has now been started. To configure it in the Label-Studio web system, use http://localhost:8003 as the backend inference service.

Now, start the Label-Studio web service:

label-studio start





[image: ]

Open your web browser and go to http://localhost:8080/ to see the Label-Studio interface.

[image: ]

Register a user and then create an RTMDet-Semiautomatic-Label project.

[image: ]

Download the example cat images by running the following command and import them using the Data Import button:

cd path/to/mmetection
mkdir data && cd data

wget https://download.openmmlab.com/mmyolo/data/cat_dataset.zip && unzip cat_dataset.zip





[image: ]

[image: ]

Then, select the Object Detection With Bounding Boxes template.

[image: ]

airplane
apple
backpack
banana
baseball_bat
baseball_glove
bear
bed
bench
bicycle
bird
boat
book
bottle
bowl
broccoli
bus
cake
car
carrot
cat
cell_phone
chair
clock
couch
cow
cup
dining_table
dog
donut
elephant
fire_hydrant
fork
frisbee
giraffe
hair_drier
handbag
horse
hot_dog
keyboard
kite
knife
laptop
microwave
motorcycle
mouse
orange
oven
parking_meter
person
pizza
potted_plant
refrigerator
remote
sandwich
scissors
sheep
sink
skateboard
skis
snowboard
spoon
sports_ball
stop_sign
suitcase
surfboard
teddy_bear
tennis_racket
tie
toaster
toilet
toothbrush
traffic_light
train
truck
tv
umbrella
vase
wine_glass
zebra





Then, copy and add the above categories to Label-Studio and click Save.

[image: ]

In the Settings, click Add Model to add the RTMDet backend inference service.

[image: ]

Click Validate and Save, and then click Start Labeling.

[image: ]

If you see Connected as shown below, the backend inference service has been successfully added.

[image: ]




Start Semi-Automatic Labeling

Click on Label to start labeling.

[image: ]

We can see that the RTMDet backend inference service has successfully returned the predicted results and displayed them on the image. However, we noticed that the predicted bounding boxes for the cats are a bit too large and not very accurate.

[image: ]

We manually adjust the position of the cat bounding box, and then click Submit to complete the annotation of this image.

[image: ]

After submitting all images, click export to export the labeled dataset in COCO format.

[image: ]

Use VS Code to open the unzipped folder to see the labeled dataset, which includes the images and the annotation files in JSON format.

[image: ]

At this point, the semi-automatic labeling is complete. We can use this dataset to train a more accurate model in MMDetection and then continue semi-automatic labeling on newly collected images with this model. This way, we can iteratively expand the high-quality dataset and improve the accuracy of the model.




Use MMYOLO as the Backend Inference Service

If you want to use Label-Studio in MMYOLO, you can refer to replacing the config_file and checkpoint_file with the configuration file and weight file of MMYOLO when starting the backend inference service.

cd path/to/mmetection

label-studio-ml start projects/LabelStudio/backend_template --with \
config_file= path/to/mmyolo_config.py \
checkpoint_file= path/to/mmyolo_weights.pth \
device=cpu \
--port 8003
# device=cpu is for using CPU inference. If using GPU inference, replace cpu with cuda:0.





Rotation object detection and instance segmentation are still under development, please stay tuned.







            

          

      

      

    

  

  
    
    
    MOT Test-time Parameter Search
    

    

    

    
 
  

    
      
          
            
  We provide lots of useful tools under the tools/ directory.


MOT Test-time Parameter Search

tools/analysis_tools/mot/mot_param_search.py can search the parameters of the tracker in MOT models.
It is used as the same manner with tools/test.py but different in the configs.

Here is an example that shows how to modify the configs:


	Define the desirable evaluation metrics to record.

For example, you can define the evaluator as

test_evaluator=dict(type='MOTChallengeMetrics', metric=['HOTA', 'CLEAR', 'Identity'])





Of course, you can also customize the content of metric in test_evaluator. You are free to choose one or more of ['HOTA', 'CLEAR', 'Identity'].



	Define the parameters and the values to search.

Assume you have a tracker like

model=dict(
    tracker=dict(
        type='BaseTracker',
        obj_score_thr=0.5,
        match_iou_thr=0.5
    )
)





If you want to search the parameters of the tracker, just change the value to a list as follow

model=dict(
    tracker=dict(
        type='BaseTracker',
        obj_score_thr=[0.4, 0.5, 0.6],
        match_iou_thr=[0.4, 0.5, 0.6, 0.7]
    )
)





Then the script will test the totally 12 cases and log the results.








MOT Error Visualize

tools/analysis_tools/mot/mot_error_visualize.py can visualize errors for multiple object tracking.
This script needs the result of inference. By Default, the red bounding box denotes false positive, the yellow bounding box denotes the false negative and the blue bounding box denotes ID switch.

python tools/analysis_tools/mot/mot_error_visualize.py \
    ${CONFIG_FILE}\
    --input ${INPUT} \
    --result-dir ${RESULT_DIR} \
    [--output-dir ${OUTPUT}] \
    [--fps ${FPS}] \
    [--show] \
    [--backend ${BACKEND}]





The RESULT_DIR contains the inference results of all videos and the inference result is a txt file.

Optional arguments:


	OUTPUT: Output of the visualized demo. If not specified, the --show is obligate to show the video on the fly.


	FPS: FPS of the output video.


	--show: Whether show the video on the fly.


	BACKEND: The backend to visualize the boxes. Options are cv2 and plt.







Browse dataset

tools/analysis_tools/mot/browse_dataset.py can visualize the training dataset to check whether the dataset configuration is correct.

Examples:

python tools/analysis_tools/browse_dataset.py ${CONFIG_FILE} [--show-interval ${SHOW_INTERVAL}]





Optional arguments:


	SHOW_INTERVAL: The interval of show (s).


	--show: Whether show the images on the fly.








            

          

      

      

    

  

  
    
    
    Learn about Configs
    

    

    

    
 
  

    
      
          
            
  
Learn about Configs

We use python files as our config system. You can find all the provided configs under $MMDetection/configs.

We incorporate modular and inheritance design into our config system,
which is convenient to conduct various experiments.
If you wish to inspect the config file,
you may run python tools/misc/print_config.py /PATH/TO/CONFIG to see the complete config.


A brief description of a complete config

A complete config usually contains the following primary fields:


	model: the basic config of model, which may contain data_preprocessor, modules (e.g., detector, motion),train_cfg, test_cfg, etc.


	train_dataloader: the config of training dataloader, which usually contains batch_size, num_workers, sampler, dataset, etc.


	val_dataloader: the config of validation dataloader, which is similar with train_dataloader.


	test_dataloader: the config of testing dataloader, which is similar with train_dataloader.


	val_evaluator: the config of validation evaluator. For example,type='MOTChallengeMetrics' for MOT task on the MOTChallenge benchmarks.


	test_evaluator: the config of testing evaluator, which is similar with val_evaluator.


	train_cfg: the config of training loop. For example, type='EpochBasedTrainLoop'.


	val_cfg: the config of validation loop. For example, type='VideoValLoop'.


	test_cfg: the config of testing loop. For example, type='VideoTestLoop'.


	default_hooks: the config of default hooks, which may include hooks for timer, logger, param_scheduler, checkpoint, sampler_seed, visualization, etc.


	vis_backends: the config of visualization backends, which uses type='LocalVisBackend' as default.


	visualizer: the config of visualizer.  type='TrackLocalVisualizer' for MOT tasks.


	param_scheduler: the config of parameter scheduler, which usually sets the learning rate scheduler.


	optim_wrapper: the config of optimizer wrapper, which contains optimization-related information, for example optimizer, gradient clipping, etc.


	load_from: load models as a pre-trained model from a given path.


	resume: If True, resume checkpoints from load_from, and the training will be resumed from the epoch when the checkpoint is saved.







Modify config through script arguments

When submitting jobs using tools/train.py or tools/test_tracking.py,
you may specify --cfg-options to in-place modify the config.
We present several examples as follows.
For more details, please refer to MMEngine [https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/config.md].


	Update config keys of dict chains.

The config options can be specified following the order of the dict keys in the original config.
For example, --cfg-options model.detector.backbone.norm_eval=False changes the all BN modules in model backbones to train mode.



	Update keys inside a list of configs.

Some config dicts are composed as a list in your config.
For example, the testing pipeline test_dataloader.dataset.pipeline is normally a list e.g. [dict(type='LoadImageFromFile'), ...].
If you want to change LoadImageFromFile to LoadImageFromWebcam in the pipeline,
you may specify --cfg-options test_dataloader.dataset.pipeline.0.type=LoadImageFromWebcam.



	Update values of list/tuples.

Maybe the value to be updated is a list or a tuple.
For example, you can change the key mean of data_preprocessor by specifying --cfg-options model.data_preprocessor.mean=[0,0,0].
Note that NO white space is allowed inside the specified value.








Config File Structure

There are 3 basic component types under config/_base_, i.e., dataset, model and default_runtime.
Many methods could be easily constructed with one of each like SORT, DeepSORT.
The configs that are composed by components from _base_ are called primitive.

For all configs under the same folder, it is recommended to have only one primitive config.
All other configs should inherit from the primitive config.
In this way, the maximum of inheritance level is 3.

For easy understanding, we recommend contributors to inherit from exiting methods.
For example, if some modification is made base on Faster R-CNN,
user may first inherit the basic Faster R-CNN structure
by specifying _base_ = ../_base_/models/faster-rcnn_r50-dc5.py,
then modify the necessary fields in the config files.

If you are building an entirely new method that does not share the structure with any of the existing methods,
you may create a folder method_name under configs.

Please refer to MMEngine [https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/config.md] for detailed documentation.




Config Name Style

We follow the below style to name config files. Contributors are advised to follow the same style.

{method}_{module}_{train_cfg}_{train_data}_{test_data}






	{method}: method name, like sort.


	{module}: basic modules of the method, like faster-rcnn_r50_fpn.


	{train_cfg}: training config which usually contains batch size, epochs, etc, like 8xb4-80e.


	{train_data}: training data, like mot17halftrain.


	{test_data}: testing data, like test-mot17halfval.







FAQ

Ignore some fields in the base configs

Sometimes, you may set _delete_=True to ignore some of fields in base configs.
You may refer to MMEngine [https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/config.md] for simple illustration.




Tracking Data Structure Introduction


Advantages and new features

In mmdetection tracking task, we employ videos to organize the dataset and use
TrackDataSample to descirbe dataset info.


	Based on video organization, we provide transform UniformRefFrameSample to sample key frames and ref frames and use TransformBroadcaster for for clip training.


	TrackDataSample can be viewd as a wrapper of multiple DetDataSample to some extent. It contains a property video_data_samples which is a list of DetDataSample, each of which corresponds to a single frame. In addition, it’s metainfo includes key_frames_inds and ref_frames_inds to apply clip training way.


	Thanks to video-based data organization, the entire video can be directly tested. This way is more concise and intuitive. We also provide image_based test method, if your GPU mmemory cannot fit the entire video.







TODO


	Some algorithms like StrongSORT, Mask2Former can not support video_based testing. These algorithms pose a challenge to GPU memory. we will optimize this problem in the future.


	Now we do not support joint training of video_based dataset like MOT Challenge Dataset and image_based dataset like Crowdhuman for the algorithm QDTrack. we will optimize this problem in the future.












            

          

      

      

    

  

  
    
    
    Dataset Preparation
    

    

    

    
 
  

    
      
          
            
  
Dataset Preparation

This page provides the instructions for dataset preparation on existing benchmarks, include


	Multiple Object Tracking


	MOT Challenge [https://motchallenge.net/]


	CrowdHuman [https://www.crowdhuman.org/]






	Video Instance Segmentation


	YouTube-VIS [https://youtube-vos.org/dataset/vis/]









1. Download Datasets

Please download the datasets from the official websites. It is recommended to symlink the root of the datasets to $MMDETECTION/data.


1.1 Multiple Object Tracking


	For the training and testing of multi object tracking task, one of the MOT Challenge datasets (e.g. MOT17, MOT20) are needed, CrowdHuman can be served as comlementary dataset.


	For users in China, the following datasets can be downloaded from OpenDataLab [https://opendatalab.com/] with high speed:


	MOT17 [https://opendatalab.com/MOT17/download]


	MOT20 [https://opendatalab.com/MOT20/download]


	CrowdHuman [https://opendatalab.com/CrowdHuman/download]











1.2 Video Instance Segmentation


	For the training and testing of video instance segmetatioon task, only one of YouTube-VIS datasets (e.g. YouTube-VIS 2019, YouTube-VIS 2021) is needed.


	YouTube-VIS 2019 dataset can be download from YouTubeVOS [https://codalab.lisn.upsaclay.fr/competitions/6064]


	YouTube-VIS 2021 dataset can be download from YouTubeVOS [https://codalab.lisn.upsaclay.fr/competitions/7680]







1.3 Data Structure

If your folder structure is different from the following, you may need to change the corresponding paths in config files.

mmdetection
├── mmdet
├── tools
├── configs
├── data
│   ├── coco
│   │   ├── train2017
│   │   ├── val2017
│   │   ├── test2017
│   │   ├── annotations
│   │
|   ├── MOT15/MOT16/MOT17/MOT20
|   |   ├── train
|   |   |   ├── MOT17-02-DPM
|   |   |   |   ├── det
|   │   │   │   ├── gt
|   │   │   │   ├── img1
|   │   │   │   ├── seqinfo.ini
│   │   │   ├── ......
|   |   ├── test
|   |   |   ├── MOT17-01-DPM
|   |   |   |   ├── det
|   │   │   │   ├── img1
|   │   │   │   ├── seqinfo.ini
│   │   │   ├── ......
│   │
│   ├── crowdhuman
│   │   ├── annotation_train.odgt
│   │   ├── annotation_val.odgt
│   │   ├── train
│   │   │   ├── Images
│   │   │   ├── CrowdHuman_train01.zip
│   │   │   ├── CrowdHuman_train02.zip
│   │   │   ├── CrowdHuman_train03.zip
│   │   ├── val
│   │   │   ├── Images
│   │   │   ├── CrowdHuman_val.zip
│   │










2. Convert Annotations

In this case, you need to convert the official annotations to coco style. We provide scripts and the usages are as following:

# MOT17
# The processing of other MOT Challenge dataset is the same as MOT17
python ./tools/dataset_converters/mot2coco.py -i ./data/MOT17/ -o ./data/MOT17/annotations --split-train --convert-det
python ./tools/dataset_converters/mot2reid.py -i ./data/MOT17/ -o ./data/MOT17/reid --val-split 0.2 --vis-threshold 0.3

# CrowdHuman
python ./tools/dataset_converters/crowdhuman2coco.py -i ./data/crowdhuman -o ./data/crowdhuman/annotations

# YouTube-VIS 2019
python ./tools/dataset_converters/youtubevis2coco.py -i ./data/youtube_vis_2019 -o ./data/youtube_vis_2019/annotations --version 2019

# YouTube-VIS 2021
python ./tools/dataset_converters/youtubevis2coco.py -i ./data/youtube_vis_2021 -o ./data/youtube_vis_2021/annotations --version 2021





The folder structure will be as following after your run these scripts:

mmdetection
├── mmtrack
├── tools
├── configs
├── data
│   ├── coco
│   │   ├── train2017
│   │   ├── val2017
│   │   ├── test2017
│   │   ├── annotations
│   │
|   ├── MOT15/MOT16/MOT17/MOT20
|   |   ├── train
|   |   |   ├── MOT17-02-DPM
|   |   |   |   ├── det
|   │   │   │   ├── gt
|   │   │   │   ├── img1
|   │   │   │   ├── seqinfo.ini
│   │   │   ├── ......
|   |   ├── test
|   |   |   ├── MOT17-01-DPM
|   |   |   |   ├── det
|   │   │   │   ├── img1
|   │   │   │   ├── seqinfo.ini
│   │   │   ├── ......
|   |   ├── annotations
|   |   ├── reid
│   │   │   ├── imgs
│   │   │   ├── meta
│   │
│   ├── crowdhuman
│   │   ├── annotation_train.odgt
│   │   ├── annotation_val.odgt
│   │   ├── train
│   │   │   ├── Images
│   │   │   ├── CrowdHuman_train01.zip
│   │   │   ├── CrowdHuman_train02.zip
│   │   │   ├── CrowdHuman_train03.zip
│   │   ├── val
│   │   │   ├── Images
│   │   │   ├── CrowdHuman_val.zip
│   │   ├── annotations
│   │   │   ├── crowdhuman_train.json
│   │   │   ├── crowdhuman_val.json
│   │
│   ├── youtube_vis_2019
│   │   │── train
│   │   │   │── JPEGImages
│   │   │   │── ......
│   │   │── valid
│   │   │   │── JPEGImages
│   │   │   │── ......
│   │   │── test
│   │   │   │── JPEGImages
│   │   │   │── ......
│   │   │── train.json (the official annotation files)
│   │   │── valid.json (the official annotation files)
│   │   │── test.json (the official annotation files)
│   │   │── annotations (the converted annotation file)
│   │
│   ├── youtube_vis_2021
│   │   │── train
│   │   │   │── JPEGImages
│   │   │   │── instances.json (the official annotation files)
│   │   │   │── ......
│   │   │── valid
│   │   │   │── JPEGImages
│   │   │   │── instances.json (the official annotation files)
│   │   │   │── ......
│   │   │── test
│   │   │   │── JPEGImages
│   │   │   │── instances.json (the official annotation files)
│   │   │   │── ......
│   │   │── annotations (the converted annotation file)






The folder of annotations and reid in MOT15/MOT16/MOT17/MOT20

We take MOT17 dataset as examples, the other datasets share similar structure.

There are 8 JSON files in data/MOT17/annotations:

train_cocoformat.json: JSON file containing the annotations information of the training set in MOT17 dataset.

train_detections.pkl: Pickle file containing the public detections of the training set in MOT17 dataset.

test_cocoformat.json: JSON file containing the annotations information of the testing set in MOT17 dataset.

test_detections.pkl: Pickle file containing the public detections of the testing set in MOT17 dataset.

half-train_cocoformat.json, half-train_detections.pkl, half-val_cocoformat.jsonand half-val_detections.pkl share similar meaning with train_cocoformat.json and train_detections.pkl. The half means we split each video in the training set into half. The first half videos are denoted as half-train set, and the second half videos are denoted ashalf-val set.

The structure of data/MOT17/reid is as follows:

reid
├── imgs
│   ├── MOT17-02-FRCNN_000002
│   │   ├── 000000.jpg
│   │   ├── 000001.jpg
│   │   ├── ...
│   ├── MOT17-02-FRCNN_000003
│   │   ├── 000000.jpg
│   │   ├── 000001.jpg
│   │   ├── ...
├── meta
│   ├── train_80.txt
│   ├── val_20.txt





The 80 in train_80.txt means the proportion of the training dataset to the whole ReID dataset is 80%. While the proportion of the validation dataset is 20%.

For training, we provide a annotation list train_80.txt. Each line of the list contains a filename and its corresponding ground-truth labels. The format is as follows:

MOT17-05-FRCNN_000110/000018.jpg 0
MOT17-13-FRCNN_000146/000014.jpg 1
MOT17-05-FRCNN_000088/000004.jpg 2
MOT17-02-FRCNN_000009/000081.jpg 3





MOT17-05-FRCNN_000110 denotes the 110-th person in MOT17-05-FRCNN video.

For validation, The annotation list val_20.txt remains the same as format above.

Images in reid/imgs are cropped from raw images in MOT17/train by the corresponding gt.txt. The value of ground-truth labels should fall in range [0, num_classes - 1].




The folder of annotations in crowdhuman

There are 2 JSON files in data/crowdhuman/annotations:

crowdhuman_train.json:  JSON file containing the annotations information of the training set in CrowdHuman dataset.
crowdhuman_val.json:  JSON file containing the annotations information of the validation set in CrowdHuman dataset.




The folder of annotations in youtube_vis_2019/youtube_vis2021

There are 3 JSON files in data/youtube_vis_2019/annotations or data/youtube_vis_2021/annotations:

youtube_vis_2019_train.json/youtube_vis_2021_train.json: JSON file containing the annotations information of the training set in youtube_vis_2019/youtube_vis2021 dataset.

youtube_vis_2019_valid.json/youtube_vis_2021_valid.json: JSON file containing the annotations information of the validation set in youtube_vis_2019/youtube_vis2021 dataset.

youtube_vis_2019_test.json/youtube_vis_2021_test.json: JSON file containing the annotations information of the testing set in youtube_vis_2019/youtube_vis2021 dataset.









            

          

      

      

    

  

  
    
    
    Inference
    

    

    

    
 
  

    
      
          
            
  
Inference

We provide demo scripts to inference a given video or a folder that contains continuous images. The source codes are available here [https://github.com/open-mmlab/mmdetection/tree/tracking/demo].

Note that if you use a folder as the input, the image names there must be  sortable , which means we can re-order the images according to the numbers contained in the filenames. We now only support reading the images whose filenames end with .jpg, .jpeg and .png.


Inference MOT models

This script can inference an input video / images with a multiple object tracking or video instance segmentation model.

python demo/mot_demo.py \
    ${INPUTS}
    ${CONFIG_FILE} \
    [--checkpoint ${CHECKPOINT_FILE}] \
    [--detector ${DETECTOR_FILE}] \
    [--reid ${REID_FILE}] \
    [--score-thr ${SCORE_THR}] \
    [--device ${DEVICE}] \
    [--out ${OUTPUT}] \
    [--show]





The INPUT and OUTPUT support both mp4 video format and the folder format.

Important: For DeepSORT, SORT, StrongSORT, they need load the weight of the reid and the weight of the detector separately. Therefore, we use --detector and --reid to load weights. Other algorithms such as ByteTrack, OCSORT QDTrack MaskTrackRCNN and Mask2Former use --checkpoint to load weights.

Optional arguments:


	CHECKPOINT_FILE: The checkpoint is optional.


	DETECTOR_FILE: The detector is optional.


	REID_FILE: The reid is optional.


	SCORE_THR: The threshold of score to filter bboxes.


	DEVICE: The device for inference. Options are cpu or cuda:0, etc.


	OUTPUT: Output of the visualized demo. If not specified, the --show is obligate to show the video on the fly.


	--show: Whether show the video on the fly.




Examples of running mot model:

# Example 1: do not specify --checkpoint to use --detector
python demo/mot_demo.py \
    demo/demo_mot.mp4 \
    configs/sort/sort_faster-rcnn_r50_fpn_8xb2-4e_mot17halftrain_test-mot17halfval.py \
    --detector \
    https://download.openmmlab.com/mmtracking/mot/faster_rcnn/faster-rcnn_r50_fpn_4e_mot17-half-64ee2ed4.pth \
    --out mot.mp4

# Example 2: use --checkpoint
python demo/mot_demo.py \
    demo/demo_mot.mp4 \
    configs/qdtrack/qdtrack_faster-rcnn_r50_fpn_8xb2-4e_mot17halftrain_test-mot17halfval.py \
    --checkpoint https://download.openmmlab.com/mmtracking/mot/qdtrack/mot_dataset/qdtrack_faster-rcnn_r50_fpn_4e_mot17_20220315_145635-76f295ef.pth \
    --out mot.mp4











            

          

      

      

    

  

  
    
    
    Learn to train and test
    

    

    

    
 
  

    
      
          
            
  
Learn to train and test


Train

This section will show how to train existing models on supported datasets.
The following training environments are supported:


	CPU


	single GPU


	single node multiple GPUs


	multiple nodes




You can also manage jobs with Slurm.

Important:


	You can change the evaluation interval during training by modifying the train_cfg as
train_cfg = dict(val_interval=10). That means evaluating the model every 10 epochs.


	The default learning rate in all config files is for 8 GPUs.
According to the Linear Scaling Rule [https://arxiv.org/abs/1706.02677],
you need to set the learning rate proportional to the batch size if you use different GPUs or images per GPU,
e.g., lr=0.01 for 8 GPUs * 1 img/gpu and lr=0.04 for 16 GPUs * 2 imgs/gpu.


	During training, log files and checkpoints will be saved to the working directory,
which is specified by CLI argument --work-dir. It uses ./work_dirs/CONFIG_NAME as default.


	If you want the mixed precision training, simply specify CLI argument --amp.





1. Train on CPU

The model is default put on cuda device.
Only if there are no cuda devices, the model will be put on cpu.
So if you want to train the model on CPU, you need to export CUDA_VISIBLE_DEVICES=-1 to disable GPU visibility first.
More details in MMEngine [https://github.com/open-mmlab/mmengine/blob/ca282aee9e402104b644494ca491f73d93a9544f/mmengine/runner/runner.py#L849-L850].

CUDA_VISIBLE_DEVICES=-1 python tools/train.py ${CONFIG_FILE} [optional arguments]





An example of training the MOT model QDTrack on CPU:

CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/qdtrack/qdtrack_faster-rcnn_r50_fpn_8xb2-4e_mot17halftrain_test-mot17halfval.py








2. Train on single GPU

If you want to train the model on single GPU, you can directly use the tools/train.py as follows.

python tools/train.py ${CONFIG_FILE} [optional arguments]





You can use export CUDA_VISIBLE_DEVICES=$GPU_ID to select the GPU.

An example of training the MOT model QDTrack on single GPU:

CUDA_VISIBLE_DEVICES=2 python tools/train.py configs/qdtrack/qdtrack_faster-rcnn_r50_fpn_8xb2-4e_mot17halftrain_test-mot17halfval.py








3. Train on single node multiple GPUs

We provide tools/dist_train.sh to launch training on multiple GPUs.
The basic usage is as follows.

bash ./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]





If you would like to launch multiple jobs on a single machine,
e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs,
you need to specify different ports (29500 by default) for each job to avoid communication conflict.

For example, you can set the port in commands as follows.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh ${CONFIG_FILE} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh ${CONFIG_FILE} 4





An example of training the MOT model QDTrack on single node multiple GPUs:

bash ./tools/dist_train.sh configs/qdtrack/qdtrack_faster-rcnn_r50_fpn_8xb2-4e_mot17halftrain_test-mot17halfval.py 8








4. Train on multiple nodes

If you launch with multiple machines simply connected with ethernet, you can simply run following commands:

On the first machine:

NNODES=2 NODE_RANK=0 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR bash tools/dist_train.sh $CONFIG $GPUS





On the second machine:

NNODES=2 NODE_RANK=1 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR bash tools/dist_train.sh $CONFIG $GPUS





Usually it is slow if you do not have high speed networking like InfiniBand.




5. Train with Slurm

Slurm [https://slurm.schedmd.com/] is a good job scheduling system for computing clusters.
On a cluster managed by Slurm, you can use slurm_train.sh to spawn training jobs.
It supports both single-node and multi-node training.

The basic usage is as follows.

bash ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR} ${GPUS}





An example of training the MOT model QDTrack with Slurm:

PORT=29501 \
GPUS_PER_NODE=8 \
SRUN_ARGS="--quotatype=reserved" \
bash ./tools/slurm_train.sh \
mypartition \
mottrack
configs/qdtrack/qdtrack_faster-rcnn_r50_fpn_8xb2-4e_mot17halftrain_test-mot17halfval.py
./work_dirs/QDTrack \
8










Test

This section will show how to test existing models on supported datasets.
The following testing environments are supported:


	CPU


	single GPU


	single node multiple GPUs


	multiple nodes




You can also manage jobs with Slurm.

Important:


	In MOT, some algorithms like DeepSORT, SORT, StrongSORT need load the weight of the reid and the weight of the detector separately.
Other algorithms such as ByteTrack, OCSORT and QDTrack don’t need. So we provide --checkpoint, --detector and --reid to load weights.


	We provide two ways to evaluate and test models, video_basede test and image_based test. some algorithms like StrongSORT, Mask2former only support
video_based test. if your GPU memory can’t fit the entire video, you can switch test way by set sampler type.
For example:
video_based test: sampler=dict(type='DefaultSampler', shuffle=False, round_up=False)
image_based test: sampler=dict(type='TrackImgSampler')


	You can set the results saving path by modifying the key outfile_prefix in evaluator.
For example, val_evaluator = dict(outfile_prefix='results/sort_mot17').
Otherwise, a temporal file will be created and will be removed after evaluation.


	If you just want the formatted results without evaluation, you can set format_only=True.
For example, test_evaluator = dict(type='MOTChallengeMetric', metric=['HOTA', 'CLEAR', 'Identity'], outfile_prefix='sort_mot17_results', format_only=True)





1. Test on CPU

The model is default put on cuda device.
Only if there are no cuda devices, the model will be put on cpu.
So if you want to test the model on CPU, you need to export CUDA_VISIBLE_DEVICES=-1 to disable GPU visibility first.
More details in MMEngine [https://github.com/open-mmlab/mmengine/blob/ca282aee9e402104b644494ca491f73d93a9544f/mmengine/runner/runner.py#L849-L850].

CUDA_VISIBLE_DEVICES=-1 python tools/test_tracking.py ${CONFIG_FILE} [optional arguments]





An example of testing the MOT model SORT on CPU:

CUDA_VISIBLE_DEVICES=-1 python tools/test_tracking.py configs/sort/sort_faster-rcnn_r50_fpn_8xb2-4e_mot17halftrain_test-mot17halfval.py --detector ${CHECKPOINT_FILE}








2. Test on single GPU

If you want to test the model on single GPU, you can directly use the tools/test_tracking.py as follows.

python tools/test_tracking.py ${CONFIG_FILE} [optional arguments]





You can use export CUDA_VISIBLE_DEVICES=$GPU_ID to select the GPU.

An example of testing the MOT model QDTrack on single GPU:

CUDA_VISIBLE_DEVICES=2 python tools/test_tracking.py configs/qdtrack/qdtrack_faster-rcnn_r50_fpn_8xb2-4e_mot17halftrain_test-mot17halfval.py --detector ${CHECKPOINT_FILE}








3. Test on single node multiple GPUs

We provide tools/dist_test_tracking.sh to launch testing on multiple GPUs.
The basic usage is as follows.

bash ./tools/dist_test_tracking.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]





An example of testing the MOT model DeepSort on single node multiple GPUs:

bash ./tools/dist_test_tracking.sh configs/qdtrack/qdtrack_faster-rcnn_r50_fpn_8xb2-4e_mot17halftrain_test-mot17halfval.py 8 --detector ${CHECKPOINT_FILE} --reid ${CHECKPOINT_FILE}








4. Test on multiple nodes

You can test on multiple nodes, which is similar with “Train on multiple nodes”.




5. Test with Slurm

On a cluster managed by Slurm, you can use slurm_test_tracking.sh to spawn testing jobs.
It supports both single-node and multi-node testing.

The basic usage is as follows.

[GPUS=${GPUS}] bash tools/slurm_test_tracking.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} [optional arguments]





An example of testing the VIS model Mask2former with Slurm:

GPUS=8
bash tools/slurm_test_tracking.sh \
mypartition \
vis \
configs/mask2former_vis/mask2former_r50_8xb2-8e_youtubevis2021.py \
--checkpoint ${CHECKPOINT_FILE}













            

          

      

      

    

  

  
    
    
    Learn about Visualization
    

    

    

    
 
  

    
      
          
            
  
Learn about Visualization


Local Visualization

This section will present how to visualize the detection/tracking results with local visualizer.

If you want to draw prediction results, you can turn this feature on by setting draw=True in TrackVisualizationHook as follows.

default_hooks = dict(visualization=dict(type='TrackVisualizationHook', draw=True))





Specifically, the TrackVisualizationHook has the following arguments:


	draw: whether to draw prediction results. If it is False, it means that no drawing will be done. Defaults to False.


	interval: The interval of visualization. Defaults to 30.


	score_thr: The threshold to visualize the bboxes and masks. Defaults to 0.3.


	show: Whether to display the drawn image. Default to False.


	wait_time: The interval of show (s). Defaults to 0.


	test_out_dir: directory where painted images will be saved in testing process.


	backend_args: Arguments to instantiate a file client. Defaults to None.




In the TrackVisualizationHook, TrackLocalVisualizer will be called to implement visualization for MOT and VIS tasks.
We will present the details below.
You can refer to MMEngine for more details about Visualization [https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/visualization.md] and Hook [https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/hook.md].


Tracking Visualization

We realize the tracking visualization with class TrackLocalVisualizer.
You can call it as follows.

visualizer = dict(type='TrackLocalVisualizer')





It has the following arguments:


	name: Name of the instance. Defaults to ‘visualizer’.


	image: The origin image to draw. The format should be RGB. Defaults to None.


	vis_backends: Visual backend config list. Defaults to None.


	save_dir: Save file dir for all storage backends. If it is None, the backend storage will not save any data.


	line_width: The linewidth of lines. Defaults to 3.


	alpha: The transparency of bboxes or mask. Defaults to 0.8.




Here is a visualization example of DeepSORT:

[image: test_img_89]









            

          

      

      

    

  

  
    
    
    Basic Concepts
    

    

    

    
 
  

    
      
          
            
  
Basic Concepts



	Data Flow

	Structures

	Models

	Datasets

	Data Transforms (Need to update)

	Evaluation

	Engine

	Conventions








Component Customization



	Customize Models

	Customize Losses

	Customize Datasets

	Customize Data Pipelines

	Customize Runtime Settings








How to



	Use backbone network through MMPretrain

	Use Mosaic augmentation

	Unfreeze backbone network after freezing the backbone in the config

	Get the channels of a new backbone

	Use Detectron2 Model in MMDetection









            

          

      

      

    

  

  
    
    
    Data Flow
    

    

    

    
 
  

    
      
          
            
  
Data Flow





            

          

      

      

    

  

  
    
    
    Structures
    

    

    

    
 
  

    
      
          
            
  
Structures





            

          

      

      

    

  

  
    
    
    Models
    

    

    

    
 
  

    
      
          
            
  
Models





            

          

      

      

    

  

  
    
    
    Datasets
    

    

    

    
 
  

    
      
          
            
  
Datasets





            

          

      

      

    

  

  
    
    
    Data Transforms (Need to update)
    

    

    

    
 
  

    
      
          
            
  
Data Transforms (Need to update)


Design of Data transforms pipeline

Following typical conventions, we use Dataset and DataLoader for data loading
with multiple workers. Dataset returns a dict of data items corresponding
the arguments of models’ forward method.

The data transforms pipeline and the dataset is decomposed. Usually a dataset
defines how to process the annotations and a data transforms pipeline defines all the steps to prepare a data dict.
A pipeline consists of a sequence of data transforms. Each operation takes a dict as input and also output a dict for the next transform.

We present a classical pipeline in the following figure. The blue blocks are pipeline operations. With the pipeline going on, each operator can add new keys (marked as green) to the result dict or update the existing keys (marked as orange).
[image: pipeline figure]

Here is a pipeline example for Faster R-CNN.

train_pipeline = [  # Training data processing pipeline
    dict(type='LoadImageFromFile', backend_args=backend_args),  # First pipeline to load images from file path
    dict(
        type='LoadAnnotations',  # Second pipeline to load annotations for current image
        with_bbox=True),  # Whether to use bounding box, True for detection
    dict(
        type='Resize',  # Pipeline that resize the images and their annotations
        scale=(1333, 800),  # The largest scale of image
        keep_ratio=True  # Whether to keep the ratio between height and width
        ),
    dict(
        type='RandomFlip',  # Augmentation pipeline that flip the images and their annotations
        prob=0.5),  # The probability to flip
    dict(type='PackDetInputs')  # Pipeline that formats the annotation data and decides which keys in the data should be packed into data_samples
]
test_pipeline = [  # Testing data processing pipeline
    dict(type='LoadImageFromFile', backend_args=backend_args),  # First pipeline to load images from file path
    dict(type='Resize', scale=(1333, 800), keep_ratio=True),  # Pipeline that resize the images
    dict(
        type='PackDetInputs',  # Pipeline that formats the annotation data and decides which keys in the data should be packed into data_samples
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor'))
]











            

          

      

      

    

  

  
    
    
    Evaluation
    

    

    

    
 
  

    
      
          
            
  
Evaluation





            

          

      

      

    

  

  
    
    
    Engine
    

    

    

    
 
  

    
      
          
            
  
Engine





            

          

      

      

    

  

  
    
    
    Conventions
    

    

    

    
 
  

    
      
          
            
  
Conventions

Please check the following conventions if you would like to modify MMDetection as your own project.


About the order of image shape

In OpenMMLab 2.0, to be consistent with the input argument of OpenCV, the argument about image shape in the data transformation pipeline is always in the (width, height) order. On the contrary, for computation convenience, the order of the field going through the data pipeline and the model is (height, width). Specifically, in the results processed by each data transform pipeline, the fields and their value meaning is as below:


	img_shape: (height, width)


	ori_shape: (height, width)


	pad_shape: (height, width)


	batch_input_shape: (height, width)




As an example, the initialization arguments of Mosaic are as below:

@TRANSFORMS.register_module()
class Mosaic(BaseTransform):
    def __init__(self,
                img_scale: Tuple[int, int] = (640, 640),
                center_ratio_range: Tuple[float, float] = (0.5, 1.5),
                bbox_clip_border: bool = True,
                pad_val: float = 114.0,
                prob: float = 1.0) -> None:
       ...

       # img_scale order should be (width, height)
       self.img_scale = img_scale

    def transform(self, results: dict) -> dict:
        ...

        results['img'] = mosaic_img
        # (height, width)
        results['img_shape'] = mosaic_img.shape[:2]








Loss

In MMDetection, a dict containing losses and metrics will be returned by model(**data).

For example, in bbox head,

class BBoxHead(nn.Module):
    ...
    def loss(self, ...):
        losses = dict()
        # classification loss
        losses['loss_cls'] = self.loss_cls(...)
        # classification accuracy
        losses['acc'] = accuracy(...)
        # bbox regression loss
        losses['loss_bbox'] = self.loss_bbox(...)
        return losses





bbox_head.loss() will be called during model forward.
The returned dict contains 'loss_bbox', 'loss_cls', 'acc' .
Only 'loss_bbox', 'loss_cls' will be used during back propagation,
'acc' will only be used as a metric to monitor training process.

By default, only values whose keys contain 'loss' will be back propagated.
This behavior could be changed by modifying BaseDetector.train_step().




Empty Proposals

In MMDetection, We have added special handling and unit test for empty proposals of two-stage. We need to deal with the empty proposals of the entire batch and single image at the same time. For example, in CascadeRoIHead,

# simple_test method
...
# There is no proposal in the whole batch
if rois.shape[0] == 0:
    bbox_results = [[
        np.zeros((0, 5), dtype=np.float32)
        for _ in range(self.bbox_head[-1].num_classes)
    ]] * num_imgs
    if self.with_mask:
        mask_classes = self.mask_head[-1].num_classes
        segm_results = [[[] for _ in range(mask_classes)]
                        for _ in range(num_imgs)]
        results = list(zip(bbox_results, segm_results))
    else:
        results = bbox_results
    return results
...

# There is no proposal in the single image
for i in range(self.num_stages):
    ...
    if i < self.num_stages - 1:
          for j in range(num_imgs):
                # Handle empty proposal
                if rois[j].shape[0] > 0:
                    bbox_label = cls_score[j][:, :-1].argmax(dim=1)
                    refine_roi = self.bbox_head[i].regress_by_class(
                         rois[j], bbox_label, bbox_pred[j], img_metas[j])
                    refine_roi_list.append(refine_roi)





If you have customized RoIHead, you can refer to the above method to deal with empty proposals.




Coco Panoptic Dataset

In MMDetection, we have supported COCO Panoptic dataset. We clarify a few conventions about the implementation of CocoPanopticDataset here.


	For mmdet<=2.16.0, the range of foreground and background labels in semantic segmentation are different from the default setting of MMDetection. The label 0 stands for VOID label and the category labels start from 1.
Since mmdet=2.17.0, the category labels of semantic segmentation start from 0 and label 255 stands for VOID for consistency with labels of bounding boxes.
To achieve that, the Pad pipeline supports setting the padding value for seg.


	In the evaluation, the panoptic result is a map with the same shape as the original image. Each value in the result map has the format of instance_id * INSTANCE_OFFSET + category_id.










            

          

      

      

    

  

  
    
    
    Customize Models
    

    

    

    
 
  

    
      
          
            
  
Customize Models

We basically categorize model components into 5 types.


	backbone: usually an FCN network to extract feature maps, e.g., ResNet, MobileNet.


	neck: the component between backbones and heads, e.g., FPN, PAFPN.


	head: the component for specific tasks, e.g., bbox prediction and mask prediction.


	roi extractor: the part for extracting RoI features from feature maps, e.g., RoI Align.


	loss: the component in head for calculating losses, e.g., FocalLoss, L1Loss, and GHMLoss.





Develop new components


Add a new backbone

Here we show how to develop new components with an example of MobileNet.


1. Define a new backbone (e.g. MobileNet)

Create a new file mmdet/models/backbones/mobilenet.py.

import torch.nn as nn

from mmdet.registry import MODELS


@MODELS.register_module()
class MobileNet(nn.Module):

    def __init__(self, arg1, arg2):
        pass

    def forward(self, x):  # should return a tuple
        pass








2. Import the module

You can either add the following line to mmdet/models/backbones/__init__.py

from .mobilenet import MobileNet





or alternatively add

custom_imports = dict(
    imports=['mmdet.models.backbones.mobilenet'],
    allow_failed_imports=False)





to the config file to avoid modifying the original code.




3. Use the backbone in your config file

model = dict(
    ...
    backbone=dict(
        type='MobileNet',
        arg1=xxx,
        arg2=xxx),
    ...










Add new necks


1. Define a neck (e.g. PAFPN)

Create a new file mmdet/models/necks/pafpn.py.

import torch.nn as nn

from mmdet.registry import MODELS

@MODELS.register_module()
class PAFPN(nn.Module):

    def __init__(self,
                in_channels,
                out_channels,
                num_outs,
                start_level=0,
                end_level=-1,
                add_extra_convs=False):
        pass

    def forward(self, inputs):
        # implementation is ignored
        pass








2. Import the module

You can either add the following line to mmdet/models/necks/__init__.py,

from .pafpn import PAFPN





or alternatively add

custom_imports = dict(
    imports=['mmdet.models.necks.pafpn'],
    allow_failed_imports=False)





to the config file and avoid modifying the original code.




3. Modify the config file

neck=dict(
    type='PAFPN',
    in_channels=[256, 512, 1024, 2048],
    out_channels=256,
    num_outs=5)










Add new heads

Here we show how to develop a new head with the example of Double Head R-CNN [https://arxiv.org/abs/1904.06493] as the following.

First, add a new bbox head in mmdet/models/roi_heads/bbox_heads/double_bbox_head.py.
Double Head R-CNN implements a new bbox head for object detection.
To implement a bbox head, basically we need to implement three functions of the new module as the following.

from typing import Tuple

import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule, ModuleList
from torch import Tensor

from mmdet.models.backbones.resnet import Bottleneck
from mmdet.registry import MODELS
from mmdet.utils import ConfigType, MultiConfig, OptConfigType, OptMultiConfig
from .bbox_head import BBoxHead

@MODELS.register_module()
class DoubleConvFCBBoxHead(BBoxHead):
    r"""Bbox head used in Double-Head R-CNN

    .. code-block:: none

                                          /-> cls
                      /-> shared convs ->
                                          \-> reg
        roi features
                                          /-> cls
                      \-> shared fc    ->
                                          \-> reg
    """  # noqa: W605

    def __init__(self,
                 num_convs: int = 0,
                 num_fcs: int = 0,
                 conv_out_channels: int = 1024,
                 fc_out_channels: int = 1024,
                 conv_cfg: OptConfigType = None,
                 norm_cfg: ConfigType = dict(type='BN'),
                 init_cfg: MultiConfig = dict(
                     type='Normal',
                     override=[
                         dict(type='Normal', name='fc_cls', std=0.01),
                         dict(type='Normal', name='fc_reg', std=0.001),
                         dict(
                             type='Xavier',
                             name='fc_branch',
                             distribution='uniform')
                     ]),
                 **kwargs) -> None:
        kwargs.setdefault('with_avg_pool', True)
        super().__init__(init_cfg=init_cfg, **kwargs)

    def forward(self, x_cls: Tensor, x_reg: Tensor) -> Tuple[Tensor]:






Second, implement a new RoI Head if it is necessary. We plan to inherit the new DoubleHeadRoIHead from StandardRoIHead. We can find that a StandardRoIHead already implements the following functions.

from typing import List, Optional, Tuple

import torch
from torch import Tensor

from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures import DetDataSample
from mmdet.structures.bbox import bbox2roi
from mmdet.utils import ConfigType, InstanceList
from ..task_modules.samplers import SamplingResult
from ..utils import empty_instances, unpack_gt_instances
from .base_roi_head import BaseRoIHead


@MODELS.register_module()
class StandardRoIHead(BaseRoIHead):
    """Simplest base roi head including one bbox head and one mask head."""

    def init_assigner_sampler(self) -> None:

    def init_bbox_head(self, bbox_roi_extractor: ConfigType,
                       bbox_head: ConfigType) -> None:

    def init_mask_head(self, mask_roi_extractor: ConfigType,
                       mask_head: ConfigType) -> None:

    def forward(self, x: Tuple[Tensor],
                rpn_results_list: InstanceList) -> tuple:

    def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList,
             batch_data_samples: List[DetDataSample]) -> dict:

    def _bbox_forward(self, x: Tuple[Tensor], rois: Tensor) -> dict:

    def bbox_loss(self, x: Tuple[Tensor],
                  sampling_results: List[SamplingResult]) -> dict:

    def mask_loss(self, x: Tuple[Tensor],
                  sampling_results: List[SamplingResult], bbox_feats: Tensor,
                  batch_gt_instances: InstanceList) -> dict:

    def _mask_forward(self,
                      x: Tuple[Tensor],
                      rois: Tensor = None,
                      pos_inds: Optional[Tensor] = None,
                      bbox_feats: Optional[Tensor] = None) -> dict:

    def predict_bbox(self,
                     x: Tuple[Tensor],
                     batch_img_metas: List[dict],
                     rpn_results_list: InstanceList,
                     rcnn_test_cfg: ConfigType,
                     rescale: bool = False) -> InstanceList:

    def predict_mask(self,
                     x: Tuple[Tensor],
                     batch_img_metas: List[dict],
                     results_list: InstanceList,
                     rescale: bool = False) -> InstanceList:






Double Head’s modification is mainly in the bbox_forward logic, and it inherits other logics from the StandardRoIHead. In the mmdet/models/roi_heads/double_roi_head.py, we implement the new RoI Head as the following:

from typing import Tuple

from torch import Tensor

from mmdet.registry import MODELS
from .standard_roi_head import StandardRoIHead


@MODELS.register_module()
class DoubleHeadRoIHead(StandardRoIHead):
    """RoI head for `Double Head RCNN <https://arxiv.org/abs/1904.06493>`_.

    Args:
        reg_roi_scale_factor (float): The scale factor to extend the rois
            used to extract the regression features.
    """

    def __init__(self, reg_roi_scale_factor: float, **kwargs):
        super().__init__(**kwargs)
        self.reg_roi_scale_factor = reg_roi_scale_factor

    def _bbox_forward(self, x: Tuple[Tensor], rois: Tensor) -> dict:
        """Box head forward function used in both training and testing.

        Args:
            x (tuple[Tensor]): List of multi-level img features.
            rois (Tensor): RoIs with the shape (n, 5) where the first
                column indicates batch id of each RoI.

        Returns:
             dict[str, Tensor]: Usually returns a dictionary with keys:

                - `cls_score` (Tensor): Classification scores.
                - `bbox_pred` (Tensor): Box energies / deltas.
                - `bbox_feats` (Tensor): Extract bbox RoI features.
        """
        bbox_cls_feats = self.bbox_roi_extractor(
            x[:self.bbox_roi_extractor.num_inputs], rois)
        bbox_reg_feats = self.bbox_roi_extractor(
            x[:self.bbox_roi_extractor.num_inputs],
            rois,
            roi_scale_factor=self.reg_roi_scale_factor)
        if self.with_shared_head:
            bbox_cls_feats = self.shared_head(bbox_cls_feats)
            bbox_reg_feats = self.shared_head(bbox_reg_feats)
        cls_score, bbox_pred = self.bbox_head(bbox_cls_feats, bbox_reg_feats)

        bbox_results = dict(
            cls_score=cls_score,
            bbox_pred=bbox_pred,
            bbox_feats=bbox_cls_feats)
        return bbox_results





Last, the users need to add the module in
mmdet/models/bbox_heads/__init__.py and mmdet/models/roi_heads/__init__.py thus the corresponding registry could find and load them.

Alternatively, the users can add

custom_imports=dict(
    imports=['mmdet.models.roi_heads.double_roi_head', 'mmdet.models.roi_heads.bbox_heads.double_bbox_head'])





to the config file and achieve the same goal.

The config file of Double Head R-CNN is as the following

_base_ = '../faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py'
model = dict(
    roi_head=dict(
        type='DoubleHeadRoIHead',
        reg_roi_scale_factor=1.3,
        bbox_head=dict(
            _delete_=True,
            type='DoubleConvFCBBoxHead',
            num_convs=4,
            num_fcs=2,
            in_channels=256,
            conv_out_channels=1024,
            fc_out_channels=1024,
            roi_feat_size=7,
            num_classes=80,
            bbox_coder=dict(
                type='DeltaXYWHBBoxCoder',
                target_means=[0., 0., 0., 0.],
                target_stds=[0.1, 0.1, 0.2, 0.2]),
            reg_class_agnostic=False,
            loss_cls=dict(
                type='CrossEntropyLoss', use_sigmoid=False, loss_weight=2.0),
            loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=2.0))))






Since MMDetection 2.0, the config system supports to inherit configs such that the users can focus on the modification.
The Double Head R-CNN mainly uses a new DoubleHeadRoIHead and a new DoubleConvFCBBoxHead , the arguments are set according to the __init__ function of each module.




Add new loss

Assume you want to add a new loss as MyLoss, for bounding box regression.
To add a new loss function, the users need implement it in mmdet/models/losses/my_loss.py.
The decorator weighted_loss enable the loss to be weighted for each element.

import torch
import torch.nn as nn

from mmdet.registry import MODELS
from .utils import weighted_loss

@weighted_loss
def my_loss(pred, target):
    assert pred.size() == target.size() and target.numel() > 0
    loss = torch.abs(pred - target)
    return loss

@MODELS.register_module()
class MyLoss(nn.Module):

    def __init__(self, reduction='mean', loss_weight=1.0):
        super(MyLoss, self).__init__()
        self.reduction = reduction
        self.loss_weight = loss_weight

    def forward(self,
                pred,
                target,
                weight=None,
                avg_factor=None,
                reduction_override=None):
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (
            reduction_override if reduction_override else self.reduction)
        loss_bbox = self.loss_weight * my_loss(
            pred, target, weight, reduction=reduction, avg_factor=avg_factor)
        return loss_bbox





Then the users need to add it in the mmdet/models/losses/__init__.py.

from .my_loss import MyLoss, my_loss






Alternatively, you can add

custom_imports=dict(
    imports=['mmdet.models.losses.my_loss'])





to the config file and achieve the same goal.

To use it, modify the loss_xxx field.
Since MyLoss is for regression, you need to modify the loss_bbox field in the head.

loss_bbox=dict(type='MyLoss', loss_weight=1.0))













            

          

      

      

    

  

  
    
    
    Customize Losses
    

    

    

    
 
  

    
      
          
            
  
Customize Losses

MMDetection provides users with different loss functions. But the default configuration may be not applicable for different datasets or models, so users may want to modify a specific loss to adapt the new situation.

This tutorial first elaborate the computation pipeline of losses, then give some instructions about how to modify each step. The modification can be categorized as tweaking and weighting.


Computation pipeline of a loss

Given the input prediction and target, as well as the weights, a loss function maps the input tensor to the final loss scalar. The mapping can be divided into five steps:


	Set the sampling method to sample positive and negative samples.


	Get element-wise or sample-wise loss by the loss kernel function.


	Weighting the loss with a weight tensor element-wisely.


	Reduce the loss tensor to a scalar.


	Weighting the loss with a scalar.







Set sampling method (step 1)

For some loss functions, sampling strategies are needed to avoid imbalance between positive and negative samples.

For example, when using CrossEntropyLoss in RPN head, we need to set RandomSampler in train_cfg

train_cfg=dict(
    rpn=dict(
        sampler=dict(
            type='RandomSampler',
            num=256,
            pos_fraction=0.5,
            neg_pos_ub=-1,
            add_gt_as_proposals=False))





For some other losses which have positive and negative sample balance mechanism such as Focal Loss, GHMC, and QualityFocalLoss, the sampler is no more necessary.




Tweaking loss

Tweaking a loss is more related with step 2, 4, 5, and most modifications can be specified in the config.
Here we take Focal Loss (FL) as an example.
The following code sniper are the construction method and config of FL respectively, they are actually one to one correspondence.

@LOSSES.register_module()
class FocalLoss(nn.Module):

    def __init__(self,
                 use_sigmoid=True,
                 gamma=2.0,
                 alpha=0.25,
                 reduction='mean',
                 loss_weight=1.0):





loss_cls=dict(
    type='FocalLoss',
    use_sigmoid=True,
    gamma=2.0,
    alpha=0.25,
    loss_weight=1.0)






Tweaking hyper-parameters (step 2)

gamma and beta are two hyper-parameters in the Focal Loss. Say if we want to change the value of gamma to be 1.5 and alpha to be 0.5, then we can specify them in the config as follows:

loss_cls=dict(
    type='FocalLoss',
    use_sigmoid=True,
    gamma=1.5,
    alpha=0.5,
    loss_weight=1.0)








Tweaking the way of reduction (step 3)

The default way of reduction is mean for FL. Say if we want to change the reduction from mean to sum, we can specify it in the config as follows:

loss_cls=dict(
    type='FocalLoss',
    use_sigmoid=True,
    gamma=2.0,
    alpha=0.25,
    loss_weight=1.0,
    reduction='sum')








Tweaking loss weight (step 5)

The loss weight here is a scalar which controls the weight of different losses in multi-task learning, e.g. classification loss and regression loss. Say if we want to change to loss weight of classification loss to be 0.5, we can specify it in the config as follows:

loss_cls=dict(
    type='FocalLoss',
    use_sigmoid=True,
    gamma=2.0,
    alpha=0.25,
    loss_weight=0.5)










Weighting loss (step 3)

Weighting loss means we re-weight the loss element-wisely. To be more specific, we multiply the loss tensor with a weight tensor which has the same shape. As a result, different entries of the loss can be scaled differently, and so called element-wisely.
The loss weight varies across different models and highly context related, but overall there are two kinds of loss weights, label_weights for classification loss and bbox_weights for bbox regression loss. You can find them in the get_target method of the corresponding head. Here we take ATSSHead as an example, which inherit AnchorHead but overwrite its get_targets method which yields different label_weights and bbox_weights.

class ATSSHead(AnchorHead):

    ...

    def get_targets(self,
                    anchor_list,
                    valid_flag_list,
                    gt_bboxes_list,
                    img_metas,
                    gt_bboxes_ignore_list=None,
                    gt_labels_list=None,
                    label_channels=1,
                    unmap_outputs=True):











            

          

      

      

    

  

  
    
    
    Customize Datasets
    

    

    

    
 
  

    
      
          
            
  
Customize Datasets


Support new data format

To support a new data format, you can either convert them to existing formats (COCO format or PASCAL format) or directly convert them to the middle format. You could also choose to convert them offline (before training by a script) or online (implement a new dataset and do the conversion at training). In MMDetection, we recommend to convert the data into COCO formats and do the conversion offline, thus you only need to modify the config’s data annotation paths and classes after the conversion of your data.


Reorganize new data formats to existing format

The simplest way is to convert your dataset to existing dataset formats (COCO or PASCAL VOC).

The annotation JSON files in COCO format has the following necessary keys:

'images': [
    {
        'file_name': 'COCO_val2014_000000001268.jpg',
        'height': 427,
        'width': 640,
        'id': 1268
    },
    ...
],

'annotations': [
    {
        'segmentation': [[192.81,
            247.09,
            ...
            219.03,
            249.06]],  # If you have mask labels, and it is in polygon XY point coordinate format, you need to ensure that at least 3 point coordinates are included. Otherwise, it is an invalid polygon.
        'area': 1035.749,
        'iscrowd': 0,
        'image_id': 1268,
        'bbox': [192.81, 224.8, 74.73, 33.43],
        'category_id': 16,
        'id': 42986
    },
    ...
],

'categories': [
    {'id': 0, 'name': 'car'},
 ]





There are three necessary keys in the JSON file:


	images: contains a list of images with their information like file_name, height, width, and id.


	annotations: contains the list of instance annotations.


	categories: contains the list of categories names and their ID.




After the data pre-processing, there are two steps for users to train the customized new dataset with existing format (e.g. COCO format):


	Modify the config file for using the customized dataset.


	Check the annotations of the customized dataset.




Here we give an example to show the above two steps, which uses a customized dataset of 5 classes with COCO format to train an existing Cascade Mask R-CNN R50-FPN detector.


1. Modify the config file for using the customized dataset

There are two aspects involved in the modification of config file:


	The data field. Specifically, you need to explicitly add the metainfo=dict(classes=classes) fields in train_dataloader.dataset, val_dataloader.dataset and test_dataloader.dataset and classes must be a tuple type.


	The num_classes field in the model part. Explicitly over-write all the num_classes from default value (e.g. 80 in COCO) to your classes number.




In configs/my_custom_config.py:


# the new config inherits the base configs to highlight the necessary modification
_base_ = './cascade_mask_rcnn_r50_fpn_1x_coco.py'

# 1. dataset settings
dataset_type = 'CocoDataset'
classes = ('a', 'b', 'c', 'd', 'e')
data_root='path/to/your/'

train_dataloader = dict(
    batch_size=2,
    num_workers=2,
    dataset=dict(
        type=dataset_type,
        # explicitly add your class names to the field `metainfo`
        metainfo=dict(classes=classes),
        data_root=data_root,
        ann_file='train/annotation_data',
        data_prefix=dict(img='train/image_data')
        )
    )

val_dataloader = dict(
    batch_size=1,
    num_workers=2,
    dataset=dict(
        type=dataset_type,
        test_mode=True,
        # explicitly add your class names to the field `metainfo`
        metainfo=dict(classes=classes),
        data_root=data_root,
        ann_file='val/annotation_data',
        data_prefix=dict(img='val/image_data')
        )
    )

test_dataloader = dict(
    batch_size=1,
    num_workers=2,
    dataset=dict(
        type=dataset_type,
        test_mode=True,
        # explicitly add your class names to the field `metainfo`
        metainfo=dict(classes=classes),
        data_root=data_root,
        ann_file='test/annotation_data',
        data_prefix=dict(img='test/image_data')
        )
    )

# 2. model settings

# explicitly over-write all the `num_classes` field from default 80 to 5.
model = dict(
    roi_head=dict(
        bbox_head=[
            dict(
                type='Shared2FCBBoxHead',
                # explicitly over-write all the `num_classes` field from default 80 to 5.
                num_classes=5),
            dict(
                type='Shared2FCBBoxHead',
                # explicitly over-write all the `num_classes` field from default 80 to 5.
                num_classes=5),
            dict(
                type='Shared2FCBBoxHead',
                # explicitly over-write all the `num_classes` field from default 80 to 5.
                num_classes=5)],
    # explicitly over-write all the `num_classes` field from default 80 to 5.
    mask_head=dict(num_classes=5)))








2. Check the annotations of the customized dataset

Assuming your customized dataset is COCO format, make sure you have the correct annotations in the customized dataset:


	The length for categories field in annotations should exactly equal the tuple length of classes fields in your config, meaning the number of classes (e.g. 5 in this example).


	The classes fields in your config file should have exactly the same elements and the same order with the name in categories of annotations. MMDetection automatically maps the uncontinuous id in categories to the continuous label indices, so the string order of name in categories field affects the order of label indices. Meanwhile, the string order of classes in config affects the label text during visualization of predicted bounding boxes.


	The category_id in annotations field should be valid, i.e., all values in category_id should belong to id in categories.




Here is a valid example of annotations:


'annotations': [
    {
        'segmentation': [[192.81,
            247.09,
            ...
            219.03,
            249.06]],  # if you have mask labels
        'area': 1035.749,
        'iscrowd': 0,
        'image_id': 1268,
        'bbox': [192.81, 224.8, 74.73, 33.43],
        'category_id': 16,
        'id': 42986
    },
    ...
],

# MMDetection automatically maps the uncontinuous `id` to the continuous label indices.
'categories': [
    {'id': 1, 'name': 'a'}, {'id': 3, 'name': 'b'}, {'id': 4, 'name': 'c'}, {'id': 16, 'name': 'd'}, {'id': 17, 'name': 'e'},
 ]





We use this way to support CityScapes dataset. The script is in cityscapes.py and we also provide the finetuning configs.

Note


	For instance segmentation datasets, MMDetection only supports evaluating mask AP of dataset in COCO format for now.


	It is recommended to convert the data offline before training, thus you can still use CocoDataset and only need to modify the path of annotations and the training classes.









Reorganize new data format to middle format

It is also fine if you do not want to convert the annotation format to COCO or PASCAL format.
Actually, we define a simple annotation format in MMEninge’s BaseDataset [https://github.com/open-mmlab/mmengine/blob/main/mmengine/dataset/base_dataset.py#L116] and all existing datasets are
processed to be compatible with it, either online or offline.

The annotation of the dataset must be in json or yaml, yml or pickle, pkl format; the dictionary stored in the annotation file must contain two fields metainfo and data_list.  The metainfo is a dictionary, which contains the metadata of the dataset, such as class information; data_list is a list, each element in the list is a dictionary, the dictionary defines the raw data of one image, and each raw data contains a or several training/testing samples.

Here is an example.

{
    'metainfo':
        {
            'classes': ('person', 'bicycle', 'car', 'motorcycle'),
            ...
        },
    'data_list':
        [
            {
                "img_path": "xxx/xxx_1.jpg",
                "height": 604,
                "width": 640,
                "instances":
                [
                  {
                    "bbox": [0, 0, 10, 20],
                    "bbox_label": 1,
                    "ignore_flag": 0
                  },
                  {
                    "bbox": [10, 10, 110, 120],
                    "bbox_label": 2,
                    "ignore_flag": 0
                  }
                ]
              },
            {
                "img_path": "xxx/xxx_2.jpg",
                "height": 320,
                "width": 460,
                "instances":
                [
                  {
                    "bbox": [10, 0, 20, 20],
                    "bbox_label": 3,
                    "ignore_flag": 1,
                  }
                ]
              },
            ...
        ]
}





Some datasets may provide annotations like crowd/difficult/ignored bboxes, we use ignore_flagto cover them.

After obtaining the above standard data annotation format, you can directly use BaseDetDataset of MMDetection in the configuration , without conversion.




An example of customized dataset

Assume the annotation is in a new format in text files.
The bounding boxes annotations are stored in text file annotation.txt as the following

#
000001.jpg
1280 720
2
10 20 40 60 1
20 40 50 60 2
#
000002.jpg
1280 720
3
50 20 40 60 2
20 40 30 45 2
30 40 50 60 3





We can create a new dataset in mmdet/datasets/my_dataset.py to load the data.

import mmengine

from mmdet.base_det_dataset import BaseDetDataset
from mmdet.registry import DATASETS


@DATASETS.register_module()
class MyDataset(BaseDetDataset):

    METAINFO = {
       'classes': ('person', 'bicycle', 'car', 'motorcycle'),
        'palette': [(220, 20, 60), (119, 11, 32), (0, 0, 142), (0, 0, 230)]
    }

    def load_data_list(self, ann_file):
        ann_list = mmengine.list_from_file(ann_file)

        data_infos = []
        for i, ann_line in enumerate(ann_list):
            if ann_line != '#':
                continue

            img_shape = ann_list[i + 2].split(' ')
            width = int(img_shape[0])
            height = int(img_shape[1])
            bbox_number = int(ann_list[i + 3])

            instances = []
            for anns in ann_list[i + 4:i + 4 + bbox_number]:
                instance = {}
                instance['bbox'] = [float(ann) for ann in anns.split(' ')[:4]]
                instance['bbox_label']=int(anns[4])
 				instances.append(instance)

            data_infos.append(
                dict(
                    img_path=ann_list[i + 1],
                    img_id=i,
                    width=width,
                    height=height,
                    instances=instances
                ))

        return data_infos





Then in the config, to use MyDataset you can modify the config as the following

dataset_A_train = dict(
    type='MyDataset',
    ann_file = 'image_list.txt',
    pipeline=train_pipeline
)










Customize datasets by dataset wrappers

MMEngine also supports many dataset wrappers to mix the dataset or modify the dataset distribution for training.
Currently it supports to three dataset wrappers as below:


	RepeatDataset: simply repeat the whole dataset.


	ClassBalancedDataset: repeat dataset in a class balanced manner.


	ConcatDataset: concat datasets.




For detailed usage, see MMEngine Dataset Wrapper.




Modify Dataset Classes

With existing dataset types, we can modify the metainfo of them to train subset of the annotations.
For example, if you want to train only three classes of the current dataset,
you can modify the classes of dataset.
The dataset will filter out the ground truth boxes of other classes automatically.

classes = ('person', 'bicycle', 'car')
train_dataloader = dict(
    dataset=dict(
        metainfo=dict(classes=classes))
    )
val_dataloader = dict(
    dataset=dict(
        metainfo=dict(classes=classes))
    )
test_dataloader = dict(
    dataset=dict(
        metainfo=dict(classes=classes))
    )





Note:


	Before MMDetection v2.5.0, the dataset will filter out the empty GT images automatically if the classes are set and there is no way to disable that through config. This is an undesirable behavior and introduces confusion because if the classes are not set, the dataset only filter the empty GT images when filter_empty_gt=True and test_mode=False. After MMDetection v2.5.0, we decouple the image filtering process and the classes modification, i.e., the dataset will only filter empty GT images when filter_cfg=dict(filter_empty_gt=True) and test_mode=False, no matter whether the classes are set. Thus, setting the classes only influences the annotations of classes used for training and users could decide whether to filter empty GT images by themselves.


	When directly using BaseDataset in MMEngine or BaseDetDataset in MMDetection, users cannot filter images without GT by modifying the configuration, but it can be solved in an offline way.


	Please remember to modify the num_classes in the head when specifying classes in dataset. We implemented NumClassCheckHook to check whether the numbers are consistent since v2.9.0(after PR#4508).







COCO Panoptic Dataset

Now we support COCO Panoptic Dataset, the format of panoptic annotations is different from COCO format.
Both the foreground and the background will exist in the annotation file.
The annotation json files in COCO Panoptic format has the following necessary keys:

'images': [
    {
        'file_name': '000000001268.jpg',
        'height': 427,
        'width': 640,
        'id': 1268
    },
    ...
]

'annotations': [
    {
        'filename': '000000001268.jpg',
        'image_id': 1268,
        'segments_info': [
            {
                'id':8345037,  # One-to-one correspondence with the id in the annotation map.
                'category_id': 51,
                'iscrowd': 0,
                'bbox': (x1, y1, w, h),  # The bbox of the background is the outer rectangle of its mask.
                'area': 24315
            },
            ...
        ]
    },
    ...
]

'categories': [  # including both foreground categories and background categories
    {'id': 0, 'name': 'person'},
    ...
 ]





Moreover, the seg must be set to the path of the panoptic annotation images.

dataset_type = 'CocoPanopticDataset'
data_root='path/to/your/'

train_dataloader = dict(
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        data_prefix=dict(
            img='train/image_data/', seg='train/panoptic/image_annotation_data/')
    )
)
val_dataloader = dict(
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        data_prefix=dict(
            img='val/image_data/', seg='val/panoptic/image_annotation_data/')
    )
)
test_dataloader = dict(
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        data_prefix=dict(
            img='test/image_data/', seg='test/panoptic/image_annotation_data/')
    )
)











            

          

      

      

    

  

  
    
    
    Customize Data Pipelines
    

    

    

    
 
  

    
      
          
            
  
Customize Data Pipelines


	Write a new transform in a file, e.g., in my_pipeline.py. It takes a dict as input and returns a dict.

import random
from mmcv.transforms import BaseTransform
from mmdet.registry import TRANSFORMS


@TRANSFORMS.register_module()
class MyTransform(BaseTransform):
    """Add your transform

    Args:
        p (float): Probability of shifts. Default 0.5.
    """

    def __init__(self, prob=0.5):
        self.prob = prob

    def transform(self, results):
        if random.random() > self.prob:
            results['dummy'] = True
        return results







	Import and use the pipeline in your config file.
Make sure the import is relative to where your train script is located.

custom_imports = dict(imports=['path.to.my_pipeline'], allow_failed_imports=False)

train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', scale=(1333, 800), keep_ratio=True),
    dict(type='RandomFlip', prob=0.5),
    dict(type='MyTransform', prob=0.2),
    dict(type='PackDetInputs')
]







	Visualize the output of your transforms pipeline

To visualize the output of your transforms pipeline, tools/misc/browse_dataset.py
can help the user to browse a detection dataset (both images and bounding box annotations)
visually, or save the image to a designated directory. More details can refer to
visualization documentation









            

          

      

      

    

  

  
    
    
    Customize Runtime Settings
    

    

    

    
 
  

    
      
          
            
  
Customize Runtime Settings


Customize optimization settings

Optimization related configuration is now all managed by optim_wrapper which usually has three fields: optimizer, paramwise_cfg, clip_grad, refer to OptimWrapper [https://mmengine.readthedocs.io/en/latest/tutorials/optim_wrapper.md] for more detail. See the example below, where Adamw is used as an optimizer, the learning rate of the backbone is reduced by a factor of 10, and gradient clipping is added.

optim_wrapper = dict(
    type='OptimWrapper',
    # optimizer
    optimizer=dict(
        type='AdamW',
        lr=0.0001,
        weight_decay=0.05,
        eps=1e-8,
        betas=(0.9, 0.999)),

    # Parameter-level learning rate and weight decay settings
    paramwise_cfg=dict(
        custom_keys={
            'backbone': dict(lr_mult=0.1, decay_mult=1.0),
        },
        norm_decay_mult=0.0),

    # gradient clipping
    clip_grad=dict(max_norm=0.01, norm_type=2))






Customize optimizer supported by Pytorch

We already support to use all the optimizers implemented by PyTorch, and the only modification is to change the optimizer field in optim_wrapper field of config files. For example, if you want to use ADAM (note that the performance could drop a lot), the modification could be as the following.

optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(type='Adam', lr=0.0003, weight_decay=0.0001))





To modify the learning rate of the model, the users only need to modify the lr in optimizer. The users can directly set arguments following the API doc [https://pytorch.org/docs/stable/optim.html?highlight=optim#module-torch.optim] of PyTorch.




Customize self-implemented optimizer


1. Define a new optimizer

A customized optimizer could be defined as following.

Assume you want to add a optimizer named MyOptimizer, which has arguments a, b, and c.
You need to create a new directory named mmdet/engine/optimizers. And then implement the new optimizer in a file, e.g., in mmdet/engine/optimizers/my_optimizer.py:

from mmdet.registry import OPTIMIZERS
from torch.optim import Optimizer


@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):

    def __init__(self, a, b, c)









2. Add the optimizer to registry

To find the above module defined above, this module should be imported into the main namespace at first. There are two options to achieve it.


	Modify mmdet/engine/optimizers/__init__.py to import it.

The newly defined module should be imported in mmdet/engine/optimizers/__init__.py so that the registry will find the new module and add it:





from .my_optimizer import MyOptimizer






	Use custom_imports in the config to manually import it




custom_imports = dict(imports=['mmdet.engine.optimizers.my_optimizer'], allow_failed_imports=False)





The module mmdet.engine.optimizers.my_optimizer will be imported at the beginning of the program and the class MyOptimizer is then automatically registered.
Note that only the package containing the class MyOptimizer should be imported.
mmdet.engine.optimizers.my_optimizer.MyOptimizer cannot be imported directly.

Actually users can use a totally different file directory structure using this importing method, as long as the module root can be located in PYTHONPATH.




3. Specify the optimizer in the config file

Then you can use MyOptimizer in optimizer field in optim_wrapper field of config files. In the configs, the optimizers are defined by the field optimizer like the following:

optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))





To use your own optimizer, the field can be changed to

optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(type='MyOptimizer', a=a_value, b=b_value, c=c_value))










Customize optimizer wrapper constructor

Some models may have some parameter-specific settings for optimization, e.g. weight decay for BatchNorm layers.
The users can do those fine-grained parameter tuning through customizing optimizer wrapper constructor.

from mmengine.optim import DefaultOptiWrapperConstructor

from mmdet.registry import OPTIM_WRAPPER_CONSTRUCTORS
from .my_optimizer import MyOptimizer


@OPTIM_WRAPPER_CONSTRUCTORS.register_module()
class MyOptimizerWrapperConstructor(DefaultOptimWrapperConstructor):

    def __init__(self,
                 optim_wrapper_cfg: dict,
                 paramwise_cfg: Optional[dict] = None):

    def __call__(self, model: nn.Module) -> OptimWrapper:

        return optim_wrapper






The default optimizer wrapper constructor is implemented here [https://github.com/open-mmlab/mmengine/blob/main/mmengine/optim/optimizer/default_constructor.py#L18], which could also serve as a template for the new optimizer wrapper constructor.




Additional settings

Tricks not implemented by the optimizer should be implemented through optimizer wrapper constructor (e.g., set parameter-wise learning rates) or hooks. We list some common settings that could stabilize the training or accelerate the training. Feel free to create PR, issue for more settings.


	Use gradient clip to stabilize training:
Some models need gradient clip to clip the gradients to stabilize the training process. An example is as below:

optim_wrapper = dict(
    _delete_=True, clip_grad=dict(max_norm=35, norm_type=2))





If your config inherits the base config which already sets the optim_wrapper, you might need _delete_=True to override the unnecessary settings. See the config documentation for more details.



	Use momentum schedule to accelerate model convergence:
We support momentum scheduler to modify model’s momentum according to learning rate, which could make the model converge in a faster way.
Momentum scheduler is usually used with LR scheduler, for example, the following config is used in 3D detection [https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/configs/_base_/schedules/cyclic-20e.py] to accelerate convergence.
For more details, please refer to the implementation of CosineAnnealingLR [https://github.com/open-mmlab/mmengine/blob/main/mmengine/optim/scheduler/lr_scheduler.py#L43] and CosineAnnealingMomentum [https://github.com/open-mmlab/mmengine/blob/main/mmengine/optim/scheduler/momentum_scheduler.py#L71].

param_scheduler = [
    # learning rate scheduler
    # During the first 8 epochs, learning rate increases from 0 to lr * 10
    # during the next 12 epochs, learning rate decreases from lr * 10 to lr * 1e-4
    dict(
        type='CosineAnnealingLR',
        T_max=8,
        eta_min=lr * 10,
        begin=0,
        end=8,
        by_epoch=True,
        convert_to_iter_based=True),
    dict(
        type='CosineAnnealingLR',
        T_max=12,
        eta_min=lr * 1e-4,
        begin=8,
        end=20,
        by_epoch=True,
        convert_to_iter_based=True),
    # momentum scheduler
    # During the first 8 epochs, momentum increases from 0 to 0.85 / 0.95
    # during the next 12 epochs, momentum increases from 0.85 / 0.95 to 1
    dict(
        type='CosineAnnealingMomentum',
        T_max=8,
        eta_min=0.85 / 0.95,
        begin=0,
        end=8,
        by_epoch=True,
        convert_to_iter_based=True),
    dict(
        type='CosineAnnealingMomentum',
        T_max=12,
        eta_min=1,
        begin=8,
        end=20,
        by_epoch=True,
        convert_to_iter_based=True)
]














Customize training schedules

By default we use step learning rate with 1x schedule, this calls MultiStepLR [https://github.com/open-mmlab/mmengine/blob/main/mmengine/optim/scheduler/lr_scheduler.py#L139] in MMEngine.
We support many other learning rate schedule here [https://github.com/open-mmlab/mmengine/blob/main/mmengine/optim/scheduler/lr_scheduler.py], such as CosineAnnealingLR and PolyLR schedule. Here are some examples


	Poly schedule:

param_scheduler = [
    dict(
        type='PolyLR',
        power=0.9,
        eta_min=1e-4,
        begin=0,
        end=8,
        by_epoch=True)]







	ConsineAnnealing schedule:

param_scheduler = [
    dict(
        type='CosineAnnealingLR',
        T_max=8,
        eta_min=lr * 1e-5,
        begin=0,
        end=8,
        by_epoch=True)]













Customize train loop

By default, EpochBasedTrainLoop is used in train_cfg and validation is done after every train epoch, as follows.

train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_begin=1, val_interval=1)





Actually, both IterBasedTrainLoop [https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/loops.py#L183%5D] and EpochBasedTrainLoop [https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/loops.py#L18] support dynamical interval, see the following example.

# Before 365001th iteration, we do evaluation every 5000 iterations.
# After 365000th iteration, we do evaluation every 368750 iterations,
# which means that we do evaluation at the end of training.

interval = 5000
max_iters = 368750
dynamic_intervals = [(max_iters // interval * interval + 1, max_iters)]
train_cfg = dict(
    type='IterBasedTrainLoop',
    max_iters=max_iters,
    val_interval=interval,
    dynamic_intervals=dynamic_intervals)








Customize hooks


Customize self-implemented hooks


1. Implement a new hook

MMEngine provides many useful hooks [https://mmengine.readthedocs.io/en/latest/tutorials/hooks.html], but there are some occasions when the users might need to implement a new hook. MMDetection supports customized hooks in training in v3.0 . Thus the users could implement a hook directly in mmdet or their mmdet-based codebases and use the hook by only modifying the config in training.
Here we give an example of creating a new hook in mmdet and using it in training.

from mmengine.hooks import Hook
from mmdet.registry import HOOKS


@HOOKS.register_module()
class MyHook(Hook):

    def __init__(self, a, b):

    def before_run(self, runner) -> None:

    def after_run(self, runner) -> None:

    def before_train(self, runner) -> None:

    def after_train(self, runner) -> None:

    def before_train_epoch(self, runner) -> None:

    def after_train_epoch(self, runner) -> None:

    def before_train_iter(self,
                          runner,
                          batch_idx: int,
                          data_batch: DATA_BATCH = None) -> None:

    def after_train_iter(self,
                         runner,
                         batch_idx: int,
                         data_batch: DATA_BATCH = None,
                         outputs: Optional[dict] = None) -> None:





Depending on the functionality of the hook, the users need to specify what the hook will do at each stage of the training in before_run, after_run, before_train, after_train , before_train_epoch, after_train_epoch, before_train_iter, and after_train_iter.  There are more points where hooks can be inserted, refer to base hook class [https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/hook.py#L9] for more detail.




2. Register the new hook

Then we need to make MyHook imported. Assuming the file is in mmdet/engine/hooks/my_hook.py there are two ways to do that:


	Modify mmdet/engine/hooks/__init__.py to import it.

The newly defined module should be imported in mmdet/engine/hooks/__init__.py so that the registry will find the new module and add it:





from .my_hook import MyHook






	Use custom_imports in the config to manually import it




custom_imports = dict(imports=['mmdet.engine.hooks.my_hook'], allow_failed_imports=False)








3. Modify the config

custom_hooks = [
    dict(type='MyHook', a=a_value, b=b_value)
]





You can also set the priority of the hook by adding key priority to 'NORMAL' or 'HIGHEST' as below

custom_hooks = [
    dict(type='MyHook', a=a_value, b=b_value, priority='NORMAL')
]





By default the hook’s priority is set as NORMAL during registration.






Use hooks implemented in MMDetection

If the hook is already implemented in MMDectection, you can directly modify the config to use the hook as below


Example: NumClassCheckHook

We implement a customized hook named NumClassCheckHook to check whether the num_classes in head matches the length of classes in the metainfo of dataset.

We set it in default_runtime.py.

custom_hooks = [dict(type='NumClassCheckHook')]










Modify default runtime hooks

There are some common hooks that are registered through default_hooks, they are


	IterTimerHook: A hook that logs ‘data_time’ for loading data and ‘time’ for a model train step.


	LoggerHook: A hook that Collect logs from different components of Runner and write them to terminal, JSON file, tensorboard and wandb .etc.


	ParamSchedulerHook: A hook to update some hyper-parameters in optimizer, e.g., learning rate and momentum.


	CheckpointHook: A hook that saves checkpoints periodically.


	DistSamplerSeedHook: A hook that sets the seed for sampler and batch_sampler.


	DetVisualizationHook: A hook used to visualize validation and testing process prediction results.




IterTimerHook, ParamSchedulerHook and DistSamplerSeedHook are simple and no need to be modified usually, so here we reveals how what we can do with LoggerHook, CheckpointHook and DetVisualizationHook.


CheckpointHook

Except saving checkpoints periodically, CheckpointHook [https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/checkpoint_hook.py#L19] provides other options such as max_keep_ckpts, save_optimizer and etc. The users could set max_keep_ckpts to only save small number of checkpoints or decide whether to store state dict of optimizer by save_optimizer. More details of the arguments are here [https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/checkpoint_hook.py#L19]

default_hooks = dict(
    checkpoint=dict(
        type='CheckpointHook',
        interval=1,
        max_keep_ckpts=3,
        save_optimizer=True))








LoggerHook

The LoggerHook enables to set intervals. And the detail usages can be found in the docstring [https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/logger_hook.py#L18].

default_hooks = dict(logger=dict(type='LoggerHook', interval=50))








DetVisualizationHook

DetVisualizationHook use DetLocalVisualizer to visualize prediction results, and DetLocalVisualizer current supports different backends, e.g., TensorboardVisBackend and WandbVisBackend (see docstring [https://github.com/open-mmlab/mmengine/blob/main/mmengine/visualization/vis_backend.py] for more detail). The users could add multi backbends to do visualization, as follows.

default_hooks = dict(
    visualization=dict(type='DetVisualizationHook', draw=True))

vis_backends = [dict(type='LocalVisBackend'),
                dict(type='TensorboardVisBackend')]
visualizer = dict(
    type='DetLocalVisualizer', vis_backends=vis_backends, name='visualizer')















            

          

      

      

    

  

  
    
    
    Use backbone network through MMPretrain
    

    

    

    
 
  

    
      
          
            
  This tutorial collects answers to any How to xxx with MMDetection. Feel free to update this doc if you meet new questions about How to and find the answers!


Use backbone network through MMPretrain

The model registry in MMDet, MMPreTrain, MMSeg all inherit from the root registry in MMEngine. This allows these repositories to directly use the modules already implemented by each other. Therefore, users can use backbone networks from MMPretrain in MMDetection without implementing a network that already exists in MMPretrain.


Use backbone network implemented in MMPretrain

Suppose you want to use MobileNetV3-small as the backbone network of RetinaNet, the example config is as the following.

_base_ = [
    '../_base_/models/retinanet_r50_fpn.py',
    '../_base_/datasets/coco_detection.py',
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
# please install mmpretrain
# import mmpretrain.models to trigger register_module in mmpretrain
custom_imports = dict(imports=['mmpretrain.models'], allow_failed_imports=False)
pretrained = 'https://download.openmmlab.com/mmclassification/v0/mobilenet_v3/convert/mobilenet_v3_small-8427ecf0.pth'
model = dict(
    backbone=dict(
        _delete_=True, # Delete the backbone field in _base_
        type='mmpretrain.MobileNetV3', # Using MobileNetV3 from mmpretrain
        arch='small',
        out_indices=(3, 8, 11), # Modify out_indices
        init_cfg=dict(
            type='Pretrained',
            checkpoint=pretrained,
            prefix='backbone.')), # The pre-trained weights of backbone network in mmpretrain have prefix='backbone.'. The prefix in the keys will be removed so that these weights can be normally loaded.
    # Modify in_channels
    neck=dict(in_channels=[24, 48, 96], start_level=0))








Use backbone network in TIMM through MMPretrain

MMPretrain also provides a wrapper for the PyTorch Image Models (timm) backbone network, users can directly use the backbone network in timm through MMPretrain. Suppose you want to use EfficientNet-B1 as the backbone network of RetinaNet, the example config is as the following.

# https://github.com/open-mmlab/mmdetection/blob/main/configs/timm_example/retinanet_timm-efficientnet-b1_fpn_1x_coco.py

_base_ = [
    '../_base_/models/retinanet_r50_fpn.py',
    '../_base_/datasets/coco_detection.py',
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]

# please install mmpretrain
# import mmpretrain.models to trigger register_module in mmpretrain
custom_imports = dict(imports=['mmpretrain.models'], allow_failed_imports=False)
model = dict(
    backbone=dict(
        _delete_=True, # Delete the backbone field in _base_
        type='mmpretrain.TIMMBackbone', # Using timm from mmpretrain
        model_name='efficientnet_b1',
        features_only=True,
        pretrained=True,
        out_indices=(1, 2, 3, 4)), # Modify out_indices
    neck=dict(in_channels=[24, 40, 112, 320])) # Modify in_channels

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)





type='mmpretrain.TIMMBackbone' means use the TIMMBackbone class from MMPretrain in MMDetection, and the model used is EfficientNet-B1, where mmpretrain means the MMPretrain repo and TIMMBackbone means the TIMMBackbone wrapper implemented in MMPretrain.

For the principle of the Hierarchy Registry, please refer to the MMEngine document [https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/config.md]. For how to use other backbones in MMPretrain, you can refer to the MMPretrain document [https://mmpretrain.readthedocs.io/en/latest/user_guides/config.html].






Use Mosaic augmentation

If you want to use Mosaic in training, please make sure that you use MultiImageMixDataset at the same time. Taking the ‘Faster R-CNN’ algorithm as an example, you should modify the values of train_pipeline and train_dataset in the config as below:

# Open configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py directly and add the following fields
data_root = 'data/coco/'
dataset_type = 'CocoDataset'
img_scale=(1333, 800)

train_pipeline = [
    dict(type='Mosaic', img_scale=img_scale, pad_val=114.0),
    dict(
        type='RandomAffine',
        scaling_ratio_range=(0.1, 2),
        border=(-img_scale[0] // 2, -img_scale[1] // 2)), # The image will be enlarged by 4 times after Mosaic processing,so we use affine transformation to restore the image size.
    dict(type='RandomFlip', prob=0.5),
    dict(type='PackDetInputs')
]

train_dataset = dict(
    _delete_ = True, # remove unnecessary Settings
    type='MultiImageMixDataset',
    dataset=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_train2017.json',
        img_prefix=data_root + 'train2017/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='LoadAnnotations', with_bbox=True)
        ],
        filter_empty_gt=False,
    ),
    pipeline=train_pipeline
    )

data = dict(
    train=train_dataset
    )








Unfreeze backbone network after freezing the backbone in the config

If you have freezed the backbone network in the config and want to unfreeze it after some epoches, you can write a hook function to do it.  Taking the Faster R-CNN with the resnet backbone as an example, you can freeze one stage of the backbone network and  add a custom_hooks in the config as below:

_base_ = [
    '../_base_/models/faster-rcnn_r50_fpn.py',
    '../_base_/datasets/coco_detection.py',
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
    # freeze one stage of the backbone network.
    backbone=dict(frozen_stages=1),
)
custom_hooks = [dict(type="UnfreezeBackboneEpochBasedHook", unfreeze_epoch=1)]





Meanwhile write the hook class UnfreezeBackboneEpochBasedHook in mmdet/core/hook/unfreeze_backbone_epoch_based_hook.py

from mmengine.model import is_model_wrapper
from mmengine.hooks import Hook
from mmdet.registry import HOOKS


@HOOKS.register_module()
class UnfreezeBackboneEpochBasedHook(Hook):
    """Unfreeze backbone network Hook.

    Args:
        unfreeze_epoch (int): The epoch unfreezing the backbone network.
    """

    def __init__(self, unfreeze_epoch=1):
        self.unfreeze_epoch = unfreeze_epoch

    def before_train_epoch(self, runner):
        # Unfreeze the backbone network.
        # Only valid for resnet.
        if runner.epoch == self.unfreeze_epoch:
            model = runner.model
            if is_model_wrapper(model):
                model = model.module
            backbone = model.backbone
            if backbone.frozen_stages >= 0:
                if backbone.deep_stem:
                    backbone.stem.train()
                    for param in backbone.stem.parameters():
                        param.requires_grad = True
                else:
                    backbone.norm1.train()
                    for m in [backbone.conv1, backbone.norm1]:
                        for param in m.parameters():
                            param.requires_grad = True

            for i in range(1, backbone.frozen_stages + 1):
                m = getattr(backbone, f'layer{i}')
                m.train()
                for param in m.parameters():
                    param.requires_grad = True








Get the channels of a new backbone

If you want to get the channels of a new backbone, you can build this backbone alone and input a pseudo image to get each stage output.

Take ResNet as an example:

from mmdet.models import ResNet
import torch
self = ResNet(depth=18)
self.eval()
inputs = torch.rand(1, 3, 32, 32)
level_outputs = self.forward(inputs)
for level_out in level_outputs:
    print(tuple(level_out.shape))






Output of the above script is as below:

(1, 64, 8, 8)
(1, 128, 4, 4)
(1, 256, 2, 2)
(1, 512, 1, 1)





Users can get the channels of the new backbone by Replacing the ResNet(depth=18) in this script with their customized backbone.




Use Detectron2 Model in MMDetection

Users can use Detectron2Wrapper to run Detectron2’s model in MMDetection. We provide examples of Faster R-CNN,
Mask R-CNN, and RetinaNet in MMDetection.

The algorithm components in config file should be the same as those of in Detectron2. During setup, we will first initialize the default settings, which can be found in Detectron2 [https://github.com/facebookresearch/detectron2/blob/main/detectron2/config/defaults.py].
Then, the settings in config file will overwrite the default settings and the model will be built with these settings.
The input data will first convert to Detectron2’s type and feed into Detectron2’s model.
During inference the results calculate from Detectron2’s model will reconvert back to the MMDetection’s type.


Use Detectron2’s pre-trained weights

The weight initialization in Detectron2Wrapper will not use the logic of MMDetection. Users can set model.d2_detector.weights=xxx to load pre-trained weights.
For example, we can use model.d2_detector.weights='detectron2://ImageNetPretrained/MSRA/R-50.pkl' to load the pre-trained ResNet-50 or use
model.d2_detector.weights='detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/model_final_a54504.pkl' to load the pre-trained Mask R-CNN weights proposed in Detectron2.

Note: Detectron2’s pretrained model cannot be loaded directly by using load_from, it should be first converted via tools/model_converters/detectron2_to_mmdet.py

For inference of released detectron2 checkpoints, users should first use tools/model_converters/detectron2_to_mmdet.py to convert Detectron2 checkpoint to MMDetection.

python tools/model_converters/detectron2_to_mmdet.py ${Detectron2 ckpt path} ${MMDetectron ckpt path}











            

          

      

      

    

  

  
    
    
    Migrating from MMDetection 2.x to 3.x
    

    

    

    
 
  

    
      
          
            
  
Migrating from MMDetection 2.x to 3.x

MMDetection 3.x is a significant update that includes many changes to API and configuration files. This document aims to help users migrate from MMDetection 2.x to 3.x.
We divided the migration guide into the following sections:


	Configuration file migration


	API and Registry migration


	Dataset migration


	Model migration


	Frequently Asked Questions




If you encounter any problems during the migration process, feel free to raise an issue. We also welcome contributions to this document.





            

          

      

      

    

  

  
    
    
    mmdet.apis
    

    

    

    
 
  

    
      
          
            
  
mmdet.apis




mmdet.datasets


datasets




api_wrappers




samplers




transforms






mmdet.engine


hooks




optimizers




runner




schedulers






mmdet.evaluation


functional


	
mmdet.evaluation.functional.average_precision(recalls, precisions, mode='area')

	Calculate average precision (for single or multiple scales).


	Parameters

	
	recalls (ndarray) – shape (num_scales, num_dets) or (num_dets, )


	precisions (ndarray) – shape (num_scales, num_dets) or (num_dets, )


	mode (str) – ‘area’ or ‘11points’, ‘area’ means calculating the area
under precision-recall curve, ‘11points’ means calculating
the average precision of recalls at [0, 0.1, …, 1]






	Returns

	calculated average precision



	Return type

	float or ndarray










	
mmdet.evaluation.functional.bbox_overlaps(bboxes1, bboxes2, mode='iou', eps=1e-06, use_legacy_coordinate=False)

	Calculate the ious between each bbox of bboxes1 and bboxes2.


	Parameters

	
	bboxes1 (ndarray) – Shape (n, 4)


	bboxes2 (ndarray) – Shape (k, 4)


	mode (str) – IOU (intersection over union) or IOF (intersection
over foreground)


	use_legacy_coordinate (bool) – Whether to use coordinate system in
mmdet v1.x. which means width, height should be
calculated as ‘x2 - x1 + 1` and ‘y2 - y1 + 1’ respectively.
Note when function is used in VOCDataset, it should be
True to align with the official implementation
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCdevkit_18-May-2011.tar
Default: False.






	Returns

	Shape (n, k)



	Return type

	ious (ndarray)










	
mmdet.evaluation.functional.cityscapes_classes() → list

	Class names of Cityscapes.






	
mmdet.evaluation.functional.coco_classes() → list

	Class names of COCO.






	
mmdet.evaluation.functional.coco_panoptic_classes() → list

	Class names of COCO panoptic.






	
mmdet.evaluation.functional.eval_map(det_results, annotations, scale_ranges=None, iou_thr=0.5, ioa_thr=None, dataset=None, logger=None, tpfp_fn=None, nproc=4, use_legacy_coordinate=False, use_group_of=False, eval_mode='area')

	Evaluate mAP of a dataset.


	Parameters

	
	det_results (list[list]) – [[cls1_det, cls2_det, …], …].
The outer list indicates images, and the inner list indicates
per-class detected bboxes.


	annotations (list[dict]) – Ground truth annotations where each item of
the list indicates an image. Keys of annotations are:


	bboxes: numpy array of shape (n, 4)


	labels: numpy array of shape (n, )


	bboxes_ignore (optional): numpy array of shape (k, 4)


	labels_ignore (optional): numpy array of shape (k, )







	scale_ranges (list[tuple] | None) – Range of scales to be evaluated,
in the format [(min1, max1), (min2, max2), …]. A range of
(32, 64) means the area range between (32**2, 64**2).
Defaults to None.


	iou_thr (float) – IoU threshold to be considered as matched.
Defaults to 0.5.


	ioa_thr (float | None) – IoA threshold to be considered as matched,
which only used in OpenImages evaluation. Defaults to None.


	dataset (list[str] | str | None) – Dataset name or dataset classes,
there are minor differences in metrics for different datasets, e.g.
“voc”, “imagenet_det”, etc. Defaults to None.


	logger (logging.Logger | str | None) – The way to print the mAP
summary. See mmengine.logging.print_log() for details.
Defaults to None.


	tpfp_fn (callable | None) – The function used to determine true/
false positives. If None, tpfp_default() is used as default
unless dataset is ‘det’ or ‘vid’ (tpfp_imagenet() in this
case). If it is given as a function, then this function is used
to evaluate tp & fp. Default None.


	nproc (int) – Processes used for computing TP and FP.
Defaults to 4.


	use_legacy_coordinate (bool) – Whether to use coordinate system in
mmdet v1.x. which means width, height should be
calculated as ‘x2 - x1 + 1` and ‘y2 - y1 + 1’ respectively.
Defaults to False.


	use_group_of (bool) – Whether to use group of when calculate TP and FP,
which only used in OpenImages evaluation. Defaults to False.


	eval_mode (str) – ‘area’ or ‘11points’, ‘area’ means calculating the
area under precision-recall curve, ‘11points’ means calculating
the average precision of recalls at [0, 0.1, …, 1],
PASCAL VOC2007 uses 11points as default evaluate mode, while
others are ‘area’. Defaults to ‘area’.






	Returns

	(mAP, [dict, dict, …])



	Return type

	tuple










	
mmdet.evaluation.functional.eval_recalls(gts, proposals, proposal_nums=None, iou_thrs=0.5, logger=None, use_legacy_coordinate=False)

	Calculate recalls.


	Parameters

	
	gts (list[ndarray]) – a list of arrays of shape (n, 4)


	proposals (list[ndarray]) – a list of arrays of shape (k, 4) or (k, 5)


	proposal_nums (int | Sequence[int]) – Top N proposals to be evaluated.


	iou_thrs (float | Sequence[float]) – IoU thresholds. Default: 0.5.


	logger (logging.Logger | str | None) – The way to print the recall
summary. See mmengine.logging.print_log() for details.
Default: None.


	use_legacy_coordinate (bool) – Whether use coordinate system
in mmdet v1.x. “1” was added to both height and width
which means w, h should be
computed as ‘x2 - x1 + 1` and ‘y2 - y1 + 1’. Default: False.






	Returns

	recalls of different ious and proposal nums



	Return type

	ndarray










	
mmdet.evaluation.functional.evaluateImgLists(prediction_list: list, groundtruth_list: list, args: object, backend_args: Optional[dict] = None, dump_matches: bool = False) → dict

	A wrapper of obj:``cityscapesscripts.evaluation.

evalInstanceLevelSemanticLabeling.evaluateImgLists``. Support loading
groundtruth image from file backend.
:param prediction_list: A list of prediction txt file.
:type prediction_list: list
:param groundtruth_list: A list of groundtruth image file.
:type groundtruth_list: list
:param args: A global object setting in


obj:cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling





	Parameters

	
	backend_args (dict, optional) – Arguments to instantiate the
preifx of uri corresponding backend. Defaults to None.


	dump_matches (bool) – whether dump matches.json. Defaults to False.






	Returns

	The computed metric.



	Return type

	dict










	
mmdet.evaluation.functional.get_classes(dataset) → list

	Get class names of a dataset.






	
mmdet.evaluation.functional.imagenet_det_classes() → list

	Class names of ImageNet Det.






	
mmdet.evaluation.functional.imagenet_vid_classes() → list

	Class names of ImageNet VID.






	
mmdet.evaluation.functional.objects365v1_classes() → list

	Class names of Objects365 V1.






	
mmdet.evaluation.functional.objects365v2_classes() → list

	Class names of Objects365 V2.






	
mmdet.evaluation.functional.oid_challenge_classes() → list

	Class names of Open Images Challenge.






	
mmdet.evaluation.functional.oid_v6_classes() → list

	Class names of Open Images V6.






	
mmdet.evaluation.functional.plot_iou_recall(recalls, iou_thrs)

	Plot IoU-Recalls curve.


	Parameters

	
	recalls (ndarray or list) – shape (k,)


	iou_thrs (ndarray or list) – same shape as recalls













	
mmdet.evaluation.functional.plot_num_recall(recalls, proposal_nums)

	Plot Proposal_num-Recalls curve.


	Parameters

	
	recalls (ndarray or list) – shape (k,)


	proposal_nums (ndarray or list) – same shape as recalls













	
mmdet.evaluation.functional.pq_compute_multi_core(matched_annotations_list, gt_folder, pred_folder, categories, backend_args=None, nproc=32)

	Evaluate the metrics of Panoptic Segmentation with multithreading.

Same as the function with the same name in panopticapi.


	Parameters

	
	matched_annotations_list (list) – The matched annotation list. Each
element is a tuple of annotations of the same image with the
format (gt_anns, pred_anns).


	gt_folder (str) – The path of the ground truth images.


	pred_folder (str) – The path of the prediction images.


	categories (str) – The categories of the dataset.


	backend_args (object) – The file client of the dataset. If None,
the backend will be set to local.


	nproc (int) – Number of processes for panoptic quality computing.
Defaults to 32. When nproc exceeds the number of cpu cores,
the number of cpu cores is used.













	
mmdet.evaluation.functional.pq_compute_single_core(proc_id, annotation_set, gt_folder, pred_folder, categories, backend_args=None, print_log=False)

	The single core function to evaluate the metric of Panoptic
Segmentation.

Same as the function with the same name in panopticapi. Only the function
to load the images is changed to use the file client.


	Parameters

	
	proc_id (int) – The id of the mini process.


	gt_folder (str) – The path of the ground truth images.


	pred_folder (str) – The path of the prediction images.


	categories (str) – The categories of the dataset.


	backend_args (object) – The Backend of the dataset. If None,
the backend will be set to local.


	print_log (bool) – Whether to print the log. Defaults to False.













	
mmdet.evaluation.functional.print_map_summary(mean_ap, results, dataset=None, scale_ranges=None, logger=None)

	Print mAP and results of each class.

A table will be printed to show the gts/dets/recall/AP of each class and
the mAP.


	Parameters

	
	mean_ap (float) – Calculated from eval_map().


	results (list[dict]) – Calculated from eval_map().


	dataset (list[str] | str | None) – Dataset name or dataset classes.


	scale_ranges (list[tuple] | None) – Range of scales to be evaluated.


	logger (logging.Logger | str | None) – The way to print the mAP
summary. See mmengine.logging.print_log() for details.
Defaults to None.













	
mmdet.evaluation.functional.print_recall_summary(recalls, proposal_nums, iou_thrs, row_idxs=None, col_idxs=None, logger=None)

	Print recalls in a table.


	Parameters

	
	recalls (ndarray) – calculated from bbox_recalls


	proposal_nums (ndarray or list) – top N proposals


	iou_thrs (ndarray or list) – iou thresholds


	row_idxs (ndarray) – which rows(proposal nums) to print


	col_idxs (ndarray) – which cols(iou thresholds) to print


	logger (logging.Logger | str | None) – The way to print the recall
summary. See mmengine.logging.print_log() for details.
Default: None.













	
mmdet.evaluation.functional.voc_classes() → list

	Class names of PASCAL VOC.








metrics






mmdet.models


backbones




data_preprocessors




dense_heads




detectors




layers




losses




necks




roi_heads




seg_heads




task_modules




test_time_augs




utils






mmdet.structures


structures


	
class mmdet.structures.DetDataSample(*, metainfo: Optional[dict] = None, **kwargs)

	A data structure interface of MMDetection. They are used as interfaces
between different components.

The attributes in DetDataSample are divided into several parts:



	
	``proposals``(InstanceData): Region proposals used in two-stage
	detectors.







	``gt_instances``(InstanceData): Ground truth of instance annotations.


	``pred_instances``(InstanceData): Instances of detection predictions.


	
	``pred_track_instances``(InstanceData): Instances of tracking
	predictions.







	
	``ignored_instances``(InstanceData): Instances to be ignored during
	training/testing.







	
	``gt_panoptic_seg``(PixelData): Ground truth of panoptic
	segmentation.







	
	``pred_panoptic_seg``(PixelData): Prediction of panoptic
	segmentation.







	``gt_sem_seg``(PixelData): Ground truth of semantic segmentation.


	``pred_sem_seg``(PixelData): Prediction of semantic segmentation.







Examples

>>> import torch
>>> import numpy as np
>>> from mmengine.structures import InstanceData
>>> from mmdet.structures import DetDataSample





>>> data_sample = DetDataSample()
>>> img_meta = dict(img_shape=(800, 1196),
...                 pad_shape=(800, 1216))
>>> gt_instances = InstanceData(metainfo=img_meta)
>>> gt_instances.bboxes = torch.rand((5, 4))
>>> gt_instances.labels = torch.rand((5,))
>>> data_sample.gt_instances = gt_instances
>>> assert 'img_shape' in data_sample.gt_instances.metainfo_keys()
>>> len(data_sample.gt_instances)
5
>>> print(data_sample)






<DetDataSample(


META INFORMATION

DATA FIELDS
gt_instances: <InstanceData(



META INFORMATION
pad_shape: (800, 1216)
img_shape: (800, 1196)

DATA FIELDS
labels: tensor([0.8533, 0.1550, 0.5433, 0.7294, 0.5098])
bboxes:
tensor([[9.7725e-01, 5.8417e-01, 1.7269e-01, 6.5694e-01],


[1.7894e-01, 5.1780e-01, 7.0590e-01, 4.8589e-01],
[7.0392e-01, 6.6770e-01, 1.7520e-01, 1.4267e-01],
[2.2411e-01, 5.1962e-01, 9.6953e-01, 6.6994e-01],
[4.1338e-01, 2.1165e-01, 2.7239e-04, 6.8477e-01]])







) at 0x7f21fb1b9190>








	) at 0x7f21fb1b9880>
	>>> pred_instances = InstanceData(metainfo=img_meta)
>>> pred_instances.bboxes = torch.rand((5, 4))
>>> pred_instances.scores = torch.rand((5,))
>>> data_sample = DetDataSample(pred_instances=pred_instances)
>>> assert 'pred_instances' in data_sample





>>> pred_track_instances = InstanceData(metainfo=img_meta)
>>> pred_track_instances.bboxes = torch.rand((5, 4))
>>> pred_track_instances.scores = torch.rand((5,))
>>> data_sample = DetDataSample(
...    pred_track_instances=pred_track_instances)
>>> assert 'pred_track_instances' in data_sample





>>> data_sample = DetDataSample()
>>> gt_instances_data = dict(
...                        bboxes=torch.rand(2, 4),
...                        labels=torch.rand(2),
...                        masks=np.random.rand(2, 2, 2))
>>> gt_instances = InstanceData(**gt_instances_data)
>>> data_sample.gt_instances = gt_instances
>>> assert 'gt_instances' in data_sample
>>> assert 'masks' in data_sample.gt_instances





>>> data_sample = DetDataSample()
>>> gt_panoptic_seg_data = dict(panoptic_seg=torch.rand(2, 4))
>>> gt_panoptic_seg = PixelData(**gt_panoptic_seg_data)
>>> data_sample.gt_panoptic_seg = gt_panoptic_seg
>>> print(data_sample)









<DetDataSample(


META INFORMATION

DATA FIELDS
_gt_panoptic_seg: <BaseDataElement(



META INFORMATION

DATA FIELDS
panoptic_seg: tensor([[0.7586, 0.1262, 0.2892, 0.9341],


[0.3200, 0.7448, 0.1052, 0.5371]])







) at 0x7f66c2bb7730>




gt_panoptic_seg: <BaseDataElement(



META INFORMATION

DATA FIELDS
panoptic_seg: tensor([[0.7586, 0.1262, 0.2892, 0.9341],


[0.3200, 0.7448, 0.1052, 0.5371]])







) at 0x7f66c2bb7730>







) at 0x7f66c2bb7280>
>>> data_sample = DetDataSample()
>>> gt_segm_seg_data = dict(segm_seg=torch.rand(2, 2, 2))
>>> gt_segm_seg = PixelData(**gt_segm_seg_data)
>>> data_sample.gt_segm_seg = gt_segm_seg
>>> assert ‘gt_segm_seg’ in data_sample
>>> assert ‘segm_seg’ in data_sample.gt_segm_seg









	
class mmdet.structures.ReIDDataSample(*, metainfo: Optional[dict] = None, **kwargs)

	A data structure interface of ReID task.

It’s used as interfaces between different components.


	Meta field:
	
	img_shape (Tuple): The shape of the corresponding input image.
	Used for visualization.



	ori_shape (Tuple): The original shape of the corresponding image.
	Used for visualization.



	num_classes (int): The number of all categories.
	Used for label format conversion.







	Data field:
	gt_label (LabelData): The ground truth label.
pred_label (LabelData): The predicted label.
scores (torch.Tensor): The outputs of model.






	
set_gt_label(value: Union[numpy.ndarray, torch.Tensor, Sequence[numbers.Number], numbers.Number]) → mmdet.structures.reid_data_sample.ReIDDataSample

	Set label of gt_label.






	
set_gt_score(value: torch.Tensor) → mmdet.structures.reid_data_sample.ReIDDataSample

	Set score of gt_label.










	
class mmdet.structures.TrackDataSample(*, metainfo: Optional[dict] = None, **kwargs)

	A data structure interface of tracking task in MMDetection. It is used
as interfaces between different components.

This data structure can be viewd as a wrapper of multiple DetDataSample to
some extent. Specifically, it only contains a property:
video_data_samples which is a list of DetDataSample, each of which
corresponds to a single frame. If you want to get the property of a single
frame, you must first get the corresponding DetDataSample by indexing
and then get the property of the frame, such as gt_instances,
pred_instances and so on. As for metainfo, it differs from
DetDataSample in that each value corresponds to the metainfo key is a
list where each element corresponds to information of a single frame.

Examples

>>> import torch
>>> from mmengine.structures import InstanceData
>>> from mmdet.structures import DetDataSample, TrackDataSample
>>> track_data_sample = TrackDataSample()
>>> # set the 1st frame
>>> frame1_data_sample = DetDataSample(metainfo=dict(
...         img_shape=(100, 100), frame_id=0))
>>> frame1_gt_instances = InstanceData()
>>> frame1_gt_instances.bbox = torch.zeros([2, 4])
>>> frame1_data_sample.gt_instances = frame1_gt_instances
>>> # set the 2nd frame
>>> frame2_data_sample = DetDataSample(metainfo=dict(
...         img_shape=(100, 100), frame_id=1))
>>> frame2_gt_instances = InstanceData()
>>> frame2_gt_instances.bbox = torch.ones([3, 4])
>>> frame2_data_sample.gt_instances = frame2_gt_instances
>>> track_data_sample.video_data_samples = [frame1_data_sample,
...                                         frame2_data_sample]
>>> # set metainfo for track_data_sample
>>> track_data_sample.set_metainfo(dict(key_frames_inds=[0]))
>>> track_data_sample.set_metainfo(dict(ref_frames_inds=[1]))
>>> print(track_data_sample)
<TrackDataSample(






META INFORMATION
key_frames_inds: [0]
ref_frames_inds: [1]

DATA FIELDS
video_data_samples: [<DetDataSample(



META INFORMATION
img_shape: (100, 100)

DATA FIELDS
gt_instances: <InstanceData(



META INFORMATION

DATA FIELDS
bbox: tensor([[0., 0., 0., 0.],


[0., 0., 0., 0.]])







) at 0x7f639320dcd0>







) at 0x7f64bd223340>, <DetDataSample(


META INFORMATION
img_shape: (100, 100)

DATA FIELDS
gt_instances: <InstanceData(



META INFORMATION

DATA FIELDS
bbox: tensor([[1., 1., 1., 1.],


[1., 1., 1., 1.],
[1., 1., 1., 1.]])







) at 0x7f64bd128b20>







) at 0x7f64bd1346d0>]







) at 0x7f64bd2237f0>
>>> print(len(track_data_sample))
2
>>> key_data_sample = track_data_sample.get_key_frames()
>>> print(key_data_sample[0].frame_id)
0
>>> ref_data_sample = track_data_sample.get_ref_frames()
>>> print(ref_data_sample[0].frame_id)
1
>>> frame1_data_sample = track_data_sample[0]
>>> print(frame1_data_sample.gt_instances.bbox)
tensor([[0., 0., 0., 0.],


[0., 0., 0., 0.]])




>>> # Tensor-like methods
>>> cuda_track_data_sample = track_data_sample.to('cuda')
>>> cuda_track_data_sample = track_data_sample.cuda()
>>> cpu_track_data_sample = track_data_sample.cpu()
>>> cpu_track_data_sample = track_data_sample.to('cpu')
>>> fp16_instances = cuda_track_data_sample.to(
...     device=None, dtype=torch.float16, non_blocking=False,
...     copy=False, memory_format=torch.preserve_format)






	
clone() → mmengine.structures.base_data_element.BaseDataElement

	Deep copy the current data element.


	Returns

	The copy of current data element.



	Return type

	BaseDataElement










	
cpu() → mmengine.structures.base_data_element.BaseDataElement

	Convert all tensors to CPU in data.






	
cuda() → mmengine.structures.base_data_element.BaseDataElement

	Convert all tensors to GPU in data.






	
detach() → mmengine.structures.base_data_element.BaseDataElement

	Detach all tensors in data.






	
npu() → mmengine.structures.base_data_element.BaseDataElement

	Convert all tensors to NPU in data.






	
numpy() → mmengine.structures.base_data_element.BaseDataElement

	Convert all tensors to np.ndarray in data.






	
to(*args, **kwargs) → mmengine.structures.base_data_element.BaseDataElement

	Apply same name function to all tensors in data_fields.






	
to_tensor() → mmengine.structures.base_data_element.BaseDataElement

	Convert all np.ndarray to tensor in data.












bbox




mask






mmdet.testing




mmdet.visualization




mmdet.utils


	
class mmdet.utils.AvoidOOM(to_cpu=True, test=False)

	Try to convert inputs to FP16 and CPU if got a PyTorch’s CUDA Out of
Memory error. It will do the following steps:



	First retry after calling torch.cuda.empty_cache().


	If that still fails, it will then retry by converting inputs





to FP16.





	If that still fails trying to convert inputs to CPUs.





In this case, it expects the function to dispatch to
CPU implementation.








	Parameters

	
	to_cpu (bool) – Whether to convert outputs to CPU if get an OOM
error. This will slow down the code significantly.
Defaults to True.


	test (bool) – Skip _ignore_torch_cuda_oom operate that can use
lightweight data in unit test, only used in
test unit. Defaults to False.








Examples

>>> from mmdet.utils.memory import AvoidOOM
>>> AvoidCUDAOOM = AvoidOOM()
>>> output = AvoidOOM.retry_if_cuda_oom(
>>>     some_torch_function)(input1, input2)
>>> # To use as a decorator
>>> # from mmdet.utils import AvoidCUDAOOM
>>> @AvoidCUDAOOM.retry_if_cuda_oom
>>> def function(*args, **kwargs):
>>>     return None





```


Note


	
	The output may be on CPU even if inputs are on GPU. Processing
	on CPU will slow down the code significantly.







	
	When converting inputs to CPU, it will only look at each argument
	and check if it has .device and .to for conversion. Nested
structures of tensors are not supported.







	
	Since the function might be called more than once, it has to be
	stateless.












	
retry_if_cuda_oom(func)

	Makes a function retry itself after encountering pytorch’s CUDA OOM
error.

The implementation logic is referred to
https://github.com/facebookresearch/detectron2/blob/main/detectron2/utils/memory.py


	Parameters

	func – a stateless callable that takes tensor-like objects
as arguments.



	Returns

	a callable which retries func if OOM is encountered.



	Return type

	func














	
mmdet.utils.all_reduce_dict(py_dict, op='sum', group=None, to_float=True)

	Apply all reduce function for python dict object.

The code is modified from https://github.com/Megvii-
BaseDetection/YOLOX/blob/main/yolox/utils/allreduce_norm.py.

NOTE: make sure that py_dict in different ranks has the same keys and
the values should be in the same shape. Currently only supports
nccl backend.


	Parameters

	
	py_dict (dict) – Dict to be applied all reduce op.


	op (str) – Operator, could be ‘sum’ or ‘mean’. Default: ‘sum’


	group (torch.distributed.group, optional) – Distributed group,
Default: None.


	to_float (bool) – Whether to convert all values of dict to float.
Default: True.






	Returns

	reduced python dict object.



	Return type

	OrderedDict










	
mmdet.utils.allreduce_grads(params, coalesce=True, bucket_size_mb=- 1)

	Allreduce gradients.


	Parameters

	
	params (list[torch.Parameters]) – List of parameters of a model


	coalesce (bool, optional) – Whether allreduce parameters as a whole.
Defaults to True.


	bucket_size_mb (int, optional) – Size of bucket, the unit is MB.
Defaults to -1.













	
mmdet.utils.collect_env()

	Collect the information of the running environments.






	
mmdet.utils.compat_cfg(cfg)

	This function would modify some filed to keep the compatibility of
config.

For example, it will move some args which will be deprecated to the correct
fields.






	
mmdet.utils.find_latest_checkpoint(path, suffix='pth')

	Find the latest checkpoint from the working directory.


	Parameters

	
	path (str) – The path to find checkpoints.


	suffix (str) – File extension.
Defaults to pth.






	Returns

	File path of the latest checkpoint.



	Return type

	latest_path(str | None)





References


	1

	https://github.com/microsoft/SoftTeacher
/blob/main/ssod/utils/patch.py










	
mmdet.utils.get_caller_name()

	Get name of caller method.






	
mmdet.utils.get_test_pipeline_cfg(cfg: Union[str, mmengine.config.config.ConfigDict]) → mmengine.config.config.ConfigDict

	Get the test dataset pipeline from entire config.


	Parameters

	cfg (str or ConfigDict) – the entire config. Can be a config
file or a ConfigDict.



	Returns

	the config of test dataset.



	Return type

	ConfigDict










	
mmdet.utils.imshow_mot_errors(*args, backend: str = 'cv2', **kwargs)

	Show the wrong tracks on the input image.


	Parameters

	backend (str, optional) – Backend of visualization.
Defaults to ‘cv2’.










	
mmdet.utils.log_img_scale(img_scale, shape_order='hw', skip_square=False)

	Log image size.


	Parameters

	
	img_scale (tuple) – Image size to be logged.


	shape_order (str, optional) – The order of image shape.
‘hw’ for (height, width) and ‘wh’ for (width, height).
Defaults to ‘hw’.


	skip_square (bool, optional) – Whether to skip logging for square
img_scale. Defaults to False.






	Returns

	Whether to have done logging.



	Return type

	bool










	
mmdet.utils.reduce_mean(tensor)

	“Obtain the mean of tensor on different GPUs.






	
mmdet.utils.register_all_modules(init_default_scope: bool = True) → None

	Register all modules in mmdet into the registries.


	Parameters

	init_default_scope (bool) – Whether initialize the mmdet default scope.
When init_default_scope=True, the global default scope will be
set to mmdet, and all registries will build modules from mmdet’s
registry node. To understand more about the registry, please refer
to https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/registry.md
Defaults to True.










	
mmdet.utils.replace_cfg_vals(ori_cfg)

	Replace the string “${key}” with the corresponding value.

Replace the “${key}” with the value of ori_cfg.key in the config. And
support replacing the chained ${key}. Such as, replace “${key0.key1}”
with the value of cfg.key0.key1. Code is modified from `vars.py
< https://github.com/microsoft/SoftTeacher/blob/main/ssod/utils/vars.py>`_  # noqa: E501


	Parameters

	ori_cfg (mmengine.config.Config) – The origin config with “${key}” generated from a file.



	Returns

	The config with “${key}” replaced by the corresponding value.



	Return type

	updated_cfg [mmengine.config.Config]










	
mmdet.utils.setup_cache_size_limit_of_dynamo()

	Setup cache size limit of dynamo.

Note: Due to the dynamic shape of the loss calculation and
post-processing parts in the object detection algorithm, these
functions must be compiled every time they are run.
Setting a large value for torch._dynamo.config.cache_size_limit
may result in repeated compilation, which can slow down training
and testing speed. Therefore, we need to set the default value of
cache_size_limit smaller. An empirical value is 4.






	
mmdet.utils.setup_multi_processes(cfg)

	Setup multi-processing environment variables.






	
mmdet.utils.split_batch(img, img_metas, kwargs)

	Split data_batch by tags.

Code is modified from
<https://github.com/microsoft/SoftTeacher/blob/main/ssod/utils/structure_utils.py> # noqa: E501


	Parameters

	
	img (Tensor) – of shape (N, C, H, W) encoding input images.
Typically these should be mean centered and std scaled.


	img_metas (list[dict]) – List of image info dict where each dict
has: ‘img_shape’, ‘scale_factor’, ‘flip’, and may also contain
‘filename’, ‘ori_shape’, ‘pad_shape’, and ‘img_norm_cfg’.
For details on the values of these keys, see
mmdet.datasets.pipelines.Collect.


	kwargs (dict) – Specific to concrete implementation.






	Returns

	
	a dict that data_batch splited by tags,
	such as ‘sup’, ‘unsup_teacher’, and ‘unsup_student’.









	Return type

	data_groups (dict)










	
mmdet.utils.sync_random_seed(seed=None, device='cuda')

	Make sure different ranks share the same seed.

All workers must call this function, otherwise it will deadlock.
This method is generally used in DistributedSampler,
because the seed should be identical across all processes
in the distributed group.

In distributed sampling, different ranks should sample non-overlapped
data in the dataset. Therefore, this function is used to make sure that
each rank shuffles the data indices in the same order based
on the same seed. Then different ranks could use different indices
to select non-overlapped data from the same data list.


	Parameters

	
	seed (int, Optional) – The seed. Default to None.


	device (str) – The device where the seed will be put on.
Default to ‘cuda’.






	Returns

	Seed to be used.



	Return type

	int










	
mmdet.utils.update_data_root(cfg, logger=None)

	Update data root according to env MMDET_DATASETS.

If set env MMDET_DATASETS, update cfg.data_root according to
MMDET_DATASETS. Otherwise, using cfg.data_root as default.


	Parameters

	
	cfg (Config) – The model config need to modify


	logger (logging.Logger | str | None) – the way to print msg
















            

          

      

      

    

  

  
    
    
    Benchmark and Model Zoo
    

    

    

    
 
  

    
      
          
            
  
Benchmark and Model Zoo


Mirror sites

We only use aliyun to maintain the model zoo since MMDetection V2.0. The model zoo of V1.x has been deprecated.




Common settings


	All models were trained on coco_2017_train, and tested on the coco_2017_val.


	We use distributed training.


	All pytorch-style pretrained backbones on ImageNet are from PyTorch model zoo, caffe-style pretrained backbones are converted from the newly released model from detectron2.


	For fair comparison with other codebases, we report the GPU memory as the maximum value of torch.cuda.max_memory_allocated() for all 8 GPUs. Note that this value is usually less than what nvidia-smi shows.


	We report the inference time as the total time of network forwarding and post-processing, excluding the data loading time. Results are obtained with the script benchmark.py [https://github.com/open-mmlab/mmdetection/blob/main/tools/analysis_tools/benchmark.py] which computes the average time on 2000 images.







ImageNet Pretrained Models

It is common to initialize from backbone models pre-trained on ImageNet classification task. All pre-trained  model links can be found at open_mmlab [https://github.com/open-mmlab/mmcv/blob/master/mmcv/model_zoo/open_mmlab.json].  According to img_norm_cfg and source of weight, we can divide all the ImageNet  pre-trained  model weights into some cases:


	TorchVision:  Corresponding to torchvision weight, including ResNet50, ResNet101. The img_norm_cfg is dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True).


	Pycls:  Corresponding to pycls [https://github.com/facebookresearch/pycls] weight, including RegNetX. The img_norm_cfg is dict(   mean=[103.530, 116.280, 123.675], std=[57.375, 57.12, 58.395], to_rgb=False).


	MSRA styles: Corresponding to MSRA [https://github.com/KaimingHe/deep-residual-networks] weights, including ResNet50_Caffe and ResNet101_Caffe. The img_norm_cfg is dict(   mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False).


	Caffe2 styles:  Currently only contains ResNext101_32x8d. The img_norm_cfg is dict(mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], to_rgb=False).


	Other styles: E.g SSD which corresponds to img_norm_cfg is dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) and YOLOv3 which corresponds to img_norm_cfg is dict(mean=[0, 0, 0], std=[255., 255., 255.], to_rgb=True).




The detailed table of the commonly used backbone models in MMDetection is listed below :




	model
	source
	link
	description





	ResNet50
	TorchVision
	torchvision's ResNet-50
	From torchvision's ResNet-50.



	ResNet101
	TorchVision
	torchvision's ResNet-101
	From torchvision's ResNet-101.



	RegNetX
	Pycls
	RegNetX_3.2gf, RegNetX_800mf. etc.
	From pycls.



	ResNet50_Caffe
	MSRA
	MSRA's ResNet-50
	Converted copy of Detectron2's R-50.pkl model. The original weight comes from MSRA's original ResNet-50.



	ResNet101_Caffe
	MSRA
	MSRA's ResNet-101
	Converted copy of Detectron2's R-101.pkl model. The original weight comes from MSRA's original ResNet-101.



	ResNext101_32x8d
	Caffe2
	Caffe2 ResNext101_32x8d
	Converted copy of Detectron2's X-101-32x8d.pkl model. The ResNeXt-101-32x8d model trained with Caffe2 at FB.








Baselines


RPN

Please refer to RPN [https://github.com/open-mmlab/mmdetection/blob/main/configs/rpn] for details.




Faster R-CNN

Please refer to Faster R-CNN [https://github.com/open-mmlab/mmdetection/blob/main/configs/faster_rcnn] for details.




Mask R-CNN

Please refer to Mask R-CNN [https://github.com/open-mmlab/mmdetection/blob/main/configs/mask_rcnn] for details.




Fast R-CNN (with pre-computed proposals)

Please refer to Fast R-CNN [https://github.com/open-mmlab/mmdetection/blob/main/configs/fast_rcnn] for details.




RetinaNet

Please refer to RetinaNet [https://github.com/open-mmlab/mmdetection/blob/main/configs/retinanet] for details.




Cascade R-CNN and Cascade Mask R-CNN

Please refer to Cascade R-CNN [https://github.com/open-mmlab/mmdetection/blob/main/configs/cascade_rcnn] for details.




Hybrid Task Cascade (HTC)

Please refer to HTC [https://github.com/open-mmlab/mmdetection/blob/main/configs/htc] for details.




SSD

Please refer to SSD [https://github.com/open-mmlab/mmdetection/blob/main/configs/ssd] for details.




Group Normalization (GN)

Please refer to Group Normalization [https://github.com/open-mmlab/mmdetection/blob/main/configs/gn] for details.




Weight Standardization

Please refer to Weight Standardization [https://github.com/open-mmlab/mmdetection/blob/main/configs/gn+ws] for details.




Deformable Convolution v2

Please refer to Deformable Convolutional Networks [https://github.com/open-mmlab/mmdetection/blob/main/configs/dcn] for details.




CARAFE: Content-Aware ReAssembly of FEatures

Please refer to CARAFE [https://github.com/open-mmlab/mmdetection/blob/main/configs/carafe] for details.




Instaboost

Please refer to Instaboost [https://github.com/open-mmlab/mmdetection/blob/main/configs/instaboost] for details.




Libra R-CNN

Please refer to Libra R-CNN [https://github.com/open-mmlab/mmdetection/blob/main/configs/libra_rcnn] for details.




Guided Anchoring

Please refer to Guided Anchoring [https://github.com/open-mmlab/mmdetection/blob/main/configs/guided_anchoring] for details.




FCOS

Please refer to FCOS [https://github.com/open-mmlab/mmdetection/blob/main/configs/fcos] for details.




FoveaBox

Please refer to FoveaBox [https://github.com/open-mmlab/mmdetection/blob/main/configs/foveabox] for details.




RepPoints

Please refer to RepPoints [https://github.com/open-mmlab/mmdetection/blob/main/configs/reppoints] for details.




FreeAnchor

Please refer to FreeAnchor [https://github.com/open-mmlab/mmdetection/blob/main/configs/free_anchor] for details.




Grid R-CNN (plus)

Please refer to Grid R-CNN [https://github.com/open-mmlab/mmdetection/blob/main/configs/grid_rcnn] for details.




GHM

Please refer to GHM [https://github.com/open-mmlab/mmdetection/blob/main/configs/ghm] for details.




GCNet

Please refer to GCNet [https://github.com/open-mmlab/mmdetection/blob/main/configs/gcnet] for details.




HRNet

Please refer to HRNet [https://github.com/open-mmlab/mmdetection/blob/main/configs/hrnet] for details.




Mask Scoring R-CNN

Please refer to Mask Scoring R-CNN [https://github.com/open-mmlab/mmdetection/blob/main/configs/ms_rcnn] for details.




Train from Scratch

Please refer to Rethinking ImageNet Pre-training [https://github.com/open-mmlab/mmdetection/blob/main/configs/scratch] for details.




NAS-FPN

Please refer to NAS-FPN [https://github.com/open-mmlab/mmdetection/blob/main/configs/nas_fpn] for details.




ATSS

Please refer to ATSS [https://github.com/open-mmlab/mmdetection/blob/main/configs/atss] for details.




FSAF

Please refer to FSAF [https://github.com/open-mmlab/mmdetection/blob/main/configs/fsaf] for details.




RegNetX

Please refer to RegNet [https://github.com/open-mmlab/mmdetection/blob/main/configs/regnet] for details.




Res2Net

Please refer to Res2Net [https://github.com/open-mmlab/mmdetection/blob/main/configs/res2net] for details.




GRoIE

Please refer to GRoIE [https://github.com/open-mmlab/mmdetection/blob/main/configs/groie] for details.




Dynamic R-CNN

Please refer to Dynamic R-CNN [https://github.com/open-mmlab/mmdetection/blob/main/configs/dynamic_rcnn] for details.




PointRend

Please refer to PointRend [https://github.com/open-mmlab/mmdetection/blob/main/configs/point_rend] for details.




DetectoRS

Please refer to DetectoRS [https://github.com/open-mmlab/mmdetection/blob/main/configs/detectors] for details.




Generalized Focal Loss

Please refer to Generalized Focal Loss [https://github.com/open-mmlab/mmdetection/blob/main/configs/gfl] for details.




CornerNet

Please refer to CornerNet [https://github.com/open-mmlab/mmdetection/blob/main/configs/cornernet] for details.




YOLOv3

Please refer to YOLOv3 [https://github.com/open-mmlab/mmdetection/blob/main/configs/yolo] for details.




PAA

Please refer to PAA [https://github.com/open-mmlab/mmdetection/blob/main/configs/paa] for details.




SABL

Please refer to SABL [https://github.com/open-mmlab/mmdetection/blob/main/configs/sabl] for details.




CentripetalNet

Please refer to CentripetalNet [https://github.com/open-mmlab/mmdetection/blob/main/configs/centripetalnet] for details.




ResNeSt

Please refer to ResNeSt [https://github.com/open-mmlab/mmdetection/blob/main/configs/resnest] for details.




DETR

Please refer to DETR [https://github.com/open-mmlab/mmdetection/blob/main/configs/detr] for details.




Deformable DETR

Please refer to Deformable DETR [https://github.com/open-mmlab/mmdetection/blob/main/configs/deformable_detr] for details.




AutoAssign

Please refer to AutoAssign [https://github.com/open-mmlab/mmdetection/blob/main/configs/autoassign] for details.




YOLOF

Please refer to YOLOF [https://github.com/open-mmlab/mmdetection/blob/main/configs/yolof] for details.




Seesaw Loss

Please refer to Seesaw Loss [https://github.com/open-mmlab/mmdetection/blob/main/configs/seesaw_loss] for details.




CenterNet

Please refer to CenterNet [https://github.com/open-mmlab/mmdetection/blob/main/configs/centernet] for details.




YOLOX

Please refer to YOLOX [https://github.com/open-mmlab/mmdetection/blob/main/configs/yolox] for details.




PVT

Please refer to PVT [https://github.com/open-mmlab/mmdetection/blob/main/configs/pvt] for details.




SOLO

Please refer to SOLO [https://github.com/open-mmlab/mmdetection/blob/main/configs/solo] for details.




QueryInst

Please refer to QueryInst [https://github.com/open-mmlab/mmdetection/blob/main/configs/queryinst] for details.




PanopticFPN

Please refer to PanopticFPN [https://github.com/open-mmlab/mmdetection/blob/main/configs/panoptic_fpn] for details.




MaskFormer

Please refer to MaskFormer [https://github.com/open-mmlab/mmdetection/blob/main/configs/maskformer] for details.




DyHead

Please refer to DyHead [https://github.com/open-mmlab/mmdetection/blob/main/configs/dyhead] for details.




Mask2Former

Please refer to Mask2Former [https://github.com/open-mmlab/mmdetection/blob/main/configs/mask2former] for details.




Efficientnet

Please refer to Efficientnet [https://github.com/open-mmlab/mmdetection/blob/main/configs/efficientnet] for details.




Other datasets

We also benchmark some methods on PASCAL VOC [https://github.com/open-mmlab/mmdetection/blob/main/configs/pascal_voc], Cityscapes [https://github.com/open-mmlab/mmdetection/blob/main/configs/cityscapes], OpenImages [https://github.com/open-mmlab/mmdetection/blob/main/configs/openimages] and WIDER FACE [https://github.com/open-mmlab/mmdetection/blob/main/configs/wider_face].




Pre-trained Models

We also train Faster R-CNN [https://github.com/open-mmlab/mmdetection/blob/main/configs/faster_rcnn] and Mask R-CNN [https://github.com/open-mmlab/mmdetection/blob/main/configs/mask_rcnn] using ResNet-50 and RegNetX-3.2G [https://github.com/open-mmlab/mmdetection/blob/main/configs/regnet] with multi-scale training and longer schedules. These models serve as strong pre-trained models for downstream tasks for convenience.






Speed benchmark


Training Speed benchmark

We provide analyze_logs.py [https://github.com/open-mmlab/mmdetection/blob/main/tools/analysis_tools/analyze_logs.py] to get average time of iteration in training. You can find examples in Log Analysis [https://mmdetection.readthedocs.io/en/latest/useful_tools.html#log-analysis].

We compare the training speed of Mask R-CNN with some other popular frameworks (The data is copied from detectron2 [https://github.com/facebookresearch/detectron2/blob/main/docs/notes/benchmarks.md/]).
For mmdetection, we benchmark with mask-rcnn_r50-caffe_fpn_poly-1x_coco_v1.py [https://github.com/open-mmlab/mmdetection/blob/main/configs/mask_rcnn/mask-rcnn_r50-caffe_fpn_poly-1x_coco_v1.py], which should have the same setting with mask_rcnn_R_50_FPN_noaug_1x.yaml [https://github.com/facebookresearch/detectron2/blob/main/configs/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x.yaml] of detectron2.
We also provide the checkpoint [https://download.openmmlab.com/mmdetection/v2.0/benchmark/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug_compare_20200518-10127928.pth] and training log [https://download.openmmlab.com/mmdetection/v2.0/benchmark/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug_20200518_105755.log.json] for reference. The throughput is computed as the average throughput in iterations 100-500 to skip GPU warmup time.




	Implementation
	Throughput (img/s)





	Detectron2
	62



	MMDetection
	61



	maskrcnn-benchmark
	53



	tensorpack
	50



	simpledet
	39



	Detectron
	19



	matterport/Mask_RCNN
	14








Inference Speed Benchmark

We provide benchmark.py [https://github.com/open-mmlab/mmdetection/blob/main/tools/analysis_tools/benchmark.py] to benchmark the inference latency.
The script benchmarkes the model with 2000 images and calculates the average time ignoring first 5 times. You can change the output log interval (defaults: 50) by setting LOG-INTERVAL.

python tools/benchmark.py ${CONFIG} ${CHECKPOINT} [--log-interval $[LOG-INTERVAL]] [--fuse-conv-bn]





The latency of all models in our model zoo is benchmarked without setting fuse-conv-bn, you can get a lower latency by setting it.






Comparison with Detectron2

We compare mmdetection with Detectron2 [https://github.com/facebookresearch/detectron2.git] in terms of speed and performance.
We use the commit id 185c27e [https://github.com/facebookresearch/detectron2/tree/185c27e4b4d2d4c68b5627b3765420c6d7f5a659](30/4/2020) of detectron.
For fair comparison, we install and run both frameworks on the same machine.


Hardware


	8 NVIDIA Tesla V100 (32G) GPUs


	Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz







Software environment


	Python 3.7


	PyTorch 1.4


	CUDA 10.1


	CUDNN 7.6.03


	NCCL 2.4.08







Performance




	Type
	Lr schd
	Detectron2
	mmdetection
	Download





	Faster R-CNN
	1x
	37.9
	38.0
	model | log



	Mask R-CNN
	1x
	38.6 & 35.2
	38.8 & 35.4
	model | log



	Retinanet
	1x
	36.5
	37.0
	model | log








Training Speed

The training speed is measure with s/iter. The lower, the better.




	Type
	Detectron2
	mmdetection





	Faster R-CNN
	0.210
	0.216



	Mask R-CNN
	0.261
	0.265



	Retinanet
	0.200
	0.205








Inference Speed

The inference speed is measured with fps (img/s) on a single GPU, the higher, the better.
To be consistent with Detectron2, we report the pure inference speed (without the time of data loading).
For Mask R-CNN, we exclude the time of RLE encoding in post-processing.
We also include the officially reported speed in the parentheses, which is slightly higher
than the results tested on our server due to differences of hardwares.




	Type
	Detectron2
	mmdetection





	Faster R-CNN
	25.6 (26.3)
	22.2



	Mask R-CNN
	22.5 (23.3)
	19.6



	Retinanet
	17.8 (18.2)
	20.6








Training memory




	Type
	Detectron2
	mmdetection





	Faster R-CNN
	3.0
	3.8



	Mask R-CNN
	3.4
	3.9



	Retinanet
	3.9
	3.4












            

          

      

      

    

  

  
    
    
    Contribution
    

    

    

    
 
  

    
      
          
            
  
Contribution





            

          

      

      

    

  

  
    
    
    Projects based on MMDetection
    

    

    

    
 
  

    
      
          
            
  
Projects based on MMDetection

There are many projects built upon MMDetection.
We list some of them as examples of how to extend MMDetection for your own projects.
As the page might not be completed, please feel free to create a PR to update this page.


Projects as an extension

Some projects extend the boundary of MMDetection for deployment or other research fields.
They reveal the potential of what MMDetection can do. We list several of them as below.


	OTEDetection [https://github.com/opencv/mmdetection]: OpenVINO training extensions for object detection.


	MMDetection3d [https://github.com/open-mmlab/mmdetection3d]: OpenMMLab’s next-generation platform for general 3D object detection.







Projects of papers

There are also projects released with papers.
Some of the papers are published in top-tier conferences (CVPR, ICCV, and ECCV), the others are also highly influential.
To make this list also a reference for the community to develop and compare new object detection algorithms, we list them following the time order of top-tier conferences.
Methods already supported and maintained by MMDetection are not listed.


	Involution: Inverting the Inherence of Convolution for Visual Recognition, CVPR21. [paper] [https://arxiv.org/abs/2103.06255][github] [https://github.com/d-li14/involution]


	Multiple Instance Active Learning for Object Detection, CVPR 2021. [paper] [https://openaccess.thecvf.com/content/CVPR2021/papers/Yuan_Multiple_Instance_Active_Learning_for_Object_Detection_CVPR_2021_paper.pdf][github] [https://github.com/yuantn/MI-AOD]


	Adaptive Class Suppression Loss for Long-Tail Object Detection, CVPR 2021. [paper] [https://arxiv.org/abs/2104.00885][github] [https://github.com/CASIA-IVA-Lab/ACSL]


	Generalizable Pedestrian Detection: The Elephant In The Room, CVPR2021. [paper] [https://arxiv.org/abs/2003.08799][github] [https://github.com/hasanirtiza/Pedestron]


	Group Fisher Pruning for Practical Network Compression, ICML2021. [paper] [https://github.com/jshilong/FisherPruning/blob/main/resources/paper.pdf][github] [https://github.com/jshilong/FisherPruning]


	Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax, CVPR2020. [paper] [http://openaccess.thecvf.com/content_CVPR_2020/papers/Li_Overcoming_Classifier_Imbalance_for_Long-Tail_Object_Detection_With_Balanced_Group_CVPR_2020_paper.pdf][github] [https://github.com/FishYuLi/BalancedGroupSoftmax]


	Coherent Reconstruction of Multiple Humans from a Single Image, CVPR2020. [paper] [https://jiangwenpl.github.io/multiperson/][github] [https://github.com/JiangWenPL/multiperson]


	Look-into-Object: Self-supervised Structure Modeling for Object Recognition, CVPR 2020. [paper] [http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhou_Look-Into-Object_Self-Supervised_Structure_Modeling_for_Object_Recognition_CVPR_2020_paper.pdf][github] [https://github.com/JDAI-CV/LIO]


	Video Panoptic Segmentation, CVPR2020. [paper] [https://arxiv.org/abs/2006.11339][github] [https://github.com/mcahny/vps]


	D2Det: Towards High Quality Object Detection and Instance Segmentation, CVPR2020. [paper] [http://openaccess.thecvf.com/content_CVPR_2020/html/Cao_D2Det_Towards_High_Quality_Object_Detection_and_Instance_Segmentation_CVPR_2020_paper.html][github] [https://github.com/JialeCao001/D2Det]


	CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection, CVPR2020. [paper] [https://arxiv.org/abs/2003.09119][github] [https://github.com/KiveeDong/CentripetalNet]


	Learning a Unified Sample Weighting Network for Object Detection, CVPR 2020. [paper] [http://openaccess.thecvf.com/content_CVPR_2020/html/Cai_Learning_a_Unified_Sample_Weighting_Network_for_Object_Detection_CVPR_2020_paper.html][github] [https://github.com/caiqi/sample-weighting-network]


	Scale-equalizing Pyramid Convolution for Object Detection, CVPR2020. [paper] [https://arxiv.org/abs/2005.03101] [github] [https://github.com/jshilong/SEPC]


	Revisiting the Sibling Head in Object Detector, CVPR2020. [paper] [https://arxiv.org/abs/2003.07540][github] [https://github.com/Sense-X/TSD]


	PolarMask: Single Shot Instance Segmentation with Polar Representation, CVPR2020. [paper] [https://arxiv.org/abs/1909.13226][github] [https://github.com/xieenze/PolarMask]


	Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection, CVPR2020. [paper] [https://arxiv.org/abs/2003.11818][github] [https://github.com/ggjy/HitDet.pytorch]


	ZeroQ: A Novel Zero Shot Quantization Framework, CVPR2020. [paper] [https://arxiv.org/abs/2001.00281][github] [https://github.com/amirgholami/ZeroQ]


	CBNet: A Novel Composite Backbone Network Architecture for Object Detection, AAAI2020. [paper] [https://aaai.org/Papers/AAAI/2020GB/AAAI-LiuY.1833.pdf][github] [https://github.com/VDIGPKU/CBNet]


	RDSNet: A New Deep Architecture for Reciprocal Object Detection and Instance Segmentation, AAAI2020. [paper] [https://arxiv.org/abs/1912.05070][github] [https://github.com/wangsr126/RDSNet]


	Training-Time-Friendly Network for Real-Time Object Detection, AAAI2020. [paper] [https://arxiv.org/abs/1909.00700][github] [https://github.com/ZJULearning/ttfnet]


	Cascade RPN: Delving into High-Quality Region Proposal Network with Adaptive Convolution, NeurIPS 2019. [paper] [https://arxiv.org/abs/1909.06720][github] [https://github.com/thangvubk/Cascade-RPN]


	Reasoning R-CNN: Unifying Adaptive Global Reasoning into Large-scale Object Detection, CVPR2019. [paper] [http://openaccess.thecvf.com/content_CVPR_2019/papers/Xu_Reasoning-RCNN_Unifying_Adaptive_Global_Reasoning_Into_Large-Scale_Object_Detection_CVPR_2019_paper.pdf][github] [https://github.com/chanyn/Reasoning-RCNN]


	Learning RoI Transformer for Oriented Object Detection in Aerial Images, CVPR2019. [paper] [https://arxiv.org/abs/1812.00155][github] [https://github.com/dingjiansw101/AerialDetection]


	SOLO: Segmenting Objects by Locations. [paper] [https://arxiv.org/abs/1912.04488][github] [https://github.com/WXinlong/SOLO]


	SOLOv2: Dynamic, Faster and Stronger. [paper] [https://arxiv.org/abs/2003.10152][github] [https://github.com/WXinlong/SOLO]


	Dense Peppoints: Representing Visual Objects with Dense Point Sets. [paper] [https://arxiv.org/abs/1912.11473][github] [https://github.com/justimyhxu/Dense-RepPoints]


	IterDet: Iterative Scheme for Object Detection in Crowded Environments. [paper] [https://arxiv.org/abs/2005.05708][github] [https://github.com/saic-vul/iterdet]


	Cross-Iteration Batch Normalization. [paper] [https://arxiv.org/abs/2002.05712][github] [https://github.com/Howal/Cross-iterationBatchNorm]


	A Ranking-based, Balanced Loss Function Unifying Classification and Localisation in Object Detection, NeurIPS2020 [paper] [https://arxiv.org/abs/2009.13592][github] [https://github.com/kemaloksuz/aLRPLoss]


	RelationNet++: Bridging Visual Representations for Object Detection via Transformer Decoder, NeurIPS2020 [paper] [https://arxiv.org/abs/2010.15831][github] [https://github.com/microsoft/RelationNet2]


	Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection, CVPR2021[paper] [https://arxiv.org/abs/2011.12885][github] [https://github.com/implus/GFocalV2]


	Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV2021[paper] [https://arxiv.org/abs/2103.14030][github] [https://github.com/SwinTransformer/]


	Focal Transformer: Focal Self-attention for Local-Global Interactions in Vision Transformers, NeurIPS2021[paper] [https://arxiv.org/abs/2107.00641][github] [https://github.com/microsoft/Focal-Transformer]


	End-to-End Semi-Supervised Object Detection with Soft Teacher, ICCV2021[paper] [https://arxiv.org/abs/2106.09018][github] [https://github.com/microsoft/SoftTeacher]


	CBNetV2: A Novel Composite Backbone Network Architecture for Object Detection [paper] [http://arxiv.org/abs/2107.00420][github] [https://github.com/VDIGPKU/CBNetV2]


	Instances as Queries, ICCV2021 [paper] [https://openaccess.thecvf.com/content/ICCV2021/papers/Fang_Instances_As_Queries_ICCV_2021_paper.pdf][github] [https://github.com/hustvl/QueryInst]










            

          

      

      

    

  

  
    
    
    Changelog of v3.x
    

    

    

    
 
  

    
      
          
            
  
Changelog of v3.x


v3.3.0 (05/01/2024)


Highlights

Grounding-DINO is a state-of-the-art open-set detection model that tackles multiple vision tasks including Open-Vocabulary Detection (OVD), Phrase Grounding (PG), and Referring Expression Comprehension (REC). Its effectiveness has led to its widespread adoption as a mainstream architecture for various downstream applications. However, despite its significance, the original Grounding-DINO model lacks comprehensive public technical details due to the unavailability of its training code. To bridge this gap, we present MM-Grounding-DINO, an open-source, comprehensive, and user-friendly baseline, which is built with the MMDetection toolbox. It adopts abundant vision datasets for pre-training and various detection and grounding datasets for fine-tuning. We give a comprehensive analysis of each reported result and detailed settings for reproduction. The extensive experiments on the benchmarks mentioned demonstrate that our MM-Grounding-DINO-Tiny outperforms the Grounding-DINO-Tiny baseline. We release all our models to the research community.




New Features


	Add RTMDet Swin / ConvNeXt backbone and results (#11259)


	Add odinw configs and evaluation results of GLIP (#11175)


	Add optional score threshold option to coco_error_analysis.py (#11117)


	Add new configs for panoptic_fpn (#11109)


	Replace partially weighted download links with OpenXLab for the Faster-RCNN (#11173)







Bug Fixes


	Fix Grounding DINO nan when class tokens exceeds 256 (#11066)


	Fix the CO-DETR config files error (#11325)


	Fix CO-DETR load_from url in config (#11220)


	Fixed mask shape after Albu postprocess (#11280)


	Fix bug in convert_coco_format  and youtubevis2coco (#11251, #11086)







Contributors

A total of 15 developers contributed to this release.

Thank @adnan-mujagic, @Cycyes, @ilcopione, @returnL, @honeybadger78, @okotaku, @xushilin1, @keyhsw, @guyleaf, @Crescent-Saturn, @LRJKD, @aaronzs, @Divadi, @AwePhD, @hhaAndroid






v3.2.0 (12/10/2023)


Highlights

(1) Detection Transformer SOTA Model Collection


	Supported four updated and stronger SOTA Transformer models: DDQ, CO-DETR, AlignDETR, and H-DINO.


	Based on CO-DETR, MMDet released a model with a COCO performance of 64.1 mAP.


	Algorithms such as DINO support AMP/Checkpoint/FrozenBN, which can effectively reduce memory usage.




(2) Comprehensive Performance Comparison between CNN and Transformer

RF100 consists of a dataset collection of 100 real-world datasets, including 7 domains. It can be used to assess the performance differences of Transformer models like DINO and CNN-based algorithms under different scenarios and data volumes. Users can utilize this benchmark to quickly evaluate the robustness of their algorithms in various scenarios.

(3) Support for GLIP and Grounding DINO fine-tuning, the only algorithm library that supports Grounding DINO fine-tuning

The Grounding DINO algorithm in MMDet is the only library that supports fine-tuning. Its performance is one point higher than the official version, and of course, GLIP also outperforms the official version.
We also provide a detailed process for training and evaluating Grounding DINO on custom datasets. Everyone is welcome to give it a try.

(4) Support for the open-vocabulary detection algorithm Detic and multi-dataset joint training.

(5) Training detection models using FSDP and DeepSpeed.

(6) Support for the V3Det dataset, a large-scale detection dataset with over 13,000 categories.




New Features


	Support CO-DETR/DDQ/AlignDETR/H-DINO


	Support GLIP and Grounding DINO fine-tuning


	Support Detic and Multi-Datasets training (#10926)


	Support V3Det and benchmark (#10938)


	Support Roboflow 100 Benchmark (#10915)


	Add custom dataset of grounding dino (#11012)


	Release RTMDet-X p6 (#10993)


	Support AMP of DINO (#10827)


	Support FrozenBN (#10845)


	Add new configuration files for QDTrack/DETR/RTMDet/MaskRCNN/DINO/DeformableDETR/MaskFormer algorithm


	Add a new script to support the WBF (#10808)


	Add large_image_demo (#10719)


	Support download dataset from OpenXLab (#10799)


	Update to support torch2onnx for DETR series models (#10910)


	Translation into Chinese of an English document (#10744, #10756, #10805, #10848)







Bug Fixes


	Fix name error in DETR metafile.yml (#10595)


	Fix device of the tensors in set_nms (#10574)


	Remove some unicode chars from en/ docs (#10648)


	Fix download dataset with mim script. (#10727)


	Fix export to torchserve (#10694)


	Fix typo in mask-rcnn_r50_fpn_1x-wandb_coco (#10757)


	Fix eval_recalls error in voc_metric (#10770)


	Fix torch version comparison (#10934)


	Fix incorrect behavior to access train pipeline from ConcatDataset in analyze_results.py (#11004)







Improvements


	Update useful_tools.md (#10587)


	Update Instance segmentation Tutorial (#10711)


	Update train.py to compat with new config (#11025)


	Support torch2onnx for maskformer series (#10782)







Contributors

A total of 36 developers contributed to this release.

Thank @YQisme, @nskostas, @max-unfinity, @evdcush, @Xiangxu-0103, @ZhaoCake, @RangeKing, @captainIT, @ODAncona, @aaronzs, @zeyuanyin, @gotjd709, @Musiyuan, @YanxingLiu, @RunningLeon, @ytzfhqs, @zhangzhidaSunny, @yeungkong, @crazysteeaam, @timerring, @okotaku, @apatsekin, @Morty-Xu, @Markson-Young, @ZhaoQiiii, @Kuro96, @PhoenixZ810, @yhcao6, @myownskyW7, @jiongjiongli, @Johnson-Wang, @ryylcc, @guyleaf, @agpeshal, @SimonGuoNjust, @hhaAndroid






v3.1.0 (30/6/2023)


Highlights


	Supports tracking algorithms including multi-object tracking (MOT) algorithms SORT, DeepSORT, StrongSORT, OCSORT, ByteTrack, QDTrack, and video instance segmentation (VIS) algorithm MaskTrackRCNN, Mask2Former-VIS.


	Support ViTDet


	Supports inference and evaluation of multimodal algorithms GLIP and XDecoder, and also supports datasets such as COCO semantic segmentation, COCO Caption, ADE20k general segmentation, and RefCOCO. GLIP fine-tuning will be supported in the future.


	Provides a gradio demo [https://github.com/open-mmlab/mmdetection/blob/dev-3.x/projects/gradio_demo/README.md] for image type tasks of MMDetection, making it easy for users to experience.







New Features


	Support DSDL Dataset (#9801)


	Support iSAID dataset (#10028)


	Support VISION dataset (#10530)


	Release SoftTeacher checkpoints (#10119)


	Release centernet-update_r50-caffe_fpn_ms-1x_coco checkpoints  (#10327)


	Support SIoULoss (#10290)


	Support Eqlv2 loss (#10120)


	Support CopyPaste when mask is not available (#10509)


	Support MIM to download ODL dataset (#10460)


	Support new config (#10566)







Bug Fixes


	Fix benchmark scripts error in windows (#10128)


	Fix error of YOLOXModeSwitchHook does not switch the mode when resumed from the checkpoint after switched (#10116)


	Fix pred and weight dims unmatch in SmoothL1Loss (#10423)







Improvements


	Update MMDet_Tutorial.ipynb (#10081)


	Support to hide inference progress (#10519)


	Replace mmcls with mmpretrain  (#10545)







Contributors

A total of 29 developers contributed to this release.

Thanks @lovelykite, @minato-ellie, @freepoet, @wufan-tb, @yalibian, @keyakiluo, @gihanjayatilaka, @i-aki-y, @xin-li-67, @RangeKing, @JingweiZhang12, @MambaWong, @lucianovk, @tall-josh, @xiuqhou, @jamiechoi1995, @YQisme, @yechenzhi, @bjzhb666, @xiexinch, @jamiechoi1995, @yarkable, @Renzhihan, @nijkah, @amaizr, @Lum1104, @zwhus, @Czm369, @hhaAndroid






v3.0.0 (6/4/2023)


Highlights


	Support Semi-automatic annotation Base Label-Studio (#10039)


	Support EfficientDet in projects (#9810)







New Features


	File I/O migration and reconstruction (#9709)


	Release DINO Swin-L 36e model (#9927)







Bug Fixes


	Fix benchmark script (#9865)


	Fix the crop method of PolygonMasks (#9858)


	Fix Albu augmentation with the mask shape (#9918)


	Fix RTMDetIns prior generator device error (#9964)


	Fix img_shape in data pipeline (#9966)


	Fix cityscapes import error (#9984)


	Fix solov2_r50_fpn_ms-3x_coco.py config error (#10030)


	Fix Conditional DETR AP and Log (#9889)


	Fix accepting an unexpected argument local-rank in PyTorch 2.0 (#10050)


	Fix common/ms_3x_coco-instance.py config error (#10056)


	Fix compute flops error (#10051)


	Delete data_root in CocoOccludedSeparatedMetric to fix bug (#9969)


	Unifying metafile.yml (#9849)







Improvements


	Added BoxInst r101 config (#9967)


	Added config migration guide (#9960)


	Added more social networking links (#10021)


	Added RTMDet config introduce (#10042)


	Added visualization docs (#9938, #10058)


	Refined data_prepare docs (#9935)


	Added support for setting the cache_size_limit parameter of dynamo in PyTorch 2.0 (#10054)


	Updated coco_metric.py (#10033)


	Update type hint (#10040)







Contributors

A total of 19 developers contributed to this release.

Thanks @IRONICBo, @vansin, @RangeKing, @Ghlerrix, @okotaku, @JosonChan1998, @zgzhengSE, @bobo0810, @yechenzh, @Zheng-LinXiao, @LYMDLUT, @yarkable, @xiejiajiannb, @chhluo, @BIGWangYuDong, @RangiLy, @zwhus, @hhaAndroid, @ZwwWayne






v3.0.0rc6 (24/2/2023)


Highlights


	Support Boxinst, Objects365 Dataset, and Separated and Occluded COCO metric


	Support ConvNeXt-V2, DiffusionDet, and inference of EfficientDet and Detic in Projects


	Refactor DETR series and support Conditional-DETR, DAB-DETR, and DINO


	Support DetInferencer for inference, Test Time Augmentation, and automatically importing modules from registry


	Support RTMDet-Ins ONNXRuntime and TensorRT deployment


	Support calculating FLOPs of detectors







New Features


	Support Boxinst [https://arxiv.org/abs/2012.02310] (#9525)


	Support Objects365 Dataset [https://openaccess.thecvf.com/content_ICCV_2019/papers/Shao_Objects365_A_Large-Scale_High-Quality_Dataset_for_Object_Detection_ICCV_2019_paper.pdf] (#9600)


	Support ConvNeXt-V2 [http://arxiv.org/abs/2301.00808] in Projects (#9619)


	Support DiffusionDet [https://arxiv.org/abs/2211.09788] in Projects (#9639, #9768)


	Support Detic [http://arxiv.org/abs/2201.02605] inference in Projects (#9645)


	Support EfficientDet [https://arxiv.org/abs/1911.09070] inference in Projects (#9645)


	Support Separated and Occluded COCO metric [https://arxiv.org/abs/2210.10046] (#9710)


	Support auto import modules from registry (#9143)


	Refactor DETR series and support Conditional-DETR, DAB-DETR and DINO (#9646)


	Support DetInferencer for inference (#9561)


	Support Test Time Augmentation (#9452)


	Support calculating FLOPs of detectors (#9777)







Bug Fixes


	Fix deprecating old type alias due to new version of numpy (#9625, #9537)


	Fix VOC metrics (#9784)


	Fix the wrong link of RTMDet-x log (#9549)


	Fix RTMDet link in README (#9575)


	Fix MMDet get flops error (#9589)


	Fix use_depthwise in RTMDet (#9624)


	Fix albumentations augmentation post process with masks (#9551)


	Fix DETR series Unit Test (#9647)


	Fix LoadPanopticAnnotations bug (#9703)


	Fix isort CI (#9680)


	Fix amp pooling overflow (#9670)


	Fix docstring about noise in DINO (#9747)


	Fix potential bug in MultiImageMixDataset (#9764)







Improvements


	Replace NumPy transpose with PyTorch permute to speed-up (#9762)


	Deprecate sklearn (#9725)


	Add RTMDet-Ins deployment guide (#9823)


	Update RTMDet config and README (#9603)


	Replace the models used in the tutorial document with RTMDet (#9843)


	Adjust the minimum supported python version to 3.7 (#9602)


	Support modifying palette through configuration (#9445)


	Update README document in Project (#9599)


	Replace github with gitee in .pre-commit-config-zh-cn.yaml file (#9586)


	Use official isort in .pre-commit-config.yaml file (#9701)


	Change MMCV minimum version to 2.0.0rc4 for dev-3.x (#9695)


	Add Chinese version of single_stage_as_rpn.md and test_results_submission.md (#9434)


	Add OpenDataLab download link (#9605, #9738)


	Add type hints of several layers (#9346)


	Add typehint for DarknetBottleneck (#9591)


	Add dockerfile (#9659)


	Add twitter, discord, medium, and youtube link (#9775)


	Prepare for merging refactor-detr (#9656)


	Add metafile to ConditionalDETR, DABDETR and DINO (#9715)


	Support to modify non_blocking parameters (#9723)


	Comment repeater visualizer register (#9740)


	Update user guide: finetune.md and inference.md (#9578)







New Contributors


	@NoFish-528 made their first contribution in https://github.com/open-mmlab/mmdetection/pull/9346


	@137208 made their first contribution in https://github.com/open-mmlab/mmdetection/pull/9434


	@lyviva made their first contribution in https://github.com/open-mmlab/mmdetection/pull/9625


	@zwhus made their first contribution in https://github.com/open-mmlab/mmdetection/pull/9589


	@zylo117 made their first contribution in https://github.com/open-mmlab/mmdetection/pull/9670


	@chg0901 made their first contribution in https://github.com/open-mmlab/mmdetection/pull/9740


	@DanShouzhu made their first contribution in https://github.com/open-mmlab/mmdetection/pull/9578







Contributors

A total of 27 developers contributed to this release.

Thanks @JosonChan1998, @RangeKing, @NoFish-528, @likyoo, @Xiangxu-0103, @137208, @PeterH0323, @tianleiSHI, @wufan-tb, @lyviva, @zwhus, @jshilong, @Li-Qingyun, @sanbuphy, @zylo117, @triple-Mu, @KeiChiTse, @LYMDLUT, @nijkah, @chg0901, @DanShouzhu, @zytx121, @vansin, @BIGWangYuDong, @hhaAndroid, @RangiLyu, @ZwwWayne






v3.0.0rc5 (26/12/2022)


Highlights


	Support RTMDet [https://arxiv.org/abs/2212.07784] instance segmentation models. The technical report of RTMDet is on arxiv [https://arxiv.org/abs/2212.07784]


	Support SSHContextModule in paper SSH: Single Stage Headless Face Detector [https://arxiv.org/abs/1708.03979].







New Features


	Support RTMDet [https://arxiv.org/abs/2212.07784] instance segmentation models and improve RTMDet test config (#9494)


	Support SSHContextModule in paper SSH: Single Stage Headless Face Detector [https://arxiv.org/abs/1708.03979] (#8953)


	Release CondInst [https://arxiv.org/abs/2003.05664] pre-trained model (#9406)







Bug Fixes


	Fix CondInst predict error when batch_size is greater than 1 in inference (#9400)


	Fix the bug of visualization when the dtype of the pipeline output image is not uint8 in browse dataset (#9401)


	Fix analyze_logs.py to plot mAP and calculate train time correctly (#9409)


	Fix backward inplace error with PAFPN (#9450)


	Fix config import links in model converters (#9441)


	Fix DeformableDETRHead object has no attribute loss_single (#9477)


	Fix the logic of pseudo bboxes predicted by teacher model in SemiBaseDetector (#9414)


	Fix demo API in instance segmentation tutorial (#9226)


	Fix analyze_results (#9380)


	Fix the error that Readthedocs API cannot be displayed (#9510)


	Fix the error when there are no prediction results and support visualize the groundtruth of TTA (#9840)







Improvements


	Remove legacy builder.py (#9479)


	Make sure the pipeline argument shape is in (width, height) order (#9324)


	Add .pre-commit-config-zh-cn.yaml file (#9388)


	Refactor dataset metainfo to lowercase (#9469)


	Add PyTorch 1.13 checking in CI (#9478)


	Adjust FocalLoss and QualityFocalLoss to allow different kinds of targets (#9481)


	Refactor setup.cfg (#9370)


	Clip saturation value to valid range [0, 1] (#9391)


	Only keep meta and state_dict when publishing model (#9356)


	Add segm evaluator in ms-poly_3x_coco_instance config (#9524)


	Update deployment guide (#9527)


	Update zh_cn faq.md (#9396)


	Update get_started (#9480)


	Update the zh_cn user_guides of useful_tools.md and useful_hooks.md (#9453)


	Add type hints for bfp and channel_mapper (#9410)


	Add type hints of several losses (#9397)


	Add type hints and update docstring for task modules (#9468)







New Contributors


	@lihua199710 made their first contribution in https://github.com/open-mmlab/mmdetection/pull/9388


	@twmht made their first contribution in https://github.com/open-mmlab/mmdetection/pull/9450


	@tianleiSHI made their first contribution in https://github.com/open-mmlab/mmdetection/pull/9453


	@kitecats made their first contribution in https://github.com/open-mmlab/mmdetection/pull/9481


	@QJC123654 made their first contribution in https://github.com/open-mmlab/mmdetection/pull/9468







Contributors

A total of 20 developers contributed to this release.

Thanks @liuyanyi, @RangeKing, @lihua199710, @MambaWong, @sanbuphy, @Xiangxu-0103, @twmht, @JunyaoHu, @Chan-Sun, @tianleiSHI, @zytx121, @kitecats, @QJC123654, @JosonChan1998, @lvhan028, @Czm369, @BIGWangYuDong, @RangiLyu, @hhaAndroid, @ZwwWayne






v3.0.0rc4 (23/11/2022)


Highlights


	Support CondInst [https://arxiv.org/abs/2003.05664]


	Add projects/ folder, which will be a place for some experimental models/features.


	Support SparseInst [https://arxiv.org/abs/2203.12827] in projects







New Features


	Support CondInst [https://arxiv.org/abs/2003.05664] (#9223)


	Add projects/ folder, which will be a place for some experimental models/features (#9341)


	Support SparseInst [https://arxiv.org/abs/2203.12827] in projects (#9377)







Bug Fixes


	Fix pixel_decoder_type discrimination in MaskFormer Head. (#9176)


	Fix wrong padding value in cached MixUp (#9259)


	Rename utils/typing.py to utils/typing_utils.py to fix collect_env error (#9265)


	Fix resume arg conflict (#9287)


	Fix the configs of Faster R-CNN with caffe backbone (#9319)


	Fix torchserve and update related documentation (#9343)


	Fix bbox refine bug with sigmooid activation (#9538)







Improvements


	Update the docs of GIoU Loss in README (#8810)


	Handle dataset wrapper in inference_detector (#9144)


	Update the type of counts in COCO’s compressed RLE (#9274)


	Support saving config file in print_config (#9276)


	Update docs about video inference (#9305)


	Update guide about model deployment (#9344)


	Fix doc typos of useful tools (#9177)


	Allow to resume from specific checkpoint in CLI (#9284)


	Update FAQ about windows installation issues of pycocotools (#9292)







New Contributors


	@Daa98 made their first contribution in https://github.com/open-mmlab/mmdetection/pull/9274


	@lvhan028 made their first contribution in https://github.com/open-mmlab/mmdetection/pull/9344







Contributors

A total of 12 developers contributed to this release.

Thanks @sanbuphy, @Czm369, @Daa98, @jbwang1997, @BIGWangYuDong, @JosonChan1998, @lvhan028, @RunningLeon, @RangiLyu, @Daa98, @ZwwWayne, @hhaAndroid






v3.0.0rc3 (4/11/2022)

Upgrade the minimum version requirement of MMEngine to 0.3.0 to use ignore_key of ConcatDataset for training VOC datasets (#9058)


Highlights


	Support CrowdDet [https://arxiv.org/abs/2003.09163] and EIoU Loss [https://ieeexplore.ieee.org/document/9429909]


	Support training detection models in Detectron2


	Refactor Fast R-CNN







New Features


	Support CrowdDet [https://arxiv.org/abs/2003.09163] (#8744)


	Support training detection models in Detectron2 with examples of Mask R-CNN, Faster R-CNN, and RetinaNet (#8672)


	Support EIoU Loss [https://ieeexplore.ieee.org/document/9429909] (#9086)







Bug Fixes


	Fix XMLDataset image size error (#9216)


	Fix bugs of empty_instances when predicting without nms in roi_head (#9015)


	Fix the config file of DETR (#9158)


	Fix SOLOv2 cannot dealing with empty gt image (#9192)


	Fix inference demo (#9153)


	Add ignore_key in VOC ConcatDataset (#9058)


	Fix dumping results issue in test scripts. (#9241)


	Fix configs of training coco subsets on MMDet 3.x (#9225)


	Fix corner2hbox of HorizontalBoxes for supporting empty bboxes (#9140)







Improvements


	Refactor Fast R-CNN (#9132)


	Clean requirements of mmcv-full due to SyncBN (#9207)


	Support training detection models in detectron2 (#8672)


	Add box_type support for DynamicSoftLabelAssigner (#9179)


	Make scipy as a default dependency in runtime (#9187)


	Update eval_metric (#9062)


	Add seg_map_suffix in BaseDetDataset (#9088)







New Contributors


	@Wwupup made their first contribution in https://github.com/open-mmlab/mmdetection/pull/9086


	@sanbuphy made their first contribution in https://github.com/open-mmlab/mmdetection/pull/9153


	@cxiang26 made their first contribution in https://github.com/open-mmlab/mmdetection/pull/9158


	@JosonChan1998 made their first contribution in https://github.com/open-mmlab/mmdetection/pull/9225







Contributors

A total of 13 developers contributed to this release.

Thanks @wanghonglie, @Wwupup, @sanbuphy, @BIGWangYuDong, @liuyanyi, @cxiang26, @jbwang1997, @ZwwWayne, @yuyoujiang, @RangiLyu, @hhaAndroid, @JosonChan1998, @Czm369






v3.0.0rc2 (21/10/2022)


Highlights


	Support imagenet pre-training for RTMDet’s backbone







New Features


	Support imagenet pre-training for RTMDet’s backbone (#8887)


	Add CrowdHumanDataset and Metric (#8430)


	Add FixShapeResize to support resize of fixed shape (#8665)







Bug Fixes


	Fix ConcatDataset Import Error (#8909)


	Fix CircleCI and readthedoc build failed (#8980, #8963)


	Fix bitmap mask translate when out_shape is different (#8993)


	Fix inconsistency in Conv2d weight channels (#8948)


	Fix bugs when plotting loss curve by analyze_logs.py (#8944)


	Fix type change of labels in albumentations (#9074)


	Fix some docs and types error (#8818)


	Update memory occupation of RTMDet in metafile (#9098)


	Fix wrong arguments of OpenImageMetrics in the config (#9061)







Improvements


	Refactor standard roi head with box type (#8658)


	Support mask concatenation in BitmapMasks and PolygonMasks (#9006)


	Update PyTorch and dependencies’ version in dockerfile (#8845)


	Update robustness_eval.py and print_config (#8452)


	Make compatible with ConfigDict and dict in dense_heads (#8942)


	Support logging coco metric copypaste (#9012)


	Remove Normalize transform (#8913)


	Support jittering the color of different instances of the same class (#8988)


	Add assertion for missing key in PackDetInputs (#8982)







New Contributors


	@Chan-Sun made their first contribution in https://github.com/open-mmlab/mmdetection/pull/8909


	@MambaWong made their first contribution in https://github.com/open-mmlab/mmdetection/pull/8913


	@yuyoujiang made their first contribution in https://github.com/open-mmlab/mmdetection/pull/8437


	@sltlls made their first contribution in https://github.com/open-mmlab/mmdetection/pull/8944


	@Nioolek made their first contribution in https://github.com/open-mmlab/mmdetection/pull/8845


	@wufan-tb made their first contribution in https://github.com/open-mmlab/mmdetection/pull/9061







Contributors

A total of 13 developers contributed to this release.

Thanks @RangiLyu, @jbwang1997, @wanghonglie, @Chan-Sun, @RangeKing, @chhluo, @MambaWong, @yuyoujiang, @hhaAndroid, @sltlls, @Nioolek, @ZwwWayne, @wufan-tb






v3.0.0rc1 (26/9/2022)


Highlights


	Release a high-precision, low-latency single-stage object detector RTMDet.







Bug Fixes


	Fix UT to be compatible with PyTorch 1.6 (#8707)


	Fix NumClassCheckHook bug when model is wrapped (#8794)


	Update the right URL of R-50-FPN with BoundedIoULoss (#8805)


	Fix potential bug of indices in RandAugment (#8826)


	Fix some types and links (#8839, #8820, #8793, #8868)


	Fix incorrect background fill values in FSAF and RepPoints Head (#8813)







Improvements


	Refactored anchor head and base head with box type (#8625)


	Refactored SemiBaseDetector and SoftTeacher (#8786)


	Add list to dict keys to avoid modify loss dict (#8828)


	Update analyze_results.py , analyze_logs.py and loading.py (#8430, #8402, #8784)


	Support dump results in test.py (#8814)


	Check empty predictions in DetLocalVisualizer._draw_instances (#8830)


	Fix floordiv warning in SOLO (#8738)







Contributors

A total of 16 developers contributed to this release.

Thanks @ZwwWayne, @jbwang1997, @Czm369, @ice-tong, @Zheng-LinXiao, @chhluo, @RangiLyu, @liuyanyi, @wanghonglie, @levan92, @JiayuXu0, @nye0, @hhaAndroid, @xin-li-67, @shuxp, @zytx121






v3.0.0rc0 (31/8/2022)

We are excited to announce the release of MMDetection 3.0.0rc0. MMDet 3.0.0rc0 is the first version of MMDetection 3.x, a part of the OpenMMLab 2.0 projects. Built upon the new training engine [https://github.com/open-mmlab/mmengine], MMDet 3.x unifies the interfaces of the dataset, models, evaluation, and visualization with faster training and testing speed. It also provides a general semi-supervised object detection framework and strong baselines.


Highlights


	New engine. MMDet 3.x is based on MMEngine [https://github.com/open-mmlab/mmengine], which provides a universal and powerful runner that allows more flexible customizations and significantly simplifies the entry points of high-level interfaces.


	Unified interfaces. As a part of the OpenMMLab 2.0 projects, MMDet 3.x unifies and refactors the interfaces and internal logic of training, testing, datasets, models, evaluation, and visualization. All the OpenMMLab 2.0 projects share the same design in those interfaces and logic to allow the emergence of multi-task/modality algorithms.


	Faster speed. We optimize the training and inference speed for common models and configurations, achieving a faster or similar speed than Detection2 [https://github.com/facebookresearch/detectron2/]. Model details of benchmark will be updated in this note.


	General semi-supervised object detection. Benefitting from the unified interfaces, we support a general semi-supervised learning framework that works with all the object detectors supported in MMDet 3.x. Please refer to semi-supervised object detection for details.


	Strong baselines. We release strong baselines of many popular models to enable fair comparisons among state-of-the-art models.


	New features and algorithms:


	Enable all the single-stage detectors to serve as region proposal networks


	SoftTeacher [https://arxiv.org/abs/2106.09018]


	the updated CenterNet [https://arxiv.org/abs/2103.07461]






	More documentation and tutorials. We add a bunch of documentation and tutorials to help users get started more smoothly. Read it here [https://mmdetection.readthedocs.io/en/3.x/].







Breaking Changes

MMDet 3.x has undergone significant changes for better design, higher efficiency, more flexibility, and more unified interfaces.
Besides the changes in API, we briefly list the major breaking changes in this section.
We will update the migration guide to provide complete details and migration instructions.
Users can also refer to the API doc [https://mmdetection.readthedocs.io/en/3.x/] for more details.


Dependencies


	MMDet 3.x runs on PyTorch>=1.6. We have deprecated the support of PyTorch 1.5 to embrace mixed precision training and other new features since PyTorch 1.6. Some models can still run on PyTorch 1.5, but the full functionality of MMDet 3.x is not guaranteed.


	MMDet 3.x relies on MMEngine to run. MMEngine is a new foundational library for training deep learning models of OpenMMLab and is the core dependency of OpenMMLab 2.0 projects. The dependencies of file IO and training are migrated from MMCV 1.x to MMEngine.


	MMDet 3.x relies on MMCV>=2.0.0rc0. Although MMCV no longer maintains the training functionalities since 2.0.0rc0, MMDet 3.x relies on the data transforms, CUDA operators, and image processing interfaces in MMCV. Note that the package mmcv is the version that provides pre-built CUDA operators and mmcv-lite does not since MMCV 2.0.0rc0, while mmcv-full has been deprecated since 2.0.0rc0.







Training and testing


	MMDet 3.x uses Runner in MMEngine [https://github.com/open-mmlab/mmengine] rather than that in MMCV. The new Runner implements and unifies the building logic of the dataset, model, evaluation, and visualizer. Therefore, MMDet 3.x no longer maintains the building logic of those modules in mmdet.train.apis and tools/train.py. Those codes have been migrated into MMEngine [https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/runner.py]. Please refer to the migration guide of Runner in MMEngine [https://mmengine.readthedocs.io/en/latest/migration/runner.html] for more details.


	The Runner in MMEngine also supports testing and validation. The testing scripts are also simplified, which has similar logic to that in training scripts to build the runner.


	The execution points of hooks in the new Runner have been enriched to allow more flexible customization. Please refer to the migration guide of Hook in MMEngine [https://mmengine.readthedocs.io/en/latest/migration/hook.html] for more details.


	Learning rate and momentum schedules have been migrated from Hook to Parameter Scheduler in MMEngine [https://mmengine.readthedocs.io/en/latest/tutorials/param_scheduler.html]. Please refer to the migration guide of Parameter Scheduler in MMEngine [https://mmengine.readthedocs.io/en/latest/migration/param_scheduler.html] for more details.







Configs


	The Runner in MMEngine [https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/runner.py] uses a different config structure to ease the understanding of the components in the runner. Users can read the config example of MMDet 3.x or refer to the migration guide in MMEngine [https://mmengine.readthedocs.io/en/latest/migration/runner.html] for migration details.


	The file names of configs and models are also refactored to follow the new rules unified across OpenMMLab 2.0 projects. The names of checkpoints are not updated for now as there is no BC-breaking of model weights between MMDet 3.x and 2.x. We will progressively replace all the model weights with those trained in MMDet 3.x. Please refer to the user guides of config for more details.







Dataset

The Dataset classes implemented in MMDet 3.x all inherit from the BaseDetDataset, which inherits from the BaseDataset in MMEngine [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/basedataset.html]. In addition to the changes in interfaces, there are several changes in Dataset in MMDet 3.x.


	All the datasets support serializing the internal data list to reduce the memory when multiple workers are built for data loading.


	The internal data structure in the dataset is changed to be self-contained (without losing information like class names in MMDet 2.x) while keeping simplicity.


	The evaluation functionality of each dataset has been removed from the dataset so that some specific evaluation metrics like COCO AP can be used to evaluate the prediction on other datasets.







Data Transforms

The data transforms in MMDet 3.x all inherits from BaseTransform in MMCV>=2.0.0rc0, which defines a new convention in OpenMMLab 2.0 projects.
Besides the interface changes, there are several changes listed below:


	The functionality of some data transforms (e.g., Resize) are decomposed into several transforms to simplify and clarify the usages.


	The format of data dict processed by each data transform is changed according to the new data structure of dataset.


	Some inefficient data transforms (e.g., normalization and padding) are moved into data preprocessor of model to improve data loading and training speed.


	The same data transforms in different OpenMMLab 2.0 libraries have the same augmentation implementation and the logic given the same arguments, i.e., Resize in MMDet 3.x and MMSeg 1.x will resize the image in the exact same manner given the same arguments.







Model

The models in MMDet 3.x all inherit from BaseModel in MMEngine, which defines a new convention of models in OpenMMLab 2.0 projects.
Users can refer to the tutorial of the model in MMengine [https://mmengine.readthedocs.io/en/latest/tutorials/model.html] for more details.
Accordingly, there are several changes as the following:


	The model interfaces, including the input and output formats, are significantly simplified and unified following the new convention in MMDet 3.x.
Specifically, all the input data in training and testing are packed into inputs and data_samples, where inputs contains model inputs like a list of image tensors, and data_samples contains other information of the current data sample such as ground truths, region proposals, and model predictions. In this way, different tasks in MMDet 3.x can share the same input arguments, which makes the models more general and suitable for multi-task learning and some flexible training paradigms like semi-supervised learning.


	The model has a data preprocessor module, which is used to pre-process the input data of the model. In MMDet 3.x, the data preprocessor usually does the necessary steps to form the input images into a batch, such as padding. It can also serve as a place for some special data augmentations or more efficient data transformations like normalization.


	The internal logic of the model has been changed. In MMdet 2.x, model uses forward_train, forward_test, simple_test, and aug_test to deal with different model forward logics. In MMDet 3.x and OpenMMLab 2.0, the forward function has three modes: ‘loss’, ‘predict’, and ‘tensor’ for training, inference, and tracing or other purposes, respectively.
The forward function calls self.loss, self.predict, and self._forward given the modes ‘loss’, ‘predict’, and ‘tensor’, respectively.







Evaluation

The evaluation in MMDet 2.x strictly binds with the dataset. In contrast, MMDet 3.x decomposes the evaluation from dataset so that all the detection datasets can evaluate with COCO AP and other metrics implemented in MMDet 3.x.
MMDet 3.x mainly implements corresponding metrics for each dataset, which are manipulated by Evaluator [https://mmengine.readthedocs.io/en/latest/design/evaluator.html] to complete the evaluation.
Users can build an evaluator in MMDet 3.x to conduct offline evaluation, i.e., evaluate predictions that may not produce in MMDet 3.x with the dataset as long as the dataset and the prediction follow the dataset conventions. More details can be found in the tutorial in mmengine [https://mmengine.readthedocs.io/en/latest/tutorials/evaluation.html].




Visualization

The functions of visualization in MMDet 2.x are removed. Instead, in OpenMMLab 2.0 projects, we use Visualizer [https://mmengine.readthedocs.io/en/latest/design/visualization.html] to visualize data. MMDet 3.x implements DetLocalVisualizer to allow visualization of ground truths, model predictions, feature maps, etc., at any place. It also supports sending the visualization data to any external visualization backends such as Tensorboard.






Improvements


	Optimized training and testing speed of FCOS, RetinaNet, Faster R-CNN, Mask R-CNN, and Cascade R-CNN. The training speed of those models with some common training strategies is also optimized, including those with synchronized batch normalization and mixed precision training.


	Support mixed precision training of all the models. However, some models may get undesirable performance due to some numerical issues. We will update the documentation and list the results (accuracy of failure) of mixed precision training.


	Release strong baselines of some popular object detectors. Their accuracy and pre-trained checkpoints will be released.







Bug Fixes


	DeepFashion dataset: the config and results have been updated.







New Features


	Support a general semi-supervised learning framework that works with all the object detectors supported in MMDet 3.x. Please refer to semi-supervised object detection for details.


	Enable all the single-stage detectors to serve as region proposal networks. We give an example of using FCOS as RPN.


	Support a semi-supervised object detection algorithm: SoftTeacher [https://arxiv.org/abs/2106.09018].


	Support the updated CenterNet [https://arxiv.org/abs/2103.07461].


	Support data structures HorizontalBoxes and BaseBoxes to encapsulate different kinds of bounding boxes. We are migrating to use data structures of boxes to replace the use of pure tensor boxes. This will unify the usages of different kinds of bounding boxes in MMDet 3.x and MMRotate 1.x to simplify the implementation and reduce redundant codes.







Planned changes

We list several planned changes of MMDet 3.0.0rc0 so that the community could more comprehensively know the progress of MMDet 3.x. Feel free to create a PR, issue, or discussion if you are interested, have any suggestions and feedback, or want to participate.


	Test-time augmentation: which is supported in MMDet 2.x, is not implemented in this version due to the limited time slot. We will support it in the following releases with a new and simplified design.


	Inference interfaces: unified inference interfaces will be supported in the future to ease the use of released models.


	Interfaces of useful tools that can be used in Jupyter Notebook or Colab: more useful tools that are implemented in the tools directory will have their python interfaces so that they can be used in Jupyter Notebook, Colab, and downstream libraries.


	Documentation: we will add more design docs, tutorials, and migration guidance so that the community can deep dive into our new design, participate the future development, and smoothly migrate downstream libraries to MMDet 3.x.


	Wandb visualization: MMDet 2.x supports data visualization since v2.25.0, which has not been migrated to MMDet 3.x for now. Since WandB provides strong visualization and experiment management capabilities, a DetWandBVisualizer and maybe a hook are planned to fully migrate those functionalities from MMDet 2.x.


	Full support of WiderFace dataset (#8508) and Fast R-CNN: we are verifying their functionalities and will fix related issues soon.


	Migrate DETR-series algorithms (#8655, #8533) and YOLOv3 on IPU (#8552) from MMDet 2.x.







Contributors

A total of 11 developers contributed to this release.
Thanks @shuxp, @wanghonglie, @Czm369, @BIGWangYuDong, @zytx121, @jbwang1997, @chhluo, @jshilong, @RangiLyu, @hhaAndroid, @ZwwWayne









            

          

      

      

    

  

  
    
    
    Changelog v2.x
    

    

    

    
 
  

    
      
          
            
  
Changelog v2.x


v2.25.0 (31/5/2022)


Highlights


	Support dedicated WandbLogger hook


	Support ConvNeXt, DDOD, SOLOv2


	Support Mask2Former for instance segmentation


	Rename config files of Mask2Former







Backwards incompatible changes


	Rename config files of Mask2Former (#7571)


  
      
          	before v2.25.0
          	after v2.25.0
      

  
  
  	

	mask2former_xxx_coco.py represents config files for panoptic segmentation.





  	

	mask2former_xxx_coco.py represents config files for instance segmentation.


	mask2former_xxx_coco-panoptic.py represents config files for panoptic segmentation.















New Features


	Support ConvNeXt [https://arxiv.org/abs/2201.03545] (#7281)


	Support DDOD [https://arxiv.org/abs/2107.02963] (#7279)


	Support SOLOv2 [https://arxiv.org/abs/2003.10152] (#7441)


	Support Mask2Former [https://arxiv.org/abs/2112.01527] for instance segmentation (#7571, #8032)







Bug Fixes


	Enable YOLOX training on different devices (#7912)


	Fix the log plot error when evaluation with interval != 1 (#7784)


	Fix RuntimeError of HTC (#8083)







Improvements


	Support dedicated WandbLogger hook (#7459)

Users can set

cfg.log_config.hooks = [
  dict(type='MMDetWandbHook',
       init_kwargs={'project': 'MMDetection-tutorial'},
       interval=10,
       log_checkpoint=True,
       log_checkpoint_metadata=True,
       num_eval_images=10)]





in the config to use MMDetWandbHook. Example can be found in this colab tutorial [https://colab.research.google.com/drive/1RCSXHZwDZvakFh3eo9RuNrJbCGqD0dru?usp=sharing#scrollTo=WTEdPDRaBz2C]



	Add AvoidOOM to avoid OOM (#7434, #8091)

Try to use AvoidCUDAOOM to avoid GPU out of memory. It will first retry after calling torch.cuda.empty_cache(). If it still fails, it will then retry by converting the type of inputs to FP16 format. If it still fails, it will try to copy inputs from GPUs to CPUs to continue computing. Try AvoidOOM in code to make the code continue to run when GPU memory runs out:

from mmdet.utils import AvoidCUDAOOM

output = AvoidCUDAOOM.retry_if_cuda_oom(some_function)(input1, input2)





Users can also try AvoidCUDAOOM as a decorator to make the code continue to run when GPU memory runs out:

from mmdet.utils import AvoidCUDAOOM

@AvoidCUDAOOM.retry_if_cuda_oom
def function(*args, **kwargs):
    ...
    return xxx







	Support reading gpu_collect from cfg.evaluation.gpu_collect (#7672)


	Speedup the Video Inference by Accelerating data-loading Stage (#7832)


	Support replacing the ${key} with the value of cfg.key (#7492)


	Accelerate result analysis in analyze_result.py. The evaluation time is speedup by 10 ~ 15 times and only tasks 10 ~ 15 minutes now. (#7891)


	Support to set block_dilations in DilatedEncoder (#7812)


	Support panoptic segmentation result analysis (#7922)


	Release DyHead with Swin-Large backbone (#7733)


	Documentations updating and adding


	Fix wrong default type of act_cfg in SwinTransformer (#7794)


	Fix text errors in the tutorials (#7959)


	Rewrite the installation guide (#7897)


	Useful hooks (#7810)


	Fix heading anchor in documentation  (#8006)


	Replace markdownlint with mdformat for avoiding installing ruby (#8009)











Contributors

A total of 20 developers contributed to this release.

Thanks @ZwwWayne, @DarthThomas, @solyaH, @LutingWang, @chenxinfeng4, @Czm369, @Chenastron, @chhluo, @austinmw, @Shanyaliux @hellock, @Y-M-Y, @jbwang1997, @hhaAndroid, @Irvingao, @zhanggefan, @BIGWangYuDong, @Keiku, @PeterVennerstrom, @ayulockin






v2.24.0 (26/4/2022)


Highlights


	Support Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation [https://arxiv.org/abs/2012.07177]


	Support automatically scaling LR according to GPU number and samples per GPU


	Support Class Aware Sampler that improves performance on OpenImages Dataset







New Features


	Support Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation [https://arxiv.org/abs/2012.07177], see example configs (#7501)


	Support Class Aware Sampler, users can set

data=dict(train_dataloader=dict(class_aware_sampler=dict(num_sample_class=1))))





in the config to use ClassAwareSampler. Examples can be found in the configs of OpenImages Dataset [https://github.com/open-mmlab/mmdetection/tree/main/configs/openimages/faster_rcnn_r50_fpn_32x2_cas_1x_openimages.py].  (#7436)



	Support automatically scaling LR according to GPU number and samples per GPU. (#7482)
In each config, there is a corresponding config of auto-scaling LR as below,

auto_scale_lr = dict(enable=True, base_batch_size=N)





where N is the batch size used for the current learning rate in the config (also equals to samples_per_gpu * gpu number to train this config).
By default, we set enable=False so that the original usages will not be affected. Users can set enable=True in each config or add --auto-scale-lr after the command line to enable this feature and should check the correctness of base_batch_size in customized configs.



	Support setting dataloader arguments in config and add functions to handle config compatibility. (#7668)
The comparison between the old and new usages is as below.


  
      
          	v2.23.0
          	v2.24.0
      

  
  
  	
data = dict(
    samples_per_gpu=64, workers_per_gpu=4,
    train=dict(type='xxx', ...),
    val=dict(type='xxx', samples_per_gpu=4, ...),
    test=dict(type='xxx', ...),
)






  	
# A recommended config that is clear
data = dict(
    train=dict(type='xxx', ...),
    val=dict(type='xxx', ...),
    test=dict(type='xxx', ...),
    # Use different batch size during inference.
    train_dataloader=dict(samples_per_gpu=64, workers_per_gpu=4),
    val_dataloader=dict(samples_per_gpu=8, workers_per_gpu=2),
    test_dataloader=dict(samples_per_gpu=8, workers_per_gpu=2),
)

# Old style still works but allows to set more arguments about data loaders
data = dict(
    samples_per_gpu=64,  # only works for train_dataloader
    workers_per_gpu=4,  # only works for train_dataloader
    train=dict(type='xxx', ...),
    val=dict(type='xxx', ...),
    test=dict(type='xxx', ...),
    # Use different batch size during inference.
    val_dataloader=dict(samples_per_gpu=8, workers_per_gpu=2),
    test_dataloader=dict(samples_per_gpu=8, workers_per_gpu=2),
)











	Support memory profile hook. Users can use it to monitor the memory usages during training as below (#7560)

custom_hooks = [
    dict(type='MemoryProfilerHook', interval=50)
]







	Support to run on PyTorch with MLU chip (#7578)


	Support re-spliting data batch with tag (#7641)


	Support the DiceCost used by K-Net [https://arxiv.org/abs/2106.14855] in MaskHungarianAssigner (#7716)


	Support splitting COCO data for Semi-supervised object detection (#7431)


	Support Pathlib for Config.fromfile (#7685)


	Support to use file client in OpenImages dataset (#7433)


	Add a probability parameter to Mosaic transformation (#7371)


	Support specifying interpolation mode in Resize pipeline (#7585)







Bug Fixes


	Avoid invalid bbox after deform_sampling (#7567)


	Fix the issue that argument color_theme does not take effect when exporting confusion matrix (#7701)


	Fix the end_level in Necks, which should be the index of the end input backbone level (#7502)


	Fix the bug that mix_results may be None in MultiImageMixDataset (#7530)


	Fix the bug in ResNet plugin when two plugins are used (#7797)







Improvements


	Enhance load_json_logs of analyze_logs.py for resumed training logs (#7732)


	Add argument out_file in image_demo.py (#7676)


	Allow mixed precision training with SimOTAAssigner (#7516)


	Updated INF to 100000.0 to be the same as that in the official YOLOX (#7778)


	Add documentations of:


	how to get channels of a new backbone (#7642)


	how to unfreeze the backbone network (#7570)


	how to train fast_rcnn model (#7549)


	proposals in Deformable DETR (#7690)


	from-scratch install script in get_started.md (#7575)






	Release pre-trained models of


	Mask2Former (#7595, #7709)


	RetinaNet with ResNet-18 and release models (#7387)


	RetinaNet with EfficientNet backbone (#7646)











Contributors

A total of 27 developers contributed to this release.
Thanks @jovialio, @zhangsanfeng2022, @HarryZJ, @jamiechoi1995, @nestiank, @PeterH0323, @RangeKing, @Y-M-Y, @mattcasey02, @weiji14, @Yulv-git, @xiefeifeihu, @FANG-MING, @meng976537406, @nijkah, @sudz123, @CCODING04, @SheffieldCao, @Czm369, @BIGWangYuDong, @zytx121, @jbwang1997, @chhluo, @jshilong, @RangiLyu, @hhaAndroid, @ZwwWayne






v2.23.0 (28/3/2022)


Highlights


	Support Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation [https://arxiv.org/abs/2112.01527]


	Support EfficientNet: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks [https://arxiv.org/abs/1905.11946]


	Support setting data root through environment variable MMDET_DATASETS, users don’t have to modify the corresponding path in config files anymore.


	Find a good recipe for fine-tuning high precision ResNet backbone pre-trained by Torchvision.







New Features


	Support Mask2Former(#6938)(#7466)(#7471)


	Support EfficientNet (#7514)


	Support setting data root through environment variable MMDET_DATASETS, users don’t have to modify the corresponding path in config files anymore. (#7386)


	Support setting different seeds to different ranks (#7432)


	Update the dist_train.sh so that the script can be used to support launching multi-node training on machines without slurm (#7415)


	Find a good recipe for fine-tuning high precision ResNet backbone pre-trained by Torchvision (#7489)







Bug Fixes


	Fix bug in VOC unit test which removes the data directory (#7270)


	Adjust the order of get_classes and FileClient (#7276)


	Force the inputs of get_bboxes in yolox_head to float32 (#7324)


	Fix misplaced arguments in LoadPanopticAnnotations (#7388)


	Fix reduction=mean in CELoss. (#7449)


	Update unit test of CrossEntropyCost (#7537)


	Fix memory leaking in panpotic segmentation evaluation (#7538)


	Fix the bug of shape broadcast in YOLOv3 (#7551)







Improvements


	Add Chinese version of onnx2tensorrt.md (#7219)


	Update colab tutorials (#7310)


	Update information about Localization Distillation (#7350)


	Add Chinese version of finetune.md (#7178)


	Update YOLOX log for non square input (#7235)


	Add nproc in coco_panoptic.py for panoptic quality computing (#7315)


	Allow to set channel_order in LoadImageFromFile (#7258)


	Take point sample related functions out of mask_point_head (#7353)


	Add instance evaluation for coco_panoptic (#7313)


	Enhance the robustness of analyze_logs.py (#7407)


	Supplementary notes of sync_random_seed (#7440)


	Update docstring of cross entropy loss (#7472)


	Update pascal voc result (#7503)


	We create How-to documentation to record any questions about How to xxx. In this version, we added


	How to use Mosaic augmentation (#7507)


	How to use backbone in mmcls (#7438)


	How to produce and submit the prediction results of panoptic segmentation models on COCO test-dev set (#7430))











Contributors

A total of 27 developers contributed to this release.
Thanks @ZwwWayne, @haofanwang, @shinya7y, @chhluo, @yangrisheng, @triple-Mu, @jbwang1997, @HikariTJU, @imflash217, @274869388, @zytx121, @matrixgame2018, @jamiechoi1995, @BIGWangYuDong, @JingweiZhang12, @Xiangxu-0103, @hhaAndroid, @jshilong, @osbm, @ceroytres, @bunge-bedstraw-herb, @Youth-Got, @daavoo, @jiangyitong, @RangiLyu, @CCODING04, @yarkable






v2.22.0 (24/2/2022)


Highlights


	Support MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation [https://arxiv.org/abs/2107.06278] (#7212)


	Support DyHead: Dynamic Head: Unifying Object Detection Heads with Attentions [https://arxiv.org/abs/2106.08322] (#6823)


	Release a good recipe of using ResNet in object detectors pre-trained by ResNet Strikes Back [https://arxiv.org/abs/2110.00476], which consistently brings about 3~4 mAP improvements over RetinaNet, Faster/Mask/Cascade Mask R-CNN (#7001)


	Support Open Images Dataset [https://storage.googleapis.com/openimages/web/index.html] (#6331)


	Support TIMM backbone: PyTorch Image Models [https://github.com/rwightman/pytorch-image-models] (#7020)







New Features


	Support MaskFormer (#7212)


	Support DyHead (#6823)


	Support ResNet Strikes Back (#7001)


	Support OpenImages Dataset (#6331)


	Support TIMM backbone (#7020)


	Support visualization for Panoptic Segmentation (#7041)







Breaking Changes

In order to support the visualization for Panoptic Segmentation, the num_classes can not be None when using the get_palette function to determine whether to use the panoptic palette.




Bug Fixes


	Fix bug for the best checkpoints can not be saved when the key_score is None (#7101)


	Fix MixUp transform filter boxes failing case (#7080)


	Add missing properties in SABLHead (#7091)


	Fix bug when NaNs exist in confusion matrix (#7147)


	Fix PALETTE AttributeError in downstream task (#7230)







Improvements


	Speed up SimOTA matching (#7098)


	Add Chinese translation of docs_zh-CN/tutorials/init_cfg.md (#7188)







Contributors

A total of 20 developers contributed to this release.
Thanks @ZwwWayne, @hhaAndroid, @RangiLyu, @AronLin, @BIGWangYuDong, @jbwang1997, @zytx121, @chhluo, @shinya7y, @LuooChen, @dvansa, @siatwangmin, @del-zhenwu, @vikashranjan26, @haofanwang, @jamiechoi1995, @HJoonKwon, @yarkable, @zhijian-liu, @RangeKing






v2.21.0 (8/2/2022)




Breaking Changes

To standardize the contents in config READMEs and meta files of OpenMMLab projects, the READMEs and meta files in each config directory have been significantly changed. The template will be released in the future, for now, you can refer to the examples of README for algorithm [https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn/README.md], dataset [https://github.com/open-mmlab/mmdetection/blob/master/configs/deepfashion/README.md] and backbone [https://github.com/open-mmlab/mmdetection/blob/master/configs/regnet/README.md]. To align with the standard, the configs in dcn are put into to two directories named dcn and dcnv2.


New Features


	Allow to customize colors of different classes during visualization (#6716)


	Support CPU training (#7016)


	Add download script of COCO, LVIS, and VOC dataset (#7015)







Bug Fixes


	Fix weight conversion issue of RetinaNet with Swin-S (#6973)


	Update __repr__ of Compose (#6951)


	Fix BadZipFile Error when build docker (#6966)


	Fix bug in non-distributed multi-gpu training/testing (#7019)


	Fix bbox clamp in PyTorch 1.10 (#7074)


	Relax the requirement of PALETTE in dataset wrappers (#7085)


	Keep the same weights before reassign in the PAA head (#7032)


	Update code demo in doc (#7092)







Improvements


	Speed-up training by allow to set variables of multi-processing (#6974, #7036)


	Add links of Chinese tutorials in readme (#6897)


	Disable cv2 multiprocessing by default for acceleration (#6867)


	Deprecate the support for “python setup.py test” (#6998)


	Re-organize metafiles and config readmes (#7051)


	Fix None grad problem during training TOOD by adding SigmoidGeometricMean (#7090)







Contributors

A total of 26 developers contributed to this release.
Thanks @del-zhenwu, @zimoqingfeng, @srishilesh, @imyhxy, @jenhaoyang, @jliu-ac, @kimnamu, @ShengliLiu, @garvan2021, @ciusji, @DIYer22, @kimnamu, @q3394101, @zhouzaida, @gaotongxiao, @topsy404, @AntoAndGar, @jbwang1997, @nijkah, @ZwwWayne, @Czm369, @jshilong, @RangiLyu, @BIGWangYuDong, @hhaAndroid, @AronLin






v2.20.0 (27/12/2021)


New Features


	Support TOOD: Task-aligned One-stage Object Detection (ICCV 2021 Oral) (#6746)


	Support resuming from the latest checkpoint automatically (#6727)







Bug Fixes


	Fix wrong bbox loss_weight of the PAA head (#6744)


	Fix the padding value of gt_semantic_seg in batch collating (#6837)


	Fix test error of lvis when using classwise (#6845)


	Avoid BC-breaking of get_local_path  (#6719)


	Fix bug in sync_norm_hook when the BN layer does not exist (#6852)


	Use pycocotools directly no matter what platform it is (#6838)







Improvements


	Add unit test for SimOTA with no valid bbox (#6770)


	Use precommit to check readme (#6802)


	Support selecting GPU-ids in non-distributed testing time (#6781)







Contributors

A total of 16 developers contributed to this release.
Thanks @ZwwWayne, @Czm369, @jshilong, @RangiLyu, @BIGWangYuDong, @hhaAndroid, @jamiechoi1995, @AronLin, @Keiku, @gkagkos, @fcakyon, @www516717402, @vansin, @zactodd, @kimnamu, @jenhaoyang






v2.19.1 (14/12/2021)


New Features


	Release YOLOX COCO pretrained models (#6698)







Bug Fixes


	Fix DCN initialization in DenseHead (#6625)


	Fix initialization of ConvFCHead (#6624)


	Fix PseudoSampler in RCNN (#6622)


	Fix weight initialization in Swin and PVT (#6663)


	Fix dtype bug in BaseDenseHead (#6767)


	Fix SimOTA with no valid bbox (#6733)







Improvements


	Add an example of combining swin and one-stage models (#6621)


	Add get_ann_info to dataset_wrappers (#6526)


	Support keeping image ratio in the multi-scale training of YOLOX (#6732)


	Support bbox_clip_border for the augmentations of YOLOX (#6730)







Documents


	Update metafile (#6717)


	Add mmhuman3d in readme (#6699)


	Update FAQ docs (#6587)


	Add doc for detect_anomalous_params (#6697)







Contributors

A total of 11 developers contributed to this release.
Thanks @ZwwWayne, @LJoson, @Czm369, @jshilong, @ZCMax, @RangiLyu, @BIGWangYuDong, @hhaAndroid, @zhaoxin111, @GT9505, @shinya7y






v2.19.0 (29/11/2021)


Highlights


	Support Label Assignment Distillation [https://arxiv.org/abs/2108.10520]


	Support persistent_workers for Pytorch >= 1.7


	Align accuracy to the updated official YOLOX







New Features


	Support Label Assignment Distillation [https://arxiv.org/abs/2108.10520] (#6342)


	Support persistent_workers for Pytorch >= 1.7 (#6435)







Bug Fixes


	Fix repeatedly output warning message (#6584)


	Avoid infinite GPU waiting in dist training (#6501)


	Fix SSD512 config error (#6574)


	Fix MMDetection model to ONNX command (#6558)







Improvements


	Refactor configs of FP16 models (#6592)


	Align accuracy to the updated official YOLOX (#6443)


	Speed up training and reduce memory cost when using PhotoMetricDistortion. (#6442)


	Make OHEM work with seesaw loss (#6514)







Documents


	Update README.md (#6567)







Contributors

A total of 11 developers contributed to this release.
Thanks @FloydHsiu, @RangiLyu, @ZwwWayne, @AndreaPi, @st9007a, @hachreak, @BIGWangYuDong, @hhaAndroid, @AronLin, @chhluo, @vealocia, @HarborYuan, @st9007a, @jshilong






v2.18.1 (15/11/2021)


Highlights


	Release QueryInst [http://arxiv.org/abs/2105.01928] pre-trained weights (#6460)


	Support plot confusion matrix (#6344)







New Features


	Release QueryInst [http://arxiv.org/abs/2105.01928] pre-trained weights (#6460)


	Support plot confusion matrix (#6344)







Bug Fixes


	Fix aug test error when the number of prediction bboxes is 0 (#6398)


	Fix SpatialReductionAttention in PVT (#6488)


	Fix wrong use of trunc_normal_init in PVT and Swin-Transformer (#6432)







Improvements


	Save the printed AP information of COCO API to logger (#6505)


	Always map location to cpu when load checkpoint (#6405)


	Set a random seed when the user does not set a seed (#6457)







Documents


	Chinese version of Corruption Benchmarking (#6375)


	Fix config path in docs (#6396)


	Update GRoIE readme (#6401)







Contributors

A total of 11 developers contributed to this release.
Thanks @st9007a, @hachreak, @HarborYuan, @vealocia, @chhluo, @AndreaPi, @AronLin, @BIGWangYuDong, @hhaAndroid, @RangiLyu, @ZwwWayne






v2.18.0 (27/10/2021)


Highlights


	Support QueryInst [http://arxiv.org/abs/2105.01928] (#6050)


	Refactor dense heads to decouple onnx export logics from get_bboxes and speed up inference (#5317, #6003, #6369, #6268, #6315)







New Features


	Support QueryInst [http://arxiv.org/abs/2105.01928] (#6050)


	Support infinite sampler (#5996)







Bug Fixes


	Fix init_weight in fcn_mask_head (#6378)


	Fix type error in imshow_bboxes of RPN (#6386)


	Fix broken colab link in MMDetection Tutorial (#6382)


	Make sure the device and dtype of scale_factor are the same as bboxes (#6374)


	Remove sampling hardcode (#6317)


	Fix RandomAffine bbox coordinate recorrection (#6293)


	Fix init bug of final cls/reg layer in convfc head (#6279)


	Fix img_shape broken in auto_augment (#6259)


	Fix kwargs parameter missing error in two_stage (#6256)







Improvements


	Unify the interface of stuff head and panoptic head (#6308)


	Polish readme (#6243)


	Add code-spell pre-commit hook and fix a typo (#6306)


	Fix typo (#6245, #6190)


	Fix sampler unit test (#6284)


	Fix forward_dummy of YOLACT to enable get_flops (#6079)


	Fix link error in the config documentation (#6252)


	Adjust the order to beautify the document (#6195)







Refactors


	Refactor one-stage get_bboxes logic (#5317)


	Refactor ONNX export of One-Stage models (#6003, #6369)


	Refactor dense_head and speedup (#6268)


	Migrate to use prior_generator in training of dense heads (#6315)







Contributors

A total of 18 developers contributed to this release.
Thanks @Boyden, @onnkeat, @st9007a, @vealocia, @yhcao6, @DapangpangX, @yellowdolphin, @cclauss, @kennymckormick,
@pingguokiller, @collinzrj, @AndreaPi, @AronLin, @BIGWangYuDong, @hhaAndroid, @jshilong, @RangiLyu, @ZwwWayne






v2.17.0 (28/9/2021)


Highlights


	Support PVT [https://arxiv.org/abs/2102.12122] and PVTv2 [https://arxiv.org/abs/2106.13797]


	Support SOLO [https://arxiv.org/abs/1912.04488]


	Support large scale jittering and New Mask R-CNN baselines


	Speed up YOLOv3 inference







New Features


	Support PVT [https://arxiv.org/abs/2102.12122] and PVTv2 [https://arxiv.org/abs/2106.13797] (#5780)


	Support SOLO [https://arxiv.org/abs/1912.04488] (#5832)


	Support large scale jittering and New Mask R-CNN baselines (#6132)


	Add a general data structure for the results of models (#5508)


	Added a base class for one-stage instance segmentation (#5904)


	Speed up YOLOv3 inference (#5991)


	Release Swin Transformer pre-trained models (#6100)


	Support mixed precision training in YOLOX (#5983)


	Support val workflow in YOLACT (#5986)


	Add script to test torchserve (#5936)


	Support onnxsim with dynamic input shape (#6117)







Bug Fixes


	Fix the function naming errors in model_wrappers (#5975)


	Fix regression loss bug when the input is an empty tensor (#5976)


	Fix scores not contiguous error in centernet_head (#6016)


	Fix missing parameters bug in imshow_bboxes (#6034)


	Fix bug in aug_test of HTC when the length of det_bboxes is 0 (#6088)


	Fix empty proposal errors in the training of some two-stage models (#5941)


	Fix dynamic_axes parameter error in ONNX dynamic shape export (#6104)


	Fix dynamic_shape bug of SyncRandomSizeHook (#6144)


	Fix the Swin Transformer config link error in the configuration (#6172)







Improvements


	Add filter rules in Mosaic transform (#5897)


	Add size divisor in get flops to avoid some potential bugs (#6076)


	Add Chinese translation of docs_zh-CN/tutorials/customize_dataset.md (#5915)


	Add Chinese translation of conventions.md (#5825)


	Add description of the output of data pipeline (#5886)


	Add dataset information in the README file for PanopticFPN (#5996)


	Add extra_repr for DropBlock layer to get details in the model printing (#6140)


	Fix CI out of memory and add PyTorch1.9 Python3.9 unit tests (#5862)


	Fix download links error of some model (#6069)


	Improve the generalization of XML dataset (#5943)


	Polish assertion error messages (#6017)


	Remove opencv-python-headless dependency by albumentations (#5868)


	Check dtype in transform unit tests (#5969)


	Replace the default theme of documentation with PyTorch Sphinx Theme (#6146)


	Update the paper and code fields in the metafile (#6043)


	Support to customize padding value of segmentation map (#6152)


	Support to resize multiple segmentation maps (#5747)







Contributors

A total of 24 developers contributed to this release.
Thanks @morkovka1337, @HarborYuan, @guillaumefrd, @guigarfr, @www516717402, @gaotongxiao, @ypwhs, @MartaYang, @shinya7y, @justiceeem, @zhaojinjian0000, @VVsssssk, @aravind-anantha, @wangbo-zhao, @czczup, @whai362, @czczup, @marijnl, @AronLin, @BIGWangYuDong, @hhaAndroid, @jshilong, @RangiLyu, @ZwwWayne






v2.16.0 (30/8/2021)


Highlights


	Support Panoptic FPN [https://arxiv.org/abs/1901.02446] and Swin Transformer [https://arxiv.org/abs/2103.14030]







New Features


	Support Panoptic FPN [https://arxiv.org/abs/1901.02446] and release models (#5577, #5902)


	Support Swin Transformer backbone (#5748)


	Release RetinaNet models pre-trained with multi-scale 3x schedule (#5636)


	Add script to convert unlabeled image list to coco format (#5643)


	Add hook to check whether the loss value is valid (#5674)


	Add YOLO anchor optimizing tool (#5644)


	Support export onnx models without post process. (#5851)


	Support classwise evaluation in CocoPanopticDataset (#5896)


	Adapt browse_dataset for concatenated datasets. (#5935)


	Add PatchEmbed and PatchMerging with AdaptivePadding (#5952)







Bug Fixes


	Fix unit tests of YOLOX (#5859)


	Fix lose randomness in imshow_det_bboxes (#5845)


	Make output result of ImageToTensor contiguous (#5756)


	Fix inference bug when calling regress_by_class in RoIHead in some cases (#5884)


	Fix bug in CIoU loss where alpha should not have gradient. (#5835)


	Fix the bug that multiscale_output is defined but not used in HRNet (#5887)


	Set the priority of EvalHook to LOW. (#5882)


	Fix a YOLOX bug when applying bbox rescaling in test mode (#5899)


	Fix mosaic coordinate error (#5947)


	Fix dtype of bbox in RandomAffine. (#5930)







Improvements


	Add Chinese version of data_pipeline and  (#5662)


	Support to remove state dicts of EMA when publishing models. (#5858)


	Refactor the loss function in HTC and SCNet (#5881)


	Use warnings instead of logger.warning (#5540)


	Use legacy coordinate in metric of VOC (#5627)


	Add Chinese version of customize_losses (#5826)


	Add Chinese version of model_zoo (#5827)







Contributors

A total of 19 developers contributed to this release.
Thanks @ypwhs, @zywvvd, @collinzrj, @OceanPang, @ddonatien, @@haotian-liu, @viibridges, @Muyun99, @guigarfr, @zhaojinjian0000, @jbwang1997,@wangbo-zhao, @xvjiarui, @RangiLyu, @jshilong, @AronLin, @BIGWangYuDong, @hhaAndroid, @ZwwWayne






v2.15.1 (11/8/2021)


Highlights


	Support YOLOX [https://arxiv.org/abs/2107.08430]







New Features


	Support YOLOX [https://arxiv.org/abs/2107.08430](#5756, #5758, #5760, #5767, #5770, #5774, #5777, #5808, #5828, #5848)







Bug Fixes


	Update correct SSD models. (#5789)


	Fix casting error in mask structure (#5820)


	Fix MMCV deployment documentation links. (#5790)







Improvements


	Use dynamic MMCV download link in TorchServe dockerfile (#5779)


	Rename the function upsample_like to interpolate_as for more general usage (#5788)







Contributors

A total of 14 developers contributed to this release.
Thanks @HAOCHENYE, @xiaohu2015, @HsLOL, @zhiqwang, @Adamdad, @shinya7y, @Johnson-Wang, @RangiLyu, @jshilong, @mmeendez8, @AronLin, @BIGWangYuDong, @hhaAndroid, @ZwwWayne






v2.15.0 (02/8/2021)


Highlights


	Support adding MIM [https://github.com/open-mmlab/mim] dependencies during pip installation


	Support MobileNetV2 for SSD-Lite and YOLOv3


	Support Chinese Documentation







New Features


	Add function upsample_like (#5732)


	Support to output pdf and epub format documentation (#5738)


	Support and release Cascade Mask R-CNN 3x pre-trained models (#5645)


	Add ignore_index to CrossEntropyLoss (#5646)


	Support adding MIM [https://github.com/open-mmlab/mim] dependencies during pip installation (#5676)


	Add MobileNetV2 config and models for YOLOv3 (#5510)


	Support COCO Panoptic Dataset (#5231)


	Support ONNX export of cascade models (#5486)


	Support DropBlock with RetinaNet (#5544)


	Support MobileNetV2 SSD-Lite (#5526)







Bug Fixes


	Fix the device of label in multiclass_nms (#5673)


	Fix error of backbone initialization from pre-trained checkpoint in config file (#5603, #5550)


	Fix download links of RegNet pretrained weights (#5655)


	Fix two-stage runtime error given empty proposal (#5559)


	Fix flops count error in DETR (#5654)


	Fix unittest for NumClassCheckHook when it is not used. (#5626)


	Fix description bug of using custom dataset (#5546)


	Fix bug of multiclass_nms that returns the global indices (#5592)


	Fix valid_mask logic error in RPNHead (#5562)


	Fix unit test error of pretrained configs (#5561)


	Fix typo error in anchor_head.py (#5555)


	Fix bug when using dataset wrappers (#5552)


	Fix a typo error in demo/MMDet_Tutorial.ipynb (#5511)


	Fixing crash in get_root_logger when cfg.log_level is not None (#5521)


	Fix docker version (#5502)


	Fix optimizer parameter error when using IterBasedRunner (#5490)







Improvements


	Add unit tests for MMTracking (#5620)


	Add Chinese translation of documentation (#5718, #5618, #5558, #5423, #5593, #5421, #5408. #5369, #5419, #5530, #5531)


	Update resource limit (#5697)


	Update docstring for InstaBoost (#5640)


	Support key reduction_override in all loss functions (#5515)


	Use repeatdataset to accelerate CenterNet training (#5509)


	Remove unnecessary code in autoassign (#5519)


	Add documentation about init_cfg (#5273)







Contributors

A total of 18 developers contributed to this release.
Thanks @OceanPang, @AronLin, @hellock, @Outsider565, @RangiLyu, @ElectronicElephant, @likyoo, @BIGWangYuDong, @hhaAndroid, @noobying, @yyz561, @likyoo,
@zeakey, @ZwwWayne, @ChenyangLiu, @johnson-magic, @qingswu, @BuxianChen






v2.14.0 (29/6/2021)


Highlights


	Add simple_test to dense heads to improve the consistency of single-stage and two-stage detectors


	Revert the test_mixins to single image test to improve efficiency and readability


	Add Faster R-CNN and Mask R-CNN config using multi-scale training with 3x schedule







New Features


	Support pretrained models from MoCo v2 and SwAV (#5286)


	Add Faster R-CNN and Mask R-CNN config using multi-scale training with 3x schedule (#5179, #5233)


	Add reduction_override in MSELoss (#5437)


	Stable support of exporting DETR to ONNX with dynamic shapes and batch inference (#5168)


	Stable support of exporting PointRend to ONNX with dynamic shapes and batch inference (#5440)







Bug Fixes


	Fix size mismatch bug in multiclass_nms (#4980)


	Fix the import path of MultiScaleDeformableAttention (#5338)


	Fix errors in config of GCNet ResNext101 models (#5360)


	Fix Grid-RCNN error when there is no bbox result (#5357)


	Fix errors in onnx_export of bbox_head when setting reg_class_agnostic (#5468)


	Fix type error of AutoAssign in the document (#5478)


	Fix web links ending with .md (#5315)







Improvements


	Add simple_test to dense heads to improve the consistency of single-stage and two-stage detectors (#5264)


	Add support for mask diagonal flip in TTA (#5403)


	Revert the test_mixins to single image test to improve efficiency and readability (#5249)


	Make YOLOv3 Neck more flexible (#5218)


	Refactor SSD to make it more general (#5291)


	Refactor anchor_generator and point_generator (#5349)


	Allow to configure out the mask_head of the HTC algorithm (#5389)


	Delete deprecated warning in FPN (#5311)


	Move model.pretrained to model.backbone.init_cfg (#5370)


	Make deployment tools more friendly to use (#5280)


	Clarify installation documentation (#5316)


	Add ImageNet Pretrained Models docs (#5268)


	Add FAQ about training loss=nan solution and COCO AP or AR =-1 (# 5312, #5313)


	Change all weight links of http to https (#5328)









v2.13.0 (01/6/2021)


Highlights


	Support new methods: CenterNet [https://arxiv.org/abs/1904.07850], Seesaw Loss [https://arxiv.org/abs/2008.10032], MobileNetV2 [https://arxiv.org/abs/1801.04381]







New Features


	Support paper Objects as Points [https://arxiv.org/abs/1904.07850] (#4602)


	Support paper Seesaw Loss for Long-Tailed Instance Segmentation (CVPR 2021) [https://arxiv.org/abs/2008.10032] (#5128)


	Support MobileNetV2 [https://arxiv.org/abs/1801.04381] backbone and inverted residual block (#5122)


	Support MIM [https://github.com/open-mmlab/mim] (#5143)


	ONNX exportation with dynamic shapes of CornerNet (#5136)


	Add mask_soft config option to allow non-binary masks (#4615)


	Add PWC metafile (#5135)







Bug Fixes


	Fix YOLOv3 FP16 training error (#5172)


	Fix Cacscade R-CNN TTA test error when det_bboxes length is 0  (#5221)


	Fix iou_thr variable naming errors in VOC recall calculation function (#5195)


	Fix Faster R-CNN performance dropped in ONNX Runtime (#5197)


	Fix DETR dict changed error when using python 3.8 during iteration  (#5226)







Improvements


	Refactor ONNX export of two stage detector (#5205)


	Replace MMDetection’s EvalHook with MMCV’s EvalHook for consistency  (#4806)


	Update RoI extractor for ONNX (#5194)


	Use better parameter initialization in YOLOv3 head for higher performance (#5181)


	Release new DCN models of Mask R-CNN by mixed-precision training (#5201)


	Update YOLOv3 model weights (#5229)


	Add DetectoRS ResNet-101 model weights (#4960)


	Discard bboxes with sizes equals to min_bbox_size (#5011)


	Remove duplicated code in DETR head (#5129)


	Remove unnecessary object in class definition (#5180)


	Fix doc link (#5192)









v2.12.0 (01/5/2021)


Highlights


	Support new methods: AutoAssign [https://arxiv.org/abs/2007.03496], YOLOF [https://arxiv.org/abs/2103.09460], and Deformable DETR [https://arxiv.org/abs/2010.04159]


	Stable support of exporting models to ONNX with batched images and dynamic shape (#5039)







Backwards Incompatible Changes

MMDetection is going through big refactoring for more general and convenient usages during the releases from v2.12.0 to v2.15.0 (maybe longer).
In v2.12.0 MMDetection inevitably brings some BC-breakings, including the MMCV dependency, model initialization, model registry, and mask AP evaluation.


	MMCV version. MMDetection v2.12.0 relies on the newest features in MMCV 1.3.3, including BaseModule for unified parameter initialization, model registry, and the CUDA operator MultiScaleDeformableAttn for Deformable DETR [https://arxiv.org/abs/2010.04159]. Note that MMCV 1.3.2 already contains all the features used by MMDet but has known issues. Therefore, we recommend users skip MMCV v1.3.2 and use v1.3.3, though v1.3.2 might work for most cases.


	Unified model initialization (#4750). To unify the parameter initialization in OpenMMLab projects, MMCV supports BaseModule that accepts init_cfg to allow the modules’ parameters initialized in a flexible and unified manner. Now the users need to explicitly call model.init_weights() in the training script to initialize the model (as in here [https://github.com/open-mmlab/mmdetection/blob/master/tools/train.py#L162], previously this was handled by the detector. The models in MMDetection have been re-benchmarked to ensure accuracy based on PR #4750. The downstream projects should update their code accordingly to use MMDetection v2.12.0.


	Unified model registry (#5059). To easily use backbones implemented in other OpenMMLab projects, MMDetection migrates to inherit the model registry created in MMCV (#760). In this way, as long as the backbone is supported in an OpenMMLab project and that project also uses the registry in MMCV, users can use that backbone in MMDetection by simply modifying the config without copying the code of that backbone into MMDetection.


	Mask AP evaluation (#4898). Previous versions calculate the areas of masks through the bounding boxes when calculating the mask AP of small, medium, and large instances. To indeed use the areas of masks, we pop the key bbox during mask AP calculation. This change does not affect the overall mask AP evaluation and aligns the mask AP of similar models in other projects like Detectron2.







New Features


	Support paper AutoAssign: Differentiable Label Assignment for Dense Object Detection [https://arxiv.org/abs/2007.03496] (#4295)


	Support paper You Only Look One-level Feature [https://arxiv.org/abs/2103.09460] (#4295)


	Support paper Deformable DETR: Deformable Transformers for End-to-End Object Detection [https://arxiv.org/abs/2010.04159] (#4778)


	Support calculating IoU with FP16 tensor in bbox_overlaps to save memory and keep speed (#4889)


	Add __repr__ in custom dataset to count the number of instances (#4756)


	Add windows support by updating requirements.txt (#5052)


	Stable support of exporting models to ONNX with batched images and dynamic shape, including SSD, FSAF,FCOS, YOLOv3, RetinaNet, Faster R-CNN, and Mask R-CNN (#5039)







Improvements


	Use MMCV MODEL_REGISTRY (#5059)


	Unified parameter initialization for more flexible usage (#4750)


	Rename variable names and fix docstring in anchor head (#4883)


	Support training with empty GT in Cascade RPN (#4928)


	Add more details of usage of test_robustness in documentation (#4917)


	Changing to use pycocotools instead of mmpycocotools to fully support Detectron2 and MMDetection in one environment (#4939)


	Update torch serve dockerfile to support dockers of more versions (#4954)


	Add check for training with single class dataset (#4973)


	Refactor transformer and DETR Head (#4763)


	Update FPG model zoo (#5079)


	More accurate mask AP of small/medium/large instances (#4898)







Bug Fixes


	Fix bug in mean_ap.py when calculating mAP by 11 points (#4875)


	Fix error when key meta is not in old checkpoints (#4936)


	Fix hanging bug when training with empty GT in VFNet, GFL, and FCOS by changing the place of reduce_mean (#4923, #4978, #5058)


	Fix asyncronized inference error and provide related demo (#4941)


	Fix IoU losses dimensionality unmatch error (#4982)


	Fix torch.randperm whtn using PyTorch 1.8 (#5014)


	Fix empty bbox error in mask_head when using CARAFE (#5062)


	Fix supplement_mask bug when there are zero-size RoIs (#5065)


	Fix testing with empty rois in RoI Heads (#5081)









v2.11.0 (01/4/2021)

Highlights


	Support new method: Localization Distillation for Object Detection [https://arxiv.org/pdf/2102.12252.pdf]


	Support Pytorch2ONNX with batch inference and dynamic shape




New Features


	Support Localization Distillation for Object Detection [https://arxiv.org/pdf/2102.12252.pdf] (#4758)


	Support Pytorch2ONNX with batch inference and dynamic shape for Faster-RCNN and mainstream one-stage detectors (#4796)




Improvements


	Support batch inference in head of RetinaNet (#4699)


	Add batch dimension in second stage of Faster-RCNN (#4785)


	Support batch inference in bbox coder (#4721)


	Add check for ann_ids in COCODataset to ensure it is unique (#4789)


	support for showing the FPN results (#4716)


	support dynamic shape for grid_anchor (#4684)


	Move pycocotools version check to when it is used (#4880)




Bug Fixes


	Fix a bug of TridentNet when doing the batch inference (#4717)


	Fix a bug of Pytorch2ONNX in FASF (#4735)


	Fix a bug when show the image with float type (#4732)







v2.10.0 (01/03/2021)


Highlights


	Support new methods: FPG [https://arxiv.org/abs/2004.03580]


	Support ONNX2TensorRT for SSD, FSAF, FCOS, YOLOv3, and Faster R-CNN.







New Features


	Support ONNX2TensorRT for SSD, FSAF, FCOS, YOLOv3, and Faster R-CNN (#4569)


	Support Feature Pyramid Grids (FPG) [https://arxiv.org/abs/2004.03580] (#4645)


	Support video demo (#4420)


	Add seed option for sampler (#4665)


	Support to customize type of runner (#4570, #4669)


	Support synchronizing BN buffer in EvalHook (#4582)


	Add script for GIF demo (#4573)







Bug Fixes


	Fix ConfigDict AttributeError and add Colab link (#4643)


	Avoid crash in empty gt training of GFL head (#4631)


	Fix iou_thrs bug in RPN evaluation (#4581)


	Fix syntax error of config when upgrading model version (#4584)







Improvements


	Refactor unit test file structures (#4600)


	Refactor nms config (#4636)


	Get loading pipeline by checking the class directly rather than through config strings (#4619)


	Add doctests for mask target generation and mask structures (#4614)


	Use deep copy when copying pipeline arguments (#4621)


	Update documentations (#4642, #4650, #4620, #4630)


	Remove redundant code calling import_modules_from_strings (#4601)


	Clean deprecated FP16 API (#4571)


	Check whether CLASSES is correctly initialized in the initialization of XMLDataset (#4555)


	Support batch inference in the inference API (#4462, #4526)


	Clean deprecated warning and fix ‘meta’ error (#4695)









v2.9.0 (01/02/2021)


Highlights


	Support new methods: SCNet [https://arxiv.org/abs/2012.10150], Sparse R-CNN [https://arxiv.org/abs/2011.12450]


	Move train_cfg and test_cfg into model in configs


	Support to visualize results based on prediction quality







New Features


	Support SCNet [https://arxiv.org/abs/2012.10150] (#4356)


	Support Sparse R-CNN [https://arxiv.org/abs/2011.12450] (#4219)


	Support evaluate mAP by multiple IoUs (#4398)


	Support concatenate dataset for testing (#4452)


	Support to visualize results based on prediction quality (#4441)


	Add ONNX simplify option to Pytorch2ONNX script (#4468)


	Add hook for checking compatibility of class numbers in heads and datasets (#4508)







Bug Fixes


	Fix CPU inference bug of Cascade RPN (#4410)


	Fix NMS error of CornerNet when there is no prediction box (#4409)


	Fix TypeError in CornerNet inference (#4411)


	Fix bug of PAA when training with background images (#4391)


	Fix the error that the window data is not destroyed when out_file is not None and show==False (#4442)


	Fix order of NMS score_factor that will decrease the performance of YOLOv3 (#4473)


	Fix bug in HTC TTA when the number of detection boxes is 0 (#4516)


	Fix resize error in mask data structures (#4520)







Improvements


	Allow to customize classes in LVIS dataset (#4382)


	Add tutorials for building new models with existing datasets (#4396)


	Add CPU compatibility information in documentation (#4405)


	Add documentation of deprecated ImageToTensor for batch inference (#4408)


	Add more details in documentation for customizing dataset (#4430)


	Switch imshow_det_bboxes visualization backend from OpenCV to Matplotlib (#4389)


	Deprecate ImageToTensor in image_demo.py (#4400)


	Move train_cfg/test_cfg into model (#4347, #4489)


	Update docstring for reg_decoded_bbox option in bbox heads (#4467)


	Update dataset information in documentation (#4525)


	Release pre-trained R50 and R101 PAA detectors with multi-scale 3x training schedules (#4495)


	Add guidance for speed benchmark (#4537)









v2.8.0 (04/01/2021)


Highlights


	Support new methods: Cascade RPN [https://arxiv.org/abs/1909.06720], TridentNet [https://arxiv.org/abs/1901.01892]







New Features


	Support Cascade RPN [https://arxiv.org/abs/1909.06720] (#1900)


	Support TridentNet [https://arxiv.org/abs/1901.01892] (#3313)







Bug Fixes


	Fix bug of show result in async_benchmark (#4367)


	Fix scale factor in MaskTestMixin (#4366)


	Fix but when returning indices in multiclass_nms (#4362)


	Fix bug of empirical attention in resnext backbone error (#4300)


	Fix bug of img_norm_cfg in FCOS-HRNet models with updated performance and models (#4250)


	Fix invalid checkpoint and log in Mask R-CNN models on Cityscapes dataset (#4287)


	Fix bug in distributed sampler when dataset is too small (#4257)


	Fix bug of ‘PAFPN has no attribute extra_convs_on_inputs’ (#4235)







Improvements


	Update model url from aws to aliyun (#4349)


	Update ATSS for PyTorch 1.6+ (#4359)


	Update script to install ruby in pre-commit installation (#4360)


	Delete deprecated mmdet.ops (#4325)


	Refactor hungarian assigner for more general usage in Sparse R-CNN (#4259)


	Handle scipy import in DETR to reduce package dependencies (#4339)


	Update documentation of usages for config options after MMCV (1.2.3) supports overriding list in config (#4326)


	Update pre-train models of faster rcnn trained on COCO subsets (#4307)


	Avoid zero or too small value for beta in Dynamic R-CNN (#4303)


	Add doccumentation for Pytorch2ONNX (#4271)


	Add deprecated warning FPN arguments (#4264)


	Support returning indices of kept bboxes when using nms (#4251)


	Update type and device requirements when creating tensors GFLHead (#4210)


	Update device requirements when creating tensors in CrossEntropyLoss (#4224)









v2.7.0 (30/11/2020)


	Support new method: DETR [https://arxiv.org/abs/2005.12872], ResNest [https://arxiv.org/abs/2004.08955], Faster R-CNN DC5.


	Support YOLO, Mask R-CNN, and Cascade R-CNN models exportable to ONNX.





New Features


	Support DETR [https://arxiv.org/abs/2005.12872] (#4201, #4206)


	Support to link the best checkpoint in training (#3773)


	Support to override config through options in inference.py (#4175)


	Support YOLO, Mask R-CNN, and Cascade R-CNN models exportable to ONNX (#4087, #4083)


	Support ResNeSt [https://arxiv.org/abs/2004.08955] backbone (#2959)


	Support unclip border bbox regression (#4076)


	Add tpfp func in evaluating AP (#4069)


	Support mixed precision training of SSD detector with other backbones (#4081)


	Add Faster R-CNN DC5 models (#4043)







Bug Fixes


	Fix bug of gpu_id in distributed training mode (#4163)


	Support Albumentations with version higher than 0.5 (#4032)


	Fix num_classes bug in faster rcnn config (#4088)


	Update code in docs/2_new_data_model.md (#4041)







Improvements


	Ensure DCN offset to have similar type as features in VFNet (#4198)


	Add config links in README files of models (#4190)


	Add tutorials for loss conventions (#3818)


	Add solution to installation issues in 30-series GPUs (#4176)


	Update docker version in get_started.md (#4145)


	Add model statistics and polish some titles in configs README (#4140)


	Clamp neg probability in FreeAnchor (#4082)


	Speed up expanding large images (#4089)


	Fix Pytorch 1.7 incompatibility issues (#4103)


	Update trouble shooting page to resolve segmentation fault (#4055)


	Update aLRP-Loss in project page (#4078)


	Clean duplicated reduce_mean function (#4056)


	Refactor Q&A (#4045)









v2.6.0 (1/11/2020)


	Support new method: VarifocalNet [https://arxiv.org/abs/2008.13367].


	Refactored documentation with more tutorials.





New Features


	Support GIoU calculation in BboxOverlaps2D, and re-implement giou_loss using bbox_overlaps (#3936)


	Support random sampling in CPU mode (#3948)


	Support VarifocalNet (#3666, #4024)







Bug Fixes


	Fix SABL validating bug in Cascade R-CNN (#3913)


	Avoid division by zero in PAA head when num_pos=0 (#3938)


	Fix temporary directory bug of multi-node testing error (#4034, #4017)


	Fix --show-dir option in test script (#4025)


	Fix GA-RetinaNet r50 model url (#3983)


	Update code in docs and fix broken urls (#3947)







Improvements


	Refactor pytorch2onnx API into mmdet.core.export and use generate_inputs_and_wrap_model for pytorch2onnx (#3857, #3912)


	Update RPN upgrade scripts for v2.5.0 compatibility (#3986)


	Use mmcv tensor2imgs (#4010)


	Update test robustness (#4000)


	Update trouble shooting page (#3994)


	Accelerate PAA training speed (#3985)


	Support batch_size > 1 in validation (#3966)


	Use RoIAlign implemented in MMCV for inference in CPU mode (#3930)


	Documentation refactoring (#4031)









v2.5.0 (5/10/2020)


Highlights


	Support new methods: YOLACT [https://arxiv.org/abs/1904.02689], CentripetalNet [https://arxiv.org/abs/2003.09119].


	Add more documentations for easier and more clear usage.







Backwards Incompatible Changes

FP16 related methods are imported from mmcv instead of mmdet. (#3766, #3822)
Mixed precision training utils in mmdet.core.fp16 are moved to mmcv.runner, including force_fp32, auto_fp16, wrap_fp16_model, and Fp16OptimizerHook. A deprecation warning will be raised if users attempt to import those methods from mmdet.core.fp16, and will be finally removed in V2.10.0.

[0, N-1] represents foreground classes and N indicates background classes for all models. (#3221)
Before v2.5.0, the background label for RPN is 0, and N for other heads. Now the behavior is consistent for all models. Thus self.background_labels in dense_heads is removed and all heads use self.num_classes to indicate the class index of background labels.
This change has no effect on the pre-trained models in the v2.x model zoo, but will affect the training of all models with RPN heads. Two-stage detectors whose RPN head uses softmax will be affected because the order of categories is changed.

Only call get_subset_by_classes when test_mode=True and self.filter_empty_gt=True (#3695)
Function get_subset_by_classes in dataset is refactored and only filters out images when test_mode=True and self.filter_empty_gt=True.
In the original implementation, get_subset_by_classes is not related to the flag self.filter_empty_gt and will only be called when the classes is set during initialization no matter test_mode is True or False. This brings ambiguous behavior and potential bugs in many cases. After v2.5.0, if filter_empty_gt=False, no matter whether the classes are specified in a dataset, the dataset will use all the images in the annotations. If filter_empty_gt=True and test_mode=True, no matter whether the classes are specified, the dataset will call ``get_subset_by_classes` to check the images and filter out images containing no GT boxes. Therefore, the users should be responsible for the data filtering/cleaning process for the test dataset.




New Features


	Test time augmentation for single stage detectors (#3844, #3638)


	Support to show the name of experiments during training (#3764)


	Add Shear, Rotate, Translate Augmentation (#3656, #3619, #3687)


	Add image-only transformations including Constrast, Equalize, Color, and Brightness. (#3643)


	Support YOLACT [https://arxiv.org/abs/1904.02689] (#3456)


	Support CentripetalNet [https://arxiv.org/abs/2003.09119] (#3390)


	Support PyTorch 1.6 in docker (#3905)







Bug Fixes


	Fix the bug of training ATSS when there is no ground truth boxes (#3702)


	Fix the bug of using Focal Loss when there is num_pos is 0 (#3702)


	Fix the label index mapping in dataset browser (#3708)


	Fix Mask R-CNN training stuck problem when their is no positive rois (#3713)


	Fix the bug of self.rpn_head.test_cfg in RPNTestMixin by using self.rpn_head in rpn head (#3808)


	Fix deprecated Conv2d from mmcv.ops (#3791)


	Fix device bug in RepPoints (#3836)


	Fix SABL validating bug (#3849)


	Use https://download.openmmlab.com/mmcv/dist/index.html for installing MMCV (#3840)


	Fix nonzero in NMS for PyTorch 1.6.0 (#3867)


	Fix the API change bug of PAA (#3883)


	Fix typo in bbox_flip (#3886)


	Fix cv2 import error of ligGL.so.1 in Dockerfile (#3891)







Improvements


	Change to use mmcv.utils.collect_env for collecting environment information to avoid duplicate codes (#3779)


	Update checkpoint file names to v2.0 models in documentation (#3795)


	Update tutorials for changing runtime settings (#3778), modifying loss (#3777)


	Improve the function of simple_test_bboxes in SABL (#3853)


	Convert mask to bool before using it as img’s index for robustness and speedup (#3870)


	Improve documentation of modules and dataset customization (#3821)









v2.4.0 (5/9/2020)

Highlights


	Fix lots of issues/bugs and reorganize the trouble shooting page


	Support new methods SABL [https://arxiv.org/abs/1912.04260], YOLOv3 [https://arxiv.org/abs/1804.02767], and PAA Assign [https://arxiv.org/abs/2007.08103]


	Support Batch Inference


	Start to publish mmdet package to PyPI since v2.3.0


	Switch model zoo to download.openmmlab.com




Backwards Incompatible Changes


	Support Batch Inference (#3564, #3686, #3705): Since v2.4.0, MMDetection could inference model with multiple images in a single GPU.
This change influences all the test APIs in MMDetection and downstream codebases. To help the users migrate their code, we use replace_ImageToTensor (#3686) to convert legacy test data pipelines during dataset initialization.


	Support RandomFlip with horizontal/vertical/diagonal direction (#3608): Since v2.4.0, MMDetection supports horizontal/vertical/diagonal flip in the data augmentation. This influences bounding box, mask, and image transformations in data augmentation process and the process that will map those data back to the original format.


	Migrate to use mmlvis and mmpycocotools for COCO and LVIS dataset (#3727). The APIs are fully compatible with the original lvis and pycocotools. Users need to uninstall the existing pycocotools and lvis packages in their environment first and install mmlvis & mmpycocotools.




Bug Fixes


	Fix default mean/std for onnx (#3491)


	Fix coco evaluation and add metric items (#3497)


	Fix typo for install.md (#3516)


	Fix atss when sampler per gpu is 1 (#3528)


	Fix import of fuse_conv_bn (#3529)


	Fix bug of gaussian_target, update unittest of heatmap (#3543)


	Fixed VOC2012 evaluate (#3553)


	Fix scale factor bug of rescale (#3566)


	Fix with_xxx_attributes in base detector (#3567)


	Fix boxes scaling when number is 0 (#3575)


	Fix rfp check when neck config is a list (#3591)


	Fix import of fuse conv bn in benchmark.py (#3606)


	Fix webcam demo (#3634)


	Fix typo and itemize issues in tutorial (#3658)


	Fix error in distributed training when some levels of FPN are not assigned with bounding boxes (#3670)


	Fix the width and height orders of stride in valid flag generation (#3685)


	Fix weight initialization bug in Res2Net DCN (#3714)


	Fix bug in OHEMSampler (#3677)




New Features


	Support Cutout augmentation (#3521)


	Support evaluation on multiple datasets through ConcatDataset (#3522)


	Support PAA assign [https://arxiv.org/abs/2007.08103] #(3547)


	Support eval metric with pickle results (#3607)


	Support YOLOv3 [https://arxiv.org/abs/1804.02767] (#3083)


	Support SABL [https://arxiv.org/abs/1912.04260] (#3603)


	Support to publish to Pypi in github-action (#3510)


	Support custom imports (#3641)




Improvements


	Refactor common issues in documentation (#3530)


	Add pytorch 1.6 to CI config (#3532)


	Add config to runner meta (#3534)


	Add eval-option flag for testing (#3537)


	Add init_eval to evaluation hook (#3550)


	Add include_bkg in ClassBalancedDataset (#3577)


	Using config’s loading in inference_detector (#3611)


	Add ATSS ResNet-101 models in model zoo (#3639)


	Update urls to download.openmmlab.com (#3665)


	Support non-mask training for CocoDataset (#3711)







v2.3.0 (5/8/2020)

Highlights


	The CUDA/C++ operators have been moved to mmcv.ops. For backward compatibility mmdet.ops is kept as warppers of mmcv.ops.


	Support new methods CornerNet [https://arxiv.org/abs/1808.01244], DIOU [https://arxiv.org/abs/1911.08287]/CIOU [https://arxiv.org/abs/2005.03572] loss, and new dataset: LVIS V1 [https://arxiv.org/abs/1908.03195]


	Provide more detailed colab training tutorials and more complete documentation.


	Support to convert RetinaNet from Pytorch to ONNX.




Bug Fixes


	Fix the model initialization bug of DetectoRS (#3187)


	Fix the bug of module names in NASFCOSHead (#3205)


	Fix the filename bug in publish_model.py (#3237)


	Fix the dimensionality bug when inside_flags.any() is False in dense heads (#3242)


	Fix the bug of forgetting to pass flip directions in MultiScaleFlipAug (#3262)


	Fixed the bug caused by default value of stem_channels (#3333)


	Fix the bug of model checkpoint loading for CPU inference (#3318, #3316)


	Fix topk bug when box number is smaller than the expected topk number in ATSSAssigner (#3361)


	Fix the gt priority bug in center_region_assigner.py (#3208)


	Fix NaN issue of iou calculation in iou_loss.py (#3394)


	Fix the bug that iou_thrs is not actually used during evaluation in coco.py (#3407)


	Fix test-time augmentation of RepPoints (#3435)


	Fix runtimeError caused by incontiguous tensor in Res2Net+DCN (#3412)




New Features


	Support CornerNet [https://arxiv.org/abs/1808.01244] (#3036)


	Support DIOU [https://arxiv.org/abs/1911.08287]/CIOU [https://arxiv.org/abs/2005.03572] loss (#3151)


	Support LVIS V1 [https://arxiv.org/abs/1908.03195] dataset (#)


	Support customized hooks in training (#3395)


	Support fp16 training of generalized focal loss (#3410)


	Support to convert RetinaNet from Pytorch to ONNX (#3075)




Improvements


	Support to process ignore boxes in ATSS assigner (#3082)


	Allow to crop images without ground truth in RandomCrop (#3153)


	Enable the the Accuracy module to set threshold (#3155)


	Refactoring unit tests (#3206)


	Unify the training settings of to_float32 and norm_cfg in RegNets configs (#3210)


	Add colab training tutorials for beginners (#3213, #3273)


	Move CUDA/C++ operators into mmcv.ops and keep mmdet.ops as warppers for backward compatibility (#3232)(#3457)


	Update installation scripts in documentation (#3290) and dockerfile (#3320)


	Support to set image resize backend (#3392)


	Remove git hash in version file (#3466)


	Check mmcv version to force version compatibility (#3460)







v2.2.0 (1/7/2020)

Highlights


	Support new methods: DetectoRS [https://arxiv.org/abs/2006.02334], PointRend [https://arxiv.org/abs/1912.08193], Generalized Focal Loss [https://arxiv.org/abs/2006.04388], Dynamic R-CNN [https://arxiv.org/abs/2004.06002]




Bug Fixes


	Fix FreeAnchor when no gt in image (#3176)


	Clean up deprecated usage of register_module() (#3092, #3161)


	Fix pretrain bug in NAS FCOS (#3145)


	Fix num_classes in SSD (#3142)


	Fix FCOS warmup (#3119)


	Fix rstrip in tools/publish_model.py


	Fix flip_ratio default value in RandomFLip pipeline (#3106)


	Fix cityscapes eval with ms_rcnn (#3112)


	Fix RPN softmax (#3056)


	Fix filename of LVIS@v0.5 (#2998)


	Fix nan loss by filtering out-of-frame gt_bboxes in COCO (#2999)


	Fix bug in FSAF (#3018)


	Add FocalLoss num_classes check (#2964)


	Fix PISA Loss when there are no gts (#2992)


	Avoid nan in iou_calculator (#2975)


	Prevent possible bugs in loading and transforms caused by shallow copy (#2967)




New Features


	Add DetectoRS (#3064)


	Support Generalize Focal Loss (#3097)


	Support PointRend (#2752)


	Support Dynamic R-CNN (#3040)


	Add DeepFashion dataset (#2968)


	Implement FCOS training tricks (#2935)


	Use BaseDenseHead as base class for anchor-base heads (#2963)


	Add with_cp for BasicBlock (#2891)


	Add stem_channels argument for ResNet (#2954)




Improvements


	Add anchor free base head (#2867)


	Migrate to github action (#3137)


	Add docstring for datasets, pipelines, core modules and methods (#3130, #3125, #3120)


	Add VOC benchmark (#3060)


	Add concat mode in GRoI (#3098)


	Remove cmd arg autorescale-lr (#3080)


	Use len(data['img_metas']) to indicate num_samples (#3073, #3053)


	Switch to EpochBasedRunner (#2976)







v2.1.0 (8/6/2020)

Highlights


	Support new backbones: RegNetX [https://arxiv.org/abs/2003.13678], Res2Net [https://arxiv.org/abs/1904.01169]


	Support new methods: NASFCOS [https://arxiv.org/abs/1906.04423], PISA [https://arxiv.org/abs/1904.04821], GRoIE [https://arxiv.org/abs/2004.13665]


	Support new dataset: LVIS [https://arxiv.org/abs/1908.03195]




Bug Fixes


	Change the CLI argument --validate to --no-validate to enable validation after training epochs by default. (#2651)


	Add missing cython to docker file (#2713)


	Fix bug in nms cpu implementation (#2754)


	Fix bug when showing mask results (#2763)


	Fix gcc requirement (#2806)


	Fix bug in async test (#2820)


	Fix mask encoding-decoding bugs in test API (#2824)


	Fix bug in test time augmentation (#2858, #2921, #2944)


	Fix a typo in comment of apis/train (#2877)


	Fix the bug of returning None when no gt bboxes are in the original image in RandomCrop. Fix the bug that misses to handle gt_bboxes_ignore, gt_label_ignore, and gt_masks_ignore in RandomCrop, MinIoURandomCrop and Expand modules. (#2810)


	Fix bug of base_channels of regnet (#2917)


	Fix the bug of logger when loading pre-trained weights in base detector (#2936)




New Features


	Add IoU models (#2666)


	Add colab demo for inference


	Support class agnostic nms (#2553)


	Add benchmark gathering scripts for development only (#2676)


	Add mmdet-based project links (#2736, #2767, #2895)


	Add config dump in training (#2779)


	Add ClassBalancedDataset (#2721)


	Add res2net backbone (#2237)


	Support RegNetX models (#2710)


	Use mmcv.FileClient to support different storage backends (#2712)


	Add ClassBalancedDataset (#2721)


	Code Release: Prime Sample Attention in Object Detection (CVPR 2020) (#2626)


	Implement NASFCOS (#2682)


	Add class weight in CrossEntropyLoss (#2797)


	Support LVIS dataset (#2088)


	Support GRoIE (#2584)




Improvements


	Allow different x and y strides in anchor heads. (#2629)


	Make FSAF loss more robust to no gt (#2680)


	Compute pure inference time instead (#2657) and update inference speed (#2730)


	Avoided the possibility that a patch with 0 area is cropped. (#2704)


	Add warnings when deprecated imgs_per_gpu is used. (#2700)


	Add a mask rcnn example for config (#2645)


	Update model zoo (#2762, #2866, #2876, #2879, #2831)


	Add ori_filename to img_metas and use it in test show-dir (#2612)


	Use img_fields to handle multiple images during image transform (#2800)


	Add upsample_cfg support in FPN (#2787)


	Add ['img'] as default img_fields for back compatibility (#2809)


	Rename the pretrained model from open-mmlab://resnet50_caffe and open-mmlab://resnet50_caffe_bgr to open-mmlab://detectron/resnet50_caffe and open-mmlab://detectron2/resnet50_caffe. (#2832)


	Added sleep(2) in test.py to reduce hanging problem (#2847)


	Support c10::half in CARAFE (#2890)


	Improve documentations (#2918, #2714)


	Use optimizer constructor in mmcv and clean the original implementation in mmdet.core.optimizer (#2947)







v2.0.0 (6/5/2020)

In this release, we made lots of major refactoring and modifications.


	Faster speed. We optimize the training and inference speed for common models, achieving up to 30% speedup for training and 25% for inference. Please refer to model zoo for details.


	Higher performance. We change some default hyperparameters with no additional cost, which leads to a gain of performance for most models. Please refer to compatibility for details.


	More documentation and tutorials. We add a bunch of documentation and tutorials to help users get started more smoothly. Read it here [https://mmdetection.readthedocs.io/en/latest/].


	Support PyTorch 1.5. The support for 1.1 and 1.2 is dropped, and we switch to some new APIs.


	Better configuration system. Inheritance is supported to reduce the redundancy of configs.


	Better modular design. Towards the goal of simplicity and flexibility, we simplify some encapsulation while add more other configurable modules like BBoxCoder, IoUCalculator, OptimizerConstructor, RoIHead. Target computation is also included in heads and the call hierarchy is simpler.


	Support new methods: FSAF [https://arxiv.org/abs/1903.00621] and PAFPN (part of PAFPN [https://arxiv.org/abs/1803.01534]).




Breaking Changes
Models training with MMDetection 1.x are not fully compatible with 2.0, please refer to the compatibility doc for the details and how to migrate to the new version.

Improvements


	Unify cuda and cpp API for custom ops. (#2277)


	New config files with inheritance. (#2216)


	Encapsulate the second stage into RoI heads. (#1999)


	Refactor GCNet/EmpericalAttention into plugins. (#2345)


	Set low quality match as an option in IoU-based bbox assigners. (#2375)


	Change the codebase’s coordinate system. (#2380)


	Refactor the category order in heads. 0 means the first positive class instead of background now. (#2374)


	Add bbox sampler and assigner registry. (#2419)


	Speed up the inference of RPN. (#2420)


	Add train_cfg and test_cfg as class members in all anchor heads. (#2422)


	Merge target computation methods into heads. (#2429)


	Add bbox coder to support different bbox encoding and losses. (#2480)


	Unify the API for regression loss. (#2156)


	Refactor Anchor Generator. (#2474)


	Make lr an optional argument for optimizers. (#2509)


	Migrate to modules and methods in MMCV. (#2502, #2511, #2569, #2572)


	Support PyTorch 1.5. (#2524)


	Drop the support for Python 3.5 and use F-string in the codebase. (#2531)




Bug Fixes


	Fix the scale factors for resized images without keep the aspect ratio. (#2039)


	Check if max_num > 0 before slicing in NMS. (#2486)


	Fix Deformable RoIPool when there is no instance. (#2490)


	Fix the default value of assigned labels. (#2536)


	Fix the evaluation of Cityscapes. (#2578)




New Features


	Add deep_stem and avg_down option to ResNet, i.e., support ResNetV1d. (#2252)


	Add L1 loss. (#2376)


	Support both polygon and bitmap for instance masks. (#2353, #2540)


	Support CPU mode for inference. (#2385)


	Add optimizer constructor for complicated configuration of optimizers. (#2397, #2488)


	Implement PAFPN. (#2392)


	Support empty tensor input for some modules. (#2280)


	Support for custom dataset classes without overriding it. (#2408, #2443)


	Support to train subsets of coco dataset. (#2340)


	Add iou_calculator to potentially support more IoU calculation methods. (2405)


	Support class wise mean AP (was removed in the last version). (#2459)


	Add option to save the testing result images. (#2414)


	Support MomentumUpdaterHook. (#2571)


	Add a demo to inference a single image. (#2605)







v1.1.0 (24/2/2020)

Highlights


	Dataset evaluation is rewritten with a unified api, which is used by both evaluation hooks and test scripts.


	Support new methods: CARAFE [https://arxiv.org/abs/1905.02188].




Breaking Changes


	The new MMDDP inherits from the official DDP, thus the __init__ api is changed to be the same as official DDP.


	The mask_head field in HTC config files is modified.


	The evaluation and testing script is updated.


	In all transforms, instance masks are stored as a numpy array shaped (n, h, w) instead of a list of (h, w) arrays, where n is the number of instances.




Bug Fixes


	Fix IOU assigners when ignore_iof_thr > 0 and there is no pred boxes. (#2135)


	Fix mAP evaluation when there are no ignored boxes. (#2116)


	Fix the empty RoI input for Deformable RoI Pooling. (#2099)


	Fix the dataset settings for multiple workflows. (#2103)


	Fix the warning related to torch.uint8 in PyTorch 1.4. (#2105)


	Fix the inference demo on devices other than gpu:0. (#2098)


	Fix Dockerfile. (#2097)


	Fix the bug that pad_val is unused in Pad transform. (#2093)


	Fix the albumentation transform when there is no ground truth bbox. (#2032)




Improvements


	Use torch instead of numpy for random sampling. (#2094)


	Migrate to the new MMDDP implementation in MMCV v0.3. (#2090)


	Add meta information in logs. (#2086)


	Rewrite Soft NMS with pytorch extension and remove cython as a dependency. (#2056)


	Rewrite dataset evaluation. (#2042, #2087, #2114, #2128)


	Use numpy array for masks in transforms. (#2030)




New Features


	Implement “CARAFE: Content-Aware ReAssembly of FEatures”. (#1583)


	Add worker_init_fn() in data_loader when seed is set. (#2066, #2111)


	Add logging utils. (#2035)







v1.0.0 (30/1/2020)

This release mainly improves the code quality and add more docstrings.

Highlights


	Documentation is online now: https://mmdetection.readthedocs.io.


	Support new models: ATSS [https://arxiv.org/abs/1912.02424].


	DCN is now available with the api build_conv_layer and ConvModule like the normal conv layer.


	A tool to collect environment information is available for trouble shooting.




Bug Fixes


	Fix the incompatibility of the latest numpy and pycocotools. (#2024)


	Fix the case when distributed package is unavailable, e.g., on Windows. (#1985)


	Fix the dimension issue for refine_bboxes(). (#1962)


	Fix the typo when seg_prefix is a list. (#1906)


	Add segmentation map cropping to RandomCrop. (#1880)


	Fix the return value of ga_shape_target_single(). (#1853)


	Fix the loaded shape of empty proposals. (#1819)


	Fix the mask data type when using albumentation. (#1818)




Improvements


	Enhance AssignResult and SamplingResult. (#1995)


	Add ability to overwrite existing module in Registry. (#1982)


	Reorganize requirements and make albumentations and imagecorruptions optional. (#1969)


	Check NaN in SSDHead. (#1935)


	Encapsulate the DCN in ResNe(X)t into a ConvModule & Conv_layers. (#1894)


	Refactoring for mAP evaluation and support multiprocessing and logging. (#1889)


	Init the root logger before constructing Runner to log more information. (#1865)


	Split SegResizeFlipPadRescale into different existing transforms. (#1852)


	Move init_dist() to MMCV. (#1851)


	Documentation and docstring improvements. (#1971, #1938, #1869, #1838)


	Fix the color of the same class for mask visualization. (#1834)


	Remove the option keep_all_stages in HTC and Cascade R-CNN. (#1806)




New Features


	Add two test-time options crop_mask and rle_mask_encode for mask heads. (#2013)


	Support loading grayscale images as single channel. (#1975)


	Implement “Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection”. (#1872)


	Add sphinx generated docs. (#1859, #1864)


	Add GN support for flops computation. (#1850)


	Collect env info for trouble shooting. (#1812)







v1.0rc1 (13/12/2019)

The RC1 release mainly focuses on improving the user experience, and fixing bugs.

Highlights


	Support new models: FoveaBox [https://arxiv.org/abs/1904.03797], RepPoints [https://arxiv.org/abs/1904.11490] and FreeAnchor [https://arxiv.org/abs/1909.02466].


	Add a Dockerfile.


	Add a jupyter notebook demo and a webcam demo.


	Setup the code style and CI.


	Add lots of docstrings and unit tests.


	Fix lots of bugs.




Breaking Changes


	There was a bug for computing COCO-style mAP w.r.t different scales (AP_s, AP_m, AP_l), introduced by #621. (#1679)




Bug Fixes


	Fix a sampling interval bug in Libra R-CNN. (#1800)


	Fix the learning rate in SSD300 WIDER FACE. (#1781)


	Fix the scaling issue when keep_ratio=False. (#1730)


	Fix typos. (#1721, #1492, #1242, #1108, #1107)


	Fix the shuffle argument in build_dataloader. (#1693)


	Clip the proposal when computing mask targets. (#1688)


	Fix the “index out of range” bug for samplers in some corner cases. (#1610, #1404)


	Fix the NMS issue on devices other than GPU:0. (#1603)


	Fix SSD Head and GHM Loss on CPU. (#1578)


	Fix the OOM error when there are too many gt bboxes. (#1575)


	Fix the wrong keyword argument nms_cfg in HTC. (#1573)


	Process masks and semantic segmentation in Expand and MinIoUCrop transforms. (#1550, #1361)


	Fix a scale bug in the Non Local op. (#1528)


	Fix a bug in transforms when gt_bboxes_ignore is None. (#1498)


	Fix a bug when img_prefix is None. (#1497)


	Pass the device argument to grid_anchors and valid_flags. (#1478)


	Fix the data pipeline for test_robustness. (#1476)


	Fix the argument type of deformable pooling. (#1390)


	Fix the coco_eval when there are only two classes. (#1376)


	Fix a bug in Modulated DeformableConv when deformable_group>1. (#1359)


	Fix the mask cropping in RandomCrop. (#1333)


	Fix zero outputs in DeformConv when not running on cuda:0. (#1326)


	Fix the type issue in Expand. (#1288)


	Fix the inference API. (#1255)


	Fix the inplace operation in Expand. (#1249)


	Fix the from-scratch training config. (#1196)


	Fix inplace add in RoIExtractor which cause an error in PyTorch 1.2. (#1160)


	Fix FCOS when input images has no positive sample. (#1136)


	Fix recursive imports. (#1099)




Improvements


	Print the config file and mmdet version in the log. (#1721)


	Lint the code before compiling in travis CI. (#1715)


	Add a probability argument for the Expand transform. (#1651)


	Update the PyTorch and CUDA version in the docker file. (#1615)


	Raise a warning when specifying --validate in non-distributed training. (#1624, #1651)


	Beautify the mAP printing. (#1614)


	Add pre-commit hook. (#1536)


	Add the argument in_channels to backbones. (#1475)


	Add lots of docstrings and unit tests, thanks to @Erotemic [https://github.com/Erotemic]. (#1603, #1517, #1506, #1505, #1491, #1479, #1477, #1475, #1474)


	Add support for multi-node distributed test when there is no shared storage. (#1399)


	Optimize Dockerfile to reduce the image size. (#1306)


	Update new results of HRNet. (#1284, #1182)


	Add an argument no_norm_on_lateral in FPN. (#1240)


	Test the compiling in CI. (#1235)


	Move docs to a separate folder. (#1233)


	Add a jupyter notebook demo. (#1158)


	Support different type of dataset for training. (#1133)


	Use int64_t instead of long in cuda kernels. (#1131)


	Support unsquare RoIs for bbox and mask heads. (#1128)


	Manually add type promotion to make compatible to PyTorch 1.2. (#1114)


	Allowing validation dataset for computing validation loss. (#1093)


	Use .scalar_type() instead of .type() to suppress some warnings. (#1070)




New Features


	Add an option --with_ap to compute the AP for each class. (#1549)


	Implement “FreeAnchor: Learning to Match Anchors for Visual Object Detection”. (#1391)


	Support Albumentations [https://github.com/albumentations-team/albumentations] for augmentations in the data pipeline. (#1354)


	Implement “FoveaBox: Beyond Anchor-based Object Detector”. (#1339)


	Support horizontal and vertical flipping. (#1273, #1115)


	Implement “RepPoints: Point Set Representation for Object Detection”. (#1265)


	Add test-time augmentation to HTC and Cascade R-CNN. (#1251)


	Add a COCO result analysis tool. (#1228)


	Add Dockerfile. (#1168)


	Add a webcam demo. (#1155, #1150)


	Add FLOPs counter. (#1127)


	Allow arbitrary layer order for ConvModule. (#1078)







v1.0rc0 (27/07/2019)


	Implement lots of new methods and components (Mixed Precision Training, HTC, Libra R-CNN, Guided Anchoring, Empirical Attention, Mask Scoring R-CNN, Grid R-CNN (Plus), GHM, GCNet, FCOS, HRNet, Weight Standardization, etc.). Thank all collaborators!


	Support two additional datasets: WIDER FACE and Cityscapes.


	Refactoring for loss APIs and make it more flexible to adopt different losses and related hyper-parameters.


	Speed up multi-gpu testing.


	Integrate all compiling and installing in a single script.







v0.6.0 (14/04/2019)


	Up to 30% speedup compared to the model zoo.


	Support both PyTorch stable and nightly version.


	Replace NMS and SigmoidFocalLoss with Pytorch CUDA extensions.







v0.6rc0(06/02/2019)


	Migrate to PyTorch 1.0.







v0.5.7 (06/02/2019)


	Add support for Deformable ConvNet v2. (Many thanks to the authors and @chengdazhi [https://github.com/chengdazhi])


	This is the last release based on PyTorch 0.4.1.







v0.5.6 (17/01/2019)


	Add support for Group Normalization.


	Unify RPNHead and single stage heads (RetinaHead, SSDHead) with AnchorHead.







v0.5.5 (22/12/2018)


	Add SSD for COCO and PASCAL VOC.


	Add ResNeXt backbones and detection models.


	Refactoring for Samplers/Assigners and add OHEM.


	Add VOC dataset and evaluation scripts.







v0.5.4 (27/11/2018)


	Add SingleStageDetector and RetinaNet.







v0.5.3 (26/11/2018)


	Add Cascade R-CNN and Cascade Mask R-CNN.


	Add support for Soft-NMS in config files.







v0.5.2 (21/10/2018)


	Add support for custom datasets.


	Add a script to convert PASCAL VOC annotations to the expected format.







v0.5.1 (20/10/2018)


	Add BBoxAssigner and BBoxSampler, the train_cfg field in config files are restructured.


	ConvFCRoIHead / SharedFCRoIHead are renamed to ConvFCBBoxHead / SharedFCBBoxHead for consistency.










            

          

      

      

    

  

  
    
    
    Frequently Asked Questions
    

    

    

    
 
  

    
      
          
            
  
Frequently Asked Questions

We list some common troubles faced by many users and their corresponding solutions here. Feel free to enrich the list if you find any frequent issues and have ways to help others to solve them. If the contents here do not cover your issue, please create an issue using the provided templates [https://github.com/open-mmlab/mmdetection/blob/main/.github/ISSUE_TEMPLATE/error-report.md/] and make sure you fill in all required information in the template.


PyTorch 2.0 Support

The vast majority of algorithms in MMDetection now support PyTorch 2.0 and its torch.compile function. Users only need to install MMDetection 3.0.0rc7 or later versions to enjoy this feature. If any unsupported algorithms are found during use, please feel free to give us feedback. We also welcome contributions from the community to benchmark the speed improvement brought by using the torch.compile function.

To enable the torch.compile function, simply add --cfg-options compile=True after train.py or test.py. For example, to enable torch.compile for RTMDet, you can use the following command:

# Single GPU
python tools/train.py configs/rtmdet/rtmdet_s_8xb32-300e_coco.py  --cfg-options compile=True

# Single node multiple GPUs
./tools/dist_train.sh configs/rtmdet/rtmdet_s_8xb32-300e_coco.py 8 --cfg-options compile=True

# Single node multiple GPUs + AMP
./tools/dist_train.sh configs/rtmdet/rtmdet_s_8xb32-300e_coco.py 8 --cfg-options compile=True --amp





It is important to note that PyTorch 2.0’s support for dynamic shapes is not yet fully developed. In most object detection algorithms, not only are the input shapes dynamic, but the loss calculation and post-processing parts are also dynamic. This can lead to slower training speeds when using the torch.compile function. Therefore, if you wish to enable the torch.compile function, you should follow these principles:


	Input images to the network are fixed shape, not multi-scale


	set torch._dynamo.config.cache_size_limit parameter. TorchDynamo will convert and cache the Python bytecode, and the compiled functions will be stored in the cache. When the next check finds that the function needs to be recompiled, the function will be recompiled and cached. However, if the number of recompilations exceeds the maximum value set (64), the function will no longer be cached or recompiled. As mentioned above, the loss calculation and post-processing parts of the object detection algorithm are also dynamically calculated, and these functions need to be recompiled every time. Therefore, setting the torch._dynamo.config.cache_size_limit parameter to a smaller value can effectively reduce the compilation time




In MMDetection, you can set the torch._dynamo.config.cache_size_limit parameter through the environment variable DYNAMO_CACHE_SIZE_LIMIT. For example, the command is as follows:

# Single GPU
export DYNAMO_CACHE_SIZE_LIMIT = 4
python tools/train.py configs/rtmdet/rtmdet_s_8xb32-300e_coco.py  --cfg-options compile=True

# Single node multiple GPUs
export DYNAMO_CACHE_SIZE_LIMIT = 4
./tools/dist_train.sh configs/rtmdet/rtmdet_s_8xb32-300e_coco.py 8 --cfg-options compile=True





About the common questions about PyTorch 2.0’s dynamo, you can refer to here [https://pytorch.org/docs/stable/dynamo/faq.html]




Installation

Compatibility issue between MMCV and MMDetection; “ConvWS is already registered in conv layer”; “AssertionError: MMCV==xxx is used but incompatible. Please install mmcv>=xxx, <=xxx.”

Compatible MMDetection, MMEngine, and MMCV versions are shown as below. Please choose the correct version of MMCV to avoid installation issues.




	MMDetection version
	MMCV version
	MMEngine version





	main
	mmcv>=2.0.0, \<2.2.0
	mmengine>=0.7.1, \<1.0.0



	3.3.0
	mmcv>=2.0.0, \<2.2.0
	mmengine>=0.7.1, \<1.0.0



	3.2.0
	mmcv>=2.0.0, \<2.2.0
	mmengine>=0.7.1, \<1.0.0



	3.1.0
	mmcv>=2.0.0, \<2.1.0
	mmengine>=0.7.1, \<1.0.0



	3.0.0
	mmcv>=2.0.0, \<2.1.0
	mmengine>=0.7.1, \<1.0.0



	3.0.0rc6
	mmcv>=2.0.0rc4, \<2.1.0
	mmengine>=0.6.0, \<1.0.0



	3.0.0rc5
	mmcv>=2.0.0rc1, \<2.1.0
	mmengine>=0.3.0, \<1.0.0



	3.0.0rc4
	mmcv>=2.0.0rc1, \<2.1.0
	mmengine>=0.3.0, \<1.0.0



	3.0.0rc3
	mmcv>=2.0.0rc1, \<2.1.0
	mmengine>=0.3.0, \<1.0.0



	3.0.0rc2
	mmcv>=2.0.0rc1, \<2.1.0
	mmengine>=0.1.0, \<1.0.0



	3.0.0rc1
	mmcv>=2.0.0rc1, \<2.1.0
	mmengine>=0.1.0, \<1.0.0



	3.0.0rc0
	mmcv>=2.0.0rc1, \<2.1.0
	mmengine>=0.1.0, \<1.0.0





Note:


	If you want to install mmdet-v2.x, the compatible MMDetection and MMCV versions table can be found at here [https://mmdetection.readthedocs.io/en/stable/faq.html#installation]. Please choose the correct version of MMCV to avoid installation issues.


	In MMCV-v2.x, mmcv-full is rename to mmcv, if you want to install mmcv without CUDA ops, you can install mmcv-lite.





	“No module named ‘mmcv.ops’”; “No module named ‘mmcv._ext’”.


	Uninstall existing mmcv-lite in the environment using pip uninstall mmcv-lite.


	Install mmcv following the installation instruction [https://mmcv.readthedocs.io/en/2.x/get_started/installation.html].






	“Microsoft Visual C++ 14.0 or graeter is required” during installation on Windows.

This error happens when building the ‘pycocotools._mask’ extension of pycocotools and the environment lacks corresponding C++ compilation dependencies. You need to download it at Microsoft officials visual-cpp-build-tools [https://visualstudio.microsoft.com/zh-hans/visual-cpp-build-tools/],  select the “Use C ++ Desktop Development” option to install the minimum dependencies, and then reinstall pycocotools.



	Using Albumentations

If you would like to use albumentations, we suggest using pip install -r requirements/albu.txt or
pip install -U albumentations --no-binary qudida,albumentations.
If you simply use pip install albumentations>=0.3.2, it will install opencv-python-headless simultaneously (even though you have already installed opencv-python).
Please refer to the official documentation [https://albumentations.ai/docs/getting_started/installation/#note-on-opencv-dependencies] for details.



	ModuleNotFoundError is raised when using some algorithms

Some extra dependencies are required for Instaboost, Panoptic Segmentation, LVIS dataset, etc. Please note the error message and install corresponding packages, e.g.,

# for instaboost
pip install instaboostfast
# for panoptic segmentation
pip install git+https://github.com/cocodataset/panopticapi.git
# for LVIS dataset
pip install git+https://github.com/lvis-dataset/lvis-api.git












Coding


	Do I need to reinstall mmdet after some code modifications

If you follow the best practice and install mmdet with pip install -e ., any local modifications made to the code will take effect without reinstallation.



	How to develop with multiple MMDetection versions

You can have multiple folders like mmdet-3.0, mmdet-3.1.
When you run the train or test script, it will adopt the mmdet package in the current folder.

To use the default MMDetection installed in the environment rather than the one you are working with, you can remove the following line in those scripts:

PYTHONPATH="$(dirname $0)/..":$PYTHONPATH












PyTorch/CUDA Environment


	“RTX 30 series card fails when building MMCV or MMDet”


	Temporary work-around: do MMCV_WITH_OPS=1 MMCV_CUDA_ARGS='-gencode=arch=compute_80,code=sm_80' pip install -e ..
The common issue is nvcc fatal : Unsupported gpu architecture 'compute_86'. This means that the compiler should optimize for sm_86, i.e., nvidia 30 series card, but such optimizations have not been supported by CUDA toolkit 11.0.
This work-around modifies the compile flag by adding MMCV_CUDA_ARGS='-gencode=arch=compute_80,code=sm_80', which tells nvcc to optimize for sm_80, i.e., Nvidia A100. Although A100 is different from the 30 series card, they use similar ampere architecture. This may hurt the performance but it works.


	PyTorch developers have updated that the default compiler flags should be fixed by pytorch/pytorch#47585 [https://github.com/pytorch/pytorch/pull/47585]. So using PyTorch-nightly may also be able to solve the problem, though we have not tested it yet.






	“invalid device function” or “no kernel image is available for execution”.


	Check if your cuda runtime version (under /usr/local/), nvcc --version and conda list cudatoolkit version match.


	Run python mmdet/utils/collect_env.py to check whether PyTorch, torchvision, and MMCV are built for the correct GPU architecture.
You may need to set TORCH_CUDA_ARCH_LIST to reinstall MMCV.
The GPU arch table could be found here [https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#gpu-feature-list],
i.e. run TORCH_CUDA_ARCH_LIST=7.0 pip install mmcv to build MMCV for Volta GPUs.
The compatibility issue could happen when using old GPUS, e.g., Tesla K80 (3.7) on colab.


	Check whether the running environment is the same as that when mmcv/mmdet has compiled.
For example, you may compile mmcv using CUDA 10.0 but run it on CUDA 9.0 environments.






	“undefined symbol” or “cannot open xxx.so”.


	If those symbols are CUDA/C++ symbols (e.g., libcudart.so or GLIBCXX), check whether the CUDA/GCC runtimes are the same as those used for compiling mmcv,
i.e. run python mmdet/utils/collect_env.py to see if "MMCV Compiler"/"MMCV CUDA Compiler" is the same as "GCC"/"CUDA_HOME".


	If those symbols are PyTorch symbols (e.g., symbols containing caffe, aten, and TH), check whether the PyTorch version is the same as that used for compiling mmcv.


	Run python mmdet/utils/collect_env.py to check whether PyTorch, torchvision, and MMCV are built by and running on the same environment.






	setuptools.sandbox.UnpickleableException: DistutilsSetupError(“each element of ‘ext_modules’ option must be an Extension instance or 2-tuple”)


	If you are using miniconda rather than anaconda, check whether Cython is installed as indicated in #3379 [https://github.com/open-mmlab/mmdetection/issues/3379].
You need to manually install Cython first and then run command pip install -r requirements.txt.


	You may also need to check the compatibility between the setuptools, Cython, and PyTorch in your environment.






	“Segmentation fault”.


	Check you GCC version and use GCC 5.4. This usually caused by the incompatibility between PyTorch and the environment (e.g., GCC < 4.9 for PyTorch). We also recommend the users to avoid using GCC 5.5 because many feedbacks report that GCC 5.5 will cause “segmentation fault” and simply changing it to GCC 5.4 could solve the problem.


	Check whether PyTorch is correctly installed and could use CUDA op, e.g. type the following command in your terminal.

python -c 'import torch; print(torch.cuda.is_available())'





And see whether they could correctly output results.



	If Pytorch is correctly installed, check whether MMCV is correctly installed.

python -c 'import mmcv; import mmcv.ops'





If MMCV is correctly installed, then there will be no issue of the above two commands.



	If MMCV and Pytorch is correctly installed, you man use ipdb, pdb to set breakpoints or directly add ‘print’ in mmdetection code and see which part leads the segmentation fault.











Training


	“Loss goes Nan”


	Check if the dataset annotations are valid: zero-size bounding boxes will cause the regression loss to be Nan due to the commonly used transformation for box regression. Some small size (width or height are smaller than 1) boxes will also cause this problem after data augmentation (e.g., instaboost). So check the data and try to filter out those zero-size boxes and skip some risky augmentations on the small-size boxes when you face the problem.


	Reduce the learning rate: the learning rate might be too large due to some reasons, e.g., change of batch size. You can rescale them to the value that could stably train the model.


	Extend the warmup iterations: some models are sensitive to the learning rate at the start of the training. You can extend the warmup iterations, e.g., change the warmup_iters from 500 to 1000 or 2000.


	Add gradient clipping: some models requires gradient clipping to stabilize the training process. The default of grad_clip is None, you can add gradient clippint to avoid gradients that are too large, i.e., set optim_wrapper=dict(clip_grad=dict(max_norm=35, norm_type=2)) in your config file.






	“GPU out of memory”


	There are some scenarios when there are large amount of ground truth boxes, which may cause OOM during target assignment. You can set gpu_assign_thr=N in the config of assigner thus the assigner will calculate box overlaps through CPU when there are more than N GT boxes.


	Set with_cp=True in the backbone. This uses the sublinear strategy in PyTorch to reduce GPU memory cost in the backbone.


	Try mixed precision training using following the examples in config/fp16. The loss_scale might need further tuning for different models.


	Try to use AvoidCUDAOOM to avoid GPU out of memory. It will first retry after calling torch.cuda.empty_cache(). If it still fails, it will then retry by converting the type of inputs to FP16 format. If it still fails, it will try to copy inputs from GPUs to CPUs to continue computing. Try AvoidOOM in you code to make the code continue to run when GPU memory runs out:

from mmdet.utils import AvoidCUDAOOM

output = AvoidCUDAOOM.retry_if_cuda_oom(some_function)(input1, input2)





You can also try AvoidCUDAOOM as a decorator to make the code continue to run when GPU memory runs out:

from mmdet.utils import AvoidCUDAOOM

@AvoidCUDAOOM.retry_if_cuda_oom
def function(*args, **kwargs):
    ...
    return xxx











	“RuntimeError: Expected to have finished reduction in the prior iteration before starting a new one”


	This error indicates that your module has parameters that were not used in producing loss. This phenomenon may be caused by running different branches in your code in DDP mode.


	You can set find_unused_parameters = True in the config to solve the above problems, but this will slow down the training speed.


	You can set detect_anomalous_params = True in the config or model_wrapper_cfg = dict(type='MMDistributedDataParallel', detect_anomalous_params=True) (More details please refer to MMEngine [https://github.com/open-mmlab/mmengine/blob/main/mmengine/model/wrappers/distributed.py#L91]) to get the name of those unused parameters. Note detect_anomalous_params = True will slow down the training speed, so it is recommended for debugging only.






	Save the best model

It can be turned on by configuring default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=1, save_best='auto'),. In the case of the auto parameter, the first key in the returned evaluation result will be used as the basis for selecting the best model. You can also directly set the key in the evaluation result to manually set it, for example, save_best='coco/bbox_mAP'.








Evaluation


	COCO Dataset, AP or AR = -1


	According to the definition of COCO dataset, the small and medium areas in an image are less than 1024 (32*32), 9216 (96*96), respectively.


	If the corresponding area has no object, the result of AP and AR will set to -1.











Model


	style in ResNet

The style parameter in ResNet allows either pytorch or caffe style. It indicates the difference in the Bottleneck module. Bottleneck is a stacking structure of 1x1-3x3-1x1 convolutional layers. In the case of caffe mode, the convolution layer with stride=2 is the first 1x1 convolution, while in pyorch mode, it is the second 3x3 convolution has stride=2. A sample code is as below:

if self.style == 'pytorch':
      self.conv1_stride = 1
      self.conv2_stride = stride
else:
      self.conv1_stride = stride
      self.conv2_stride = 1







	ResNeXt parameter description

ResNeXt comes from the paper Aggregated Residual Transformations for Deep Neural Networks [https://arxiv.org/abs/1611.05431]. It introduces  group and uses “cardinality” to control the number of groups to achieve a balance between accuracy and complexity. It controls the basic width and grouping parameters of the internal Bottleneck module through two hyperparameters baseWidth and cardinality. An example configuration name in MMDetection is mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco.py, where mask_rcnn represents the algorithm using Mask R-CNN, x101 represents the backbone network using ResNeXt-101, and 64x4d represents that the bottleneck block has 64 group and each group has basic width of 4.



	norm_eval in backbone

Since the detection model is usually large and the input image resolution is high, this will result in a small batch of the detection model, which will make the variance of the statistics calculated by BatchNorm during the training process very large and not as stable as the statistics obtained during the pre-training of the backbone network . Therefore, the norm_eval=True mode is generally used in training, and the BatchNorm statistics in the pre-trained backbone network are directly used. The few algorithms that use large batches are the norm_eval=False mode, such as NASFPN. For the backbone network without ImageNet pre-training and the batch is relatively small, you can consider using SyncBN.











            

          

      

      

    

  

  
    
    
    Compatibility of MMDetection 2.x
    

    

    

    
 
  

    
      
          
            
  
Compatibility of MMDetection 2.x


MMDetection 2.25.0

In order to support Mask2Former for instance segmentation, the original config files of Mask2Former for panpotic segmentation need to be renamed PR #7571 [https://github.com/open-mmlab/mmdetection/pull/7571].


    
        
            	before v2.25.0
            	after v2.25.0
        

    
    
    	
'mask2former_xxx_coco.py' represents config files for **panoptic segmentation**.






    	
'mask2former_xxx_coco.py' represents config files for **instance segmentation**.
'mask2former_xxx_coco-panoptic.py' represents config files for **panoptic segmentation**.







  




MMDetection 2.21.0

In order to support CPU training, the logic of scatter in batch collating has been changed. We recommend to use
MMCV v1.4.4 or higher. For more details, please refer to MMCV PR #1621 [https://github.com/open-mmlab/mmcv/pull/1621].




MMDetection 2.18.1


MMCV compatibility

In order to fix the wrong weight reference bug in BaseTransformerLayer, the logic in batch first mode of MultiheadAttention has been changed.
We recommend to use MMCV v1.3.17 or higher. For more details, please refer to MMCV PR #1418 [https://github.com/open-mmlab/mmcv/pull/1418].






MMDetection 2.18.0


DIIHead compatibility

In order to support QueryInst, attn_feats is added into the returned tuple of DIIHead.






MMDetection 2.14.0


MMCV Version

In order to fix the problem that the priority of EvalHook is too low, all hook priorities have been re-adjusted in 1.3.8, so MMDetection 2.14.0 needs to rely on the latest MMCV 1.3.8 version. For related information, please refer to #1120 [https://github.com/open-mmlab/mmcv/pull/1120], for related issues, please refer to #5343 [https://github.com/open-mmlab/mmdetection/issues/5343].




SSD compatibility

In v2.14.0, to make SSD more flexible to use, PR5291 [https://github.com/open-mmlab/mmdetection/pull/5291] refactored its backbone, neck and head. The users can use the script tools/model_converters/upgrade_ssd_version.py to convert their models.

python tools/model_converters/upgrade_ssd_version.py ${OLD_MODEL_PATH} ${NEW_MODEL_PATH}






	OLD_MODEL_PATH: the path to load the old version SSD model.


	NEW_MODEL_PATH: the path to save the converted model weights.









MMDetection 2.12.0

MMDetection is going through big refactoring for more general and convenient usages during the releases from v2.12.0 to v2.18.0 (maybe longer).
In v2.12.0 MMDetection inevitably brings some BC-breakings, including the MMCV dependency, model initialization, model registry, and mask AP evaluation.


MMCV Version

MMDetection v2.12.0 relies on the newest features in MMCV 1.3.3, including BaseModule for unified parameter initialization, model registry, and the CUDA operator MultiScaleDeformableAttn for Deformable DETR [https://arxiv.org/abs/2010.04159]. Note that MMCV 1.3.2 already contains all the features used by MMDet but has known issues. Therefore, we recommend users to skip MMCV v1.3.2 and use v1.3.2, though v1.3.2 might work for most of the cases.




Unified model initialization

To unify the parameter initialization in OpenMMLab projects, MMCV supports BaseModule that accepts init_cfg to allow the modules’ parameters initialized in a flexible and unified manner. Now the users need to explicitly call model.init_weights() in the training script to initialize the model (as in here [https://github.com/open-mmlab/mmdetection/blob/main/tools/train.py#L162], previously this was handled by the detector. The downstream projects must update their model initialization accordingly to use MMDetection v2.12.0. Please refer to PR #4750 for details.




Unified model registry

To easily use backbones implemented in other OpenMMLab projects, MMDetection v2.12.0 inherits the model registry created in MMCV (#760). In this way, as long as the backbone is supported in an OpenMMLab project and that project also uses the registry in MMCV, users can use that backbone in MMDetection by simply modifying the config without copying the code of that backbone into MMDetection. Please refer to PR #5059 for more details.




Mask AP evaluation

Before PR 4898 [https://github.com/open-mmlab/mmdetection/pull/4898] and V2.12.0, the mask AP of small, medium, and large instances is calculated based on the bounding box area rather than the real mask area. This leads to higher APs and APm but lower APl but will not affect the overall mask AP. PR 4898 [https://github.com/open-mmlab/mmdetection/pull/4898] change it to use mask areas by deleting bbox in mask AP calculation.
The new calculation does not affect the overall mask AP evaluation and is consistent with Detectron2 [https://github.com/facebookresearch/detectron2/].






Compatibility with MMDetection 1.x

MMDetection 2.0 goes through a big refactoring and addresses many legacy issues. It is not compatible with the 1.x version, i.e., running inference with the same model weights in these two versions will produce different results. Thus, MMDetection 2.0 re-benchmarks all the models and provides their links and logs in the model zoo.

The major differences are in four folds: coordinate system, codebase conventions, training hyperparameters, and modular design.


Coordinate System

The new coordinate system is consistent with Detectron2 [https://github.com/facebookresearch/detectron2/] and treats the center of the most left-top pixel as (0, 0) rather than the left-top corner of that pixel.
Accordingly, the system interprets the coordinates in COCO bounding box and segmentation annotations as coordinates in range [0, width] or [0, height].
This modification affects all the computation related to the bbox and pixel selection,
which is more natural and accurate.


	The height and width of a box with corners (x1, y1) and (x2, y2) in the new coordinate system is computed as width = x2 - x1 and height = y2 - y1.
In MMDetection 1.x and previous version, a “+ 1” was added both height and width.
This modification are in three folds:


	Box transformation and encoding/decoding in regression.


	IoU calculation. This affects the matching process between ground truth and bounding box and the NMS process. The effect to compatibility is very negligible, though.


	The corners of bounding box is in float type and no longer quantized. This should provide more accurate bounding box results. This also makes the bounding box and RoIs not required to have minimum size of 1, whose effect is small, though.






	The anchors are center-aligned to feature grid points and in float type.
In MMDetection 1.x and previous version, the anchors are in int type and not center-aligned.
This affects the anchor generation in RPN and all the anchor-based methods.


	ROIAlign is better aligned with the image coordinate system. The new implementation is adopted from Detectron2 [https://github.com/facebookresearch/detectron2/tree/master/detectron2/layers/csrc/ROIAlign].
The RoIs are shifted by half a pixel by default when they are used to cropping RoI features, compared to MMDetection 1.x.
The old behavior is still available by setting aligned=False instead of aligned=True.


	Mask cropping and pasting are more accurate.


	We use the new RoIAlign to crop mask targets. In MMDetection 1.x, the bounding box is quantized before it is used to crop mask target, and the crop process is implemented by numpy. In new implementation, the bounding box for crop is not quantized and sent to RoIAlign. This implementation accelerates the training speed by a large margin (~0.1s per iter, ~2 hour when training Mask R50 for 1x schedule) and should be more accurate.


	In MMDetection 2.0, the “paste_mask()” function is different and should be more accurate than those in previous versions. This change follows the modification in Detectron2 [https://github.com/facebookresearch/detectron2/blob/master/detectron2/structures/masks.py] and can improve mask AP on COCO by ~0.5% absolute.











Codebase Conventions


	MMDetection 2.0 changes the order of class labels to reduce unused parameters in regression and mask branch more naturally (without +1 and -1).
This effect all the classification layers of the model to have a different ordering of class labels. The final layers of regression branch and mask head no longer keep K+1 channels for K categories, and their class orders are consistent with the classification branch.


	In MMDetection 2.0, label “K” means background, and labels [0, K-1] correspond to the K = num_categories object categories.


	In MMDetection 1.x and previous version, label “0” means background, and labels [1, K] correspond to the K categories.


	Note: The class order of softmax RPN is still the same as that in 1.x in versions<=2.4.0 while sigmoid RPN is not affected. The class orders in all heads are unified since MMDetection v2.5.0.






	Low quality matching in R-CNN is not used. In MMDetection 1.x and previous versions, the max_iou_assigner will match low quality boxes for each ground truth box in both RPN and R-CNN training. We observe this sometimes does not assign the most perfect GT box to some bounding boxes,
thus MMDetection 2.0 do not allow low quality matching by default in R-CNN training in the new system. This sometimes may slightly improve the box AP (~0.1% absolute).


	Separate scale factors for width and height. In MMDetection 1.x and previous versions, the scale factor is a single float in mode keep_ratio=True. This is slightly inaccurate because the scale factors for width and height have slight difference. MMDetection 2.0 adopts separate scale factors for width and height, the improvement on AP ~0.1% absolute.


	Configs name conventions are changed. MMDetection V2.0 adopts the new name convention to maintain the gradually growing model zoo as the following:

[model]_(model setting)_[backbone]_[neck]_(norm setting)_(misc)_(gpu x batch)_[schedule]_[dataset].py,





where the (misc) includes DCN and GCBlock, etc. More details are illustrated in the documentation for config



	MMDetection V2.0 uses new ResNet Caffe backbones to reduce warnings when loading pre-trained models. Most of the new backbones’ weights are the same as the former ones but do not have conv.bias, except that they use a different img_norm_cfg. Thus, the new backbone will not cause warning of unexpected keys.







Training Hyperparameters

The change in training hyperparameters does not affect
model-level compatibility but slightly improves the performance. The major ones are:


	The number of proposals after nms is changed from 2000 to 1000 by setting nms_post=1000 and max_num=1000.
This slightly improves both mask AP and bbox AP by ~0.2% absolute.


	The default box regression losses for Mask R-CNN, Faster R-CNN and RetinaNet are changed from smooth L1 Loss to L1 loss. This leads to an overall improvement in box AP (~0.6% absolute). However, using L1-loss for other methods such as Cascade R-CNN and HTC does not improve the performance, so we keep the original settings for these methods.


	The sample num of RoIAlign layer is set to be 0 for simplicity. This leads to slightly improvement on mask AP (~0.2% absolute).


	The default setting does not use gradient clipping anymore during training for faster training speed. This does not degrade performance of the most of models. For some models such as RepPoints we keep using gradient clipping to stabilize the training process and to obtain better performance.


	The default warmup ratio is changed from 1/3 to 0.001 for a more smooth warming up process since the gradient clipping is usually not used. The effect is found negligible during our re-benchmarking, though.







Upgrade Models from 1.x to 2.0

To convert the models trained by MMDetection V1.x to MMDetection V2.0, the users can use the script tools/model_converters/upgrade_model_version.py to convert
their models. The converted models can be run in MMDetection V2.0 with slightly dropped performance (less than 1% AP absolute).
Details can be found in configs/legacy.






pycocotools compatibility

mmpycocotools is the OpenMMlab’s fork of official pycocotools, which works for both MMDetection and Detectron2.
Before PR 4939 [https://github.com/open-mmlab/mmdetection/pull/4939], since pycocotools and mmpycocotool have the same package name, if users already installed pycocotools (installed Detectron2 first under the same environment), then the setup of MMDetection will skip installing mmpycocotool. Thus MMDetection fails due to the missing mmpycocotools.
If MMDetection is installed before Detectron2, they could work under the same environment.
PR 4939 [https://github.com/open-mmlab/mmdetection/pull/4939] deprecates mmpycocotools in favor of official pycocotools.
Users may install MMDetection and Detectron2 under the same environment after PR 4939 [https://github.com/open-mmlab/mmdetection/pull/4939], no matter what the installation order is.







            

          

      

      

    

  

  
    
    
    English
    

    

    

    
 
  

    
      
          
            
  
English




简体中文





            

          

      

      

    

  

  
    
    
    Python Module Index
    

    

    

    

 


  

    
      
          
            

   Python Module Index


   
   m
   


   
     		 	

     		
       m	

     
       	[image: -]
       	
       mmdet	
       

     
       	
       	   
       mmdet.evaluation.functional	
       

     
       	
       	   
       mmdet.structures	
       

     
       	
       	   
       mmdet.utils	
       

   



            

          

      

      

    

  

  
    
    
    Index
    

    

    

    
 
  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 


A


  	
      	all_reduce_dict() (in module mmdet.utils)


      	allreduce_grads() (in module mmdet.utils)


  

  	
      	average_precision() (in module mmdet.evaluation.functional)


      	AvoidOOM (class in mmdet.utils)


  





B


  	
      	bbox_overlaps() (in module mmdet.evaluation.functional)


  





C


  	
      	cityscapes_classes() (in module mmdet.evaluation.functional)


      	clone() (mmdet.structures.TrackDataSample method)


      	coco_classes() (in module mmdet.evaluation.functional)


      	coco_panoptic_classes() (in module mmdet.evaluation.functional)


  

  	
      	collect_env() (in module mmdet.utils)


      	compat_cfg() (in module mmdet.utils)


      	cpu() (mmdet.structures.TrackDataSample method)


      	cuda() (mmdet.structures.TrackDataSample method)


  





D


  	
      	detach() (mmdet.structures.TrackDataSample method)


  

  	
      	DetDataSample (class in mmdet.structures)


  





E


  	
      	eval_map() (in module mmdet.evaluation.functional)


  

  	
      	eval_recalls() (in module mmdet.evaluation.functional)


      	evaluateImgLists() (in module mmdet.evaluation.functional)


  





F


  	
      	find_latest_checkpoint() (in module mmdet.utils)


  





G


  	
      	get_caller_name() (in module mmdet.utils)


  

  	
      	get_classes() (in module mmdet.evaluation.functional)


      	get_test_pipeline_cfg() (in module mmdet.utils)


  





I


  	
      	imagenet_det_classes() (in module mmdet.evaluation.functional)


  

  	
      	imagenet_vid_classes() (in module mmdet.evaluation.functional)


      	imshow_mot_errors() (in module mmdet.utils)


  





L


  	
      	log_img_scale() (in module mmdet.utils)


  





M


  	
      	
    mmdet.evaluation.functional

      
        	module


      


      	
    mmdet.structures

      
        	module


      


      	
    mmdet.utils

      
        	module


      


  

  	
      	
    module

      
        	mmdet.evaluation.functional


        	mmdet.structures


        	mmdet.utils


      


  





N


  	
      	npu() (mmdet.structures.TrackDataSample method)


  

  	
      	numpy() (mmdet.structures.TrackDataSample method)


  





O


  	
      	objects365v1_classes() (in module mmdet.evaluation.functional)


      	objects365v2_classes() (in module mmdet.evaluation.functional)


  

  	
      	oid_challenge_classes() (in module mmdet.evaluation.functional)


      	oid_v6_classes() (in module mmdet.evaluation.functional)


  





P


  	
      	plot_iou_recall() (in module mmdet.evaluation.functional)


      	plot_num_recall() (in module mmdet.evaluation.functional)


      	pq_compute_multi_core() (in module mmdet.evaluation.functional)


  

  	
      	pq_compute_single_core() (in module mmdet.evaluation.functional)


      	print_map_summary() (in module mmdet.evaluation.functional)


      	print_recall_summary() (in module mmdet.evaluation.functional)


  





R


  	
      	reduce_mean() (in module mmdet.utils)


      	register_all_modules() (in module mmdet.utils)


  

  	
      	ReIDDataSample (class in mmdet.structures)


      	replace_cfg_vals() (in module mmdet.utils)


      	retry_if_cuda_oom() (mmdet.utils.AvoidOOM method)


  





S


  	
      	set_gt_label() (mmdet.structures.ReIDDataSample method)


      	set_gt_score() (mmdet.structures.ReIDDataSample method)


      	setup_cache_size_limit_of_dynamo() (in module mmdet.utils)


  

  	
      	setup_multi_processes() (in module mmdet.utils)


      	split_batch() (in module mmdet.utils)


      	sync_random_seed() (in module mmdet.utils)


  





T


  	
      	to() (mmdet.structures.TrackDataSample method)


  

  	
      	to_tensor() (mmdet.structures.TrackDataSample method)


      	TrackDataSample (class in mmdet.structures)


  





U


  	
      	update_data_root() (in module mmdet.utils)


  





V


  	
      	voc_classes() (in module mmdet.evaluation.functional)


  







            

          

      

      

    

  

  
    
    
    Dataset Zoo
    

    

    

    
 
  

    
      
          
            
  
Dataset Zoo





            

          

      

      

    

  

  
    
    
    Migration
    

    

    

    
 
  

    
      
          
            
  
Migration





            

          

      

      

    

  

  
    
    
    Model Zoo Statistics
    

    

    

    
 
  

    
      
          
            
  
Model Zoo Statistics


	Number of papers: 105


	ABSTRACT: 5


	ALGORITHM: 81


	BACKBONE: 7


	DATASET: 7


	OTHERS: 4


	PWC: 1






	Number of checkpoints: 651


	[OTHERS] Albu Example [https://github.com/open-mmlab/mmdetection/blob/main/configs/albu_example] (1 ckpts)


	[ALGORITHM] ATSS [https://github.com/open-mmlab/mmdetection/blob/main/configs/atss] (2 ckpts)


	[ALGORITHM] AutoAssign [https://github.com/open-mmlab/mmdetection/blob/main/configs/autoassign] (1 ckpts)


	[ALGORITHM] BoxInst [https://github.com/open-mmlab/mmdetection/blob/main/configs/boxinst] (2 ckpts)


	[ABSTRACT] ByteTrack: Multi-Object Tracking by Associating Every Detection Box [https://github.com/open-mmlab/mmdetection/blob/main/configs/bytetrack] (2 ckpts)


	[ALGORITHM] CARAFE [https://github.com/open-mmlab/mmdetection/blob/main/configs/carafe] (2 ckpts)


	[ALGORITHM] Cascade R-CNN [https://github.com/open-mmlab/mmdetection/blob/main/configs/cascade_rcnn] (27 ckpts)


	[ALGORITHM] Cascade RPN [https://github.com/open-mmlab/mmdetection/blob/main/configs/cascade_rpn] (3 ckpts)


	[ALGORITHM] CenterNet [https://github.com/open-mmlab/mmdetection/blob/main/configs/centernet] (3 ckpts)


	[ALGORITHM] CentripetalNet [https://github.com/open-mmlab/mmdetection/blob/main/configs/centripetalnet] (1 ckpts)


	[DATASET] Cityscapes [https://github.com/open-mmlab/mmdetection/blob/main/configs/cityscapes] (2 ckpts)


	[ALGORITHM] CondInst [https://github.com/open-mmlab/mmdetection/blob/main/configs/condinst] (1 ckpts)


	[ALGORITHM] Conditional DETR [https://github.com/open-mmlab/mmdetection/blob/main/configs/conditional_detr] (1 ckpts)


	[ALGORITHM] ConvNeXt [https://github.com/open-mmlab/mmdetection/blob/main/configs/convnext] (3 ckpts)


	[ALGORITHM] CornerNet [https://github.com/open-mmlab/mmdetection/blob/main/configs/cornernet] (3 ckpts)


	[ALGORITHM] CrowdDet [https://github.com/open-mmlab/mmdetection/blob/main/configs/crowddet] (2 ckpts)


	[ALGORITHM] DAB-DETR [https://github.com/open-mmlab/mmdetection/blob/main/configs/dab_detr] (1 ckpts)


	[ALGORITHM] DCN [https://github.com/open-mmlab/mmdetection/blob/main/configs/dcn] (12 ckpts)


	[ALGORITHM] DCNv2 [https://github.com/open-mmlab/mmdetection/blob/main/configs/dcnv2] (5 ckpts)


	[ALGORITHM] DDOD [https://github.com/open-mmlab/mmdetection/blob/main/configs/ddod] (1 ckpts)


	[ALGORITHM] DDQ [https://github.com/open-mmlab/mmdetection/blob/main/configs/ddq] (3 ckpts)


	[DATASET] DeepFashion [https://github.com/open-mmlab/mmdetection/blob/main/configs/deepfashion] (1 ckpts)


	[ALGORITHM] Deformable DETR [https://github.com/open-mmlab/mmdetection/blob/main/configs/deformable_detr] (3 ckpts)


	[ALGORITHM] DetectoRS [https://github.com/open-mmlab/mmdetection/blob/main/configs/detectors] (7 ckpts)


	[ALGORITHM] DETR [https://github.com/open-mmlab/mmdetection/blob/main/configs/detr] (1 ckpts)


	[ALGORITHM] DINO [https://github.com/open-mmlab/mmdetection/blob/main/configs/dino] (4 ckpts)


	[ALGORITHM] Double Heads [https://github.com/open-mmlab/mmdetection/blob/main/configs/double_heads] (1 ckpts)


	[DATASET] DSDL: Standard Description Language for DataSet [https://github.com/open-mmlab/mmdetection/blob/main/configs/dsdl] (5 ckpts)


	[ALGORITHM] DyHead [https://github.com/open-mmlab/mmdetection/blob/main/configs/dyhead] (3 ckpts)


	[ALGORITHM] Dynamic R-CNN [https://github.com/open-mmlab/mmdetection/blob/main/configs/dynamic_rcnn] (1 ckpts)


	[BACKBONE] EfficientNet [https://github.com/open-mmlab/mmdetection/blob/main/configs/efficientnet] (1 ckpts)


	[ALGORITHM] Empirical Attention [https://github.com/open-mmlab/mmdetection/blob/main/configs/empirical_attention] (4 ckpts)


	[ALGORITHM] Faster R-CNN [https://github.com/open-mmlab/mmdetection/blob/main/configs/faster_rcnn] (30 ckpts)


	[ALGORITHM] FCOS [https://github.com/open-mmlab/mmdetection/blob/main/configs/fcos] (7 ckpts)


	[ALGORITHM] FoveaBox [https://github.com/open-mmlab/mmdetection/blob/main/configs/foveabox] (8 ckpts)


	[ALGORITHM] FPG [https://github.com/open-mmlab/mmdetection/blob/main/configs/fpg] (8 ckpts)


	[ALGORITHM] FreeAnchor [https://github.com/open-mmlab/mmdetection/blob/main/configs/free_anchor] (3 ckpts)


	[ALGORITHM] FSAF [https://github.com/open-mmlab/mmdetection/blob/main/configs/fsaf] (4 ckpts)


	[ALGORITHM] GCNet [https://github.com/open-mmlab/mmdetection/blob/main/configs/gcnet] (19 ckpts)


	[ALGORITHM] GFL [https://github.com/open-mmlab/mmdetection/blob/main/configs/gfl] (6 ckpts)


	[ALGORITHM] GHM [https://github.com/open-mmlab/mmdetection/blob/main/configs/ghm] (4 ckpts)


	[ALGORITHM] GLIP: Grounded Language-Image Pre-training [https://github.com/open-mmlab/mmdetection/blob/main/configs/glip] (10 ckpts)


	[ALGORITHM] GN + WS [https://github.com/open-mmlab/mmdetection/blob/main/configs/gn+ws] (12 ckpts)


	[ALGORITHM] GN [https://github.com/open-mmlab/mmdetection/blob/main/configs/gn] (6 ckpts)


	[ALGORITHM] Grid R-CNN [https://github.com/open-mmlab/mmdetection/blob/main/configs/grid_rcnn] (4 ckpts)


	[ALGORITHM] GRoIE [https://github.com/open-mmlab/mmdetection/blob/main/configs/groie] (9 ckpts)


	[ALGORITHM] Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection [https://github.com/open-mmlab/mmdetection/blob/main/configs/grounding_dino] (5 ckpts)


	[ALGORITHM] Guided Anchoring [https://github.com/open-mmlab/mmdetection/blob/main/configs/guided_anchoring] (12 ckpts)


	[BACKBONE] HRNet [https://github.com/open-mmlab/mmdetection/blob/main/configs/hrnet] (28 ckpts)


	[ALGORITHM] HTC [https://github.com/open-mmlab/mmdetection/blob/main/configs/htc] (6 ckpts)


	[ALGORITHM] Instaboost [https://github.com/open-mmlab/mmdetection/blob/main/configs/instaboost] (4 ckpts)


	[ALGORITHM] LAD [https://github.com/open-mmlab/mmdetection/blob/main/configs/lad] (4 ckpts)


	[ALGORITHM] LD [https://github.com/open-mmlab/mmdetection/blob/main/configs/ld] (4 ckpts)


	[OTHERS] Legacy Configs in MMDetection V1.x [https://github.com/open-mmlab/mmdetection/blob/main/configs/legacy_1.x] (4 ckpts)


	[ALGORITHM] Libra R-CNN [https://github.com/open-mmlab/mmdetection/blob/main/configs/libra_rcnn] (4 ckpts)


	[DATASET] LVIS [https://github.com/open-mmlab/mmdetection/blob/main/configs/lvis] (8 ckpts)


	[ALGORITHM] Mask2Former [https://github.com/open-mmlab/mmdetection/blob/main/configs/mask2former] (11 ckpts)


	[ABSTRACT] Mask2Former for Video Instance Segmentation [https://github.com/open-mmlab/mmdetection/blob/main/configs/mask2former_vis] (3 ckpts)


	[ALGORITHM] Mask R-CNN [https://github.com/open-mmlab/mmdetection/blob/main/configs/mask_rcnn] (21 ckpts)


	[ALGORITHM] MaskFormer [https://github.com/open-mmlab/mmdetection/blob/main/configs/maskformer] (2 ckpts)


	[ABSTRACT] Video Instance Segmentation [https://github.com/open-mmlab/mmdetection/blob/main/configs/masktrack_rcnn] (6 ckpts)


	[ALGORITHM] MM Grounding DINO [https://github.com/open-mmlab/mmdetection/blob/main/configs/mm_grounding_dino] (9 ckpts)


	[ALGORITHM] MS R-CNN [https://github.com/open-mmlab/mmdetection/blob/main/configs/ms_rcnn] (7 ckpts)


	[ALGORITHM] NAS-FCOS [https://github.com/open-mmlab/mmdetection/blob/main/configs/nas_fcos] (2 ckpts)


	[ALGORITHM] NAS-FPN [https://github.com/open-mmlab/mmdetection/blob/main/configs/nas_fpn] (2 ckpts)


	[DATASET] Objects365 Dataset [https://github.com/open-mmlab/mmdetection/blob/main/configs/objects365] (6 ckpts)


	[ABSTRACT] Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking [https://github.com/open-mmlab/mmdetection/blob/main/configs/ocsort] (1 ckpts)


	[DATASET] Open Images Dataset [https://github.com/open-mmlab/mmdetection/blob/main/configs/openimages] (6 ckpts)


	[ALGORITHM] PAA [https://github.com/open-mmlab/mmdetection/blob/main/configs/paa] (7 ckpts)


	[ALGORITHM] PAFPN [https://github.com/open-mmlab/mmdetection/blob/main/configs/pafpn] (1 ckpts)


	[ALGORITHM] Panoptic FPN [https://github.com/open-mmlab/mmdetection/blob/main/configs/panoptic_fpn] (4 ckpts)


	[DATASET] Pascal VOC [https://github.com/open-mmlab/mmdetection/blob/main/configs/pascal_voc] (5 ckpts)


	[ALGORITHM] PISA [https://github.com/open-mmlab/mmdetection/blob/main/configs/pisa] (7 ckpts)


	[ALGORITHM] PointRend [https://github.com/open-mmlab/mmdetection/blob/main/configs/point_rend] (2 ckpts)


	[BACKBONE] PVT [https://github.com/open-mmlab/mmdetection/blob/main/configs/pvt] (9 ckpts)


	[ABSTRACT] Quasi-Dense Similarity Learning for Multiple Object Tracking [https://github.com/open-mmlab/mmdetection/blob/main/configs/qdtrack] (1 ckpts)


	[ALGORITHM] QueryInst [https://github.com/open-mmlab/mmdetection/blob/main/configs/queryinst] (5 ckpts)


	[BACKBONE] RegNet [https://github.com/open-mmlab/mmdetection/blob/main/configs/regnet] (31 ckpts)


	[ALGORITHM] RepPoints [https://github.com/open-mmlab/mmdetection/blob/main/configs/reppoints] (7 ckpts)


	[BACKBONE] Res2Net [https://github.com/open-mmlab/mmdetection/blob/main/configs/res2net] (5 ckpts)


	[BACKBONE] ResNeSt [https://github.com/open-mmlab/mmdetection/blob/main/configs/resnest] (8 ckpts)


	[OTHERS] ResNet strikes back [https://github.com/open-mmlab/mmdetection/blob/main/configs/resnet_strikes_back] (4 ckpts)


	[ALGORITHM] RetinaNet [https://github.com/open-mmlab/mmdetection/blob/main/configs/retinanet] (17 ckpts)


	[ALGORITHM] RPN [https://github.com/open-mmlab/mmdetection/blob/main/configs/rpn] (10 ckpts)


	[PWC] RTMDet: An Empirical Study of Designing Real-Time Object Detectors [https://github.com/open-mmlab/mmdetection/blob/main/configs/rtmdet] (28 ckpts)


	[ALGORITHM] SABL [https://github.com/open-mmlab/mmdetection/blob/main/configs/sabl] (10 ckpts)


	[ALGORITHM] SCNet [https://github.com/open-mmlab/mmdetection/blob/main/configs/scnet] (4 ckpts)


	[ALGORITHM] Scratch [https://github.com/open-mmlab/mmdetection/blob/main/configs/scratch] (2 ckpts)


	[ALGORITHM] Seesaw Loss [https://github.com/open-mmlab/mmdetection/blob/main/configs/seesaw_loss] (12 ckpts)


	[OTHERS] Backbones Trained by Self-Supervise Algorithms [https://github.com/open-mmlab/mmdetection/blob/main/configs/selfsup_pretrain] (4 ckpts)


	[ALGORITHM] SimpleCopyPaste [https://github.com/open-mmlab/mmdetection/blob/main/configs/simple_copy_paste] (4 ckpts)


	[ALGORITHM] SoftTeacher [https://github.com/open-mmlab/mmdetection/blob/main/configs/soft_teacher] (4 ckpts)


	[ALGORITHM] SOLO [https://github.com/open-mmlab/mmdetection/blob/main/configs/solo] (5 ckpts)


	[ALGORITHM] SOLOv2 [https://github.com/open-mmlab/mmdetection/blob/main/configs/solov2] (8 ckpts)


	[ALGORITHM] Sparse R-CNN [https://github.com/open-mmlab/mmdetection/blob/main/configs/sparse_rcnn] (5 ckpts)


	[ALGORITHM] SSD [https://github.com/open-mmlab/mmdetection/blob/main/configs/ssd] (3 ckpts)


	[BACKBONE] Swin [https://github.com/open-mmlab/mmdetection/blob/main/configs/swin] (4 ckpts)


	[ALGORITHM] TOOD [https://github.com/open-mmlab/mmdetection/blob/main/configs/tood] (6 ckpts)


	[ALGORITHM] TridentNet [https://github.com/open-mmlab/mmdetection/blob/main/configs/tridentnet] (3 ckpts)


	[ALGORITHM] 
  
    
    
    Migrate API and Registry from MMDetection 2.x to 3.x
    

    

    

    
 
  

    
      
          
            
  
Migrate API and Registry from MMDetection 2.x to 3.x





            

          

      

      

    

  

  
    
    
    Migrate Configuration File from MMDetection 2.x to 3.x
    

    

    

    
 
  

    
      
          
            
  
Migrate Configuration File from MMDetection 2.x to 3.x

The configuration file of MMDetection 3.x has undergone significant changes in comparison to the 2.x version. This document explains how to migrate 2.x configuration files to 3.x.

In the previous tutorial Learn about Configs, we used Mask R-CNN as an example to introduce the configuration file structure of MMDetection 3.x. Here, we will follow the same structure to demonstrate how to migrate 2.x configuration files to 3.x.


Model Configuration

There have been no major changes to the model configuration in 3.x compared to 2.x. For the model’s backbone, neck, head, as well as train_cfg and test_cfg, the parameters remain the same as in version 2.x.

On the other hand, we have added the DataPreprocessor module in MMDetection 3.x. The configuration for the DataPreprocessor module is located in model.data_preprocessor. It is used to preprocess the input data, such as normalizing input images and padding images of different sizes into batches, and loading images from memory to VRAM. This configuration replaces the Normalize and Pad modules in train_pipeline and test_pipeline of the earlier version.



	2.x Config
	
# Image normalization parameters
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53],
    std=[58.395, 57.12, 57.375],
    to_rgb=True)
pipeline=[
    ...,
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),  # Padding the image to multiples of 32
    ...
]







	3.x Config
	
model = dict(
    data_preprocessor=dict(
        type='DetDataPreprocessor',
        # Image normalization parameters
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        bgr_to_rgb=True,
        # Image padding parameters
        pad_mask=True,  # In instance segmentation, the mask needs to be padded
        pad_size_divisor=32)  # Padding the image to multiples of 32
)










  
    
    
    Migrate dataset from MMDetection 2.x to 3.x
    

    

    

    
 
  

    
      
          
            
  
Migrate dataset from MMDetection 2.x to 3.x





            

          

      

      

    

  

  
    
    
    Migration FAQ
    

    

    

    
 
  

    
      
          
            
  
Migration FAQ





            

          

      

      

    

  

  
    
    
    Migrate models from MMDetection 2.x to 3.x
    

    

    

    
 
  

    
      
          
            
  
Migrate models from MMDetection 2.x to 3.x





            

          

      

      

    

  
_images/436e34627ef9678109a7a25d7ff364efc6932800.png
H
E
H

dningrable
g

rorse
motorbike
person
potteaplant

eneep

tmonior

background

Normalized Confusion Matrix

prediction Label





_images/43ebe914066559fddc04d0c132b63def08bf8a74.png





_images/20230403105923.png
Label Studio

Projects

#33
of

< > o

Outliner «

= Manual Grouping (3 Ordered by Time 1

w Bt

RTMD

emiautomatic-Label

Labeling

Auto accept annotation suggestions

@ Auto-Annotation

Q

Q

>

Annotggieff History

ST star

T Draft

Relations (0)

Comments

Add a comment

Settings
Details
#e9nnP
just now





_images/edb304b34aa77843d6b96bc5f86271e48e77edbf.png
4l S|
20|1.00 estrian | |
L. W21 2Ll pedesma",edesmau Loopste

| g -
pedestrian pedestrian| peaestrlan pede
- 1210.97 St 1 I que

T 1

\pedestr\an

i






_images/loss_curve.png
10

0.8

0.6

0.4

02

10000

20000
iter

— loss_cls
~— loss_bbox






_images/corruptions_sev_3.png
Defocus Blur Glass Blur

Contrast Pixelate






_images/data_pipeline.png
DefaultFormat

LoadlmageFromFile LoadAnnotations Resize RandomFlip Normalize Pad Bundle Collect
{ { - - {
“img”: “img”: “img™: “img™ img™ img™ “img”:
“img_shape™ “img_shape™ “img_shape™ “img_shape™: “|rn_gishape": “img_shape”: “img_meta”: {
“ori_shape”: “ori_shape”: “ori_shape”™ “ori_shape™: “ori_shape”: “ori_shape”: i_shape”:
} “gt_bboxes™: “pad_shape™: “pad_shape”: “pad_shape”: “pad_shape”: “img_shape”:
“gt_labels™ “gt_bboxes™: “gt_bboxes”: “gt_bboxes”: “gt_bboxes”: “gt_bboxes™ “pad_shape”:
“bbox_fields”: “gt_labels”: “gt_labels”™: “gt_labels™ “gt_labels”: “gt_labels”™ “scale_factor”:
} “bbox_fields”: “bbox_fields”: “bbox_fields™: “bbox_fields”: “bbox_fields": “flip:
“scale” “scale” “scale”: “scale”: “scale™ “img_norm_cfg”:
“scale_idx": “scale_idx": “scale_idx": “scale_jdx": “scale_idx": }
“scale_factor”: “scale_factor”: “scale_factor”: “scale_factor”: “scale_factor”: “gt_bboxes”:
“keep_ratio”: “keep_ratio”: “keep_ratio™ “keep_ratio”: “keep_ratio”: “gt_labels™
“flip”: “flip”: “flip”: “flip™: }

“img_norm_cfg”:

“img_norm_cfg”:
“pad_fixed_size™:
“pad_size_divisor”:

“img_norm_cfg™:
“pad_fixed_size”™:
“pad_size_divisor™:






_images/picgo20230330131601.png
(rtmdet) =» mmdetection git:(label-studio) X label-studio-ml start projects/LabelStudio/backend_template --with \
config_file=configs/rtmdet/rtmdet_m_8xb32-3@@e_coco.py \
checkpoint_file=./work_dirs/rtmdet_m_8xb32-38@e_coco_26220719_112220-229f527c.pth \
device=cpu \
--port 8003
* Serving Flask app "label_studio_ml.api" (lazy loading)
* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.
* Debug mode: off
[2023-83-30 13:15:45,825] [WARNING] [werkzeug::_log::225] * Running on all addresses.
WARNING: This is a development server. Do not use it in a production deployment.
32023-03—30 13:15:45,825] [INFO] [werkzeug::_log::225] * Running on http://172.29.211.69:8003/ (Press CTRL+C to quit)





_images/picgo20230330132913.png
(rtmdet) =» mmdetection git:(label-studio) X label-studio start

Database and media directory: /home/vansin/.local/share/label-studio
Static URL is set to: /static/

Database and media directory: /home/vansin/.local/share/label-studio
Static URL is set to: /static/

Starting new HTTPS connection (1): pypi.org:443

https://pypi.org:443 “GET /pypi/label-studio/json HTTP/1.1" 200 56156
Performing system checks. ..

[2023-83-30 ©5:28:48,234] [django::register_actions_from_dir
[2023-83-30 ©5:28:48,234] [django::register_actions_from_dir
System check identified no issues (1 silenced).

March 3@, 2023 - ©5:28:48

Diango version 3.2.16, using settings 'label studio.core.settings.label_studio’
Starting development server at http://0.0.0.0:8080/
gult the server with CONTROL-C.

97] [INFO] No module named 'data_manager.actions.__pycache_
7] [INFO] No module named 'data_manager.actions.__pycache_






_images/picgo20230330133118.png
Welcome to Label Studio Community Edition

A full-fledged open source solution for data labeling

SIGN UP LOGIN

Star@MMDetection.com

Get the latest news from Heidi

b

CREATE






nav.xhtml

    
      Table of Contents


      
        		
          Welcome to MMDetection’s documentation!
        


        		
          OVERVIEW
          
            		
              What is MMDetection
            


            		
              How to Use this Guide
            


          


        


        		
          GET STARTED
          
            		
              Prerequisites
            


            		
              Installation
              
                		
                  Best Practices
                


              


            


            		
              Verify the installation
            


            		
              Tracking Installation
              
                		
                  Best Practices
                


              


            


            		
              Verify the installation
              
                		
                  Customize Installation
                


                		
                  Troubleshooting
                


                		
                  Use Multiple Versions of MMDetection in Development
                


              


            


          


        


        		
          Train & Test
          
            		
              Learn about Configs
              
                		
                  Config file content
                


                		
                  Iter-based config
                


                		
                  Config file inheritance
                


                		
                  Modify config through script arguments
                


                		
                  Config name style
                


              


            


            		
              Inference with existing models
              
                		
                  High-level APIs for inference - Inferencer
                


                		
                  Demos
                


                		
                  Multi-modal algorithm inference demo and evaluation
                


              


            


            		
              Dataset Prepare
              
                		
                  Basic Detection Dataset Preparation
                


                		
                  COCO Caption Dataset Preparation
                


                		
                  COCO Semantic Dataset Preparation
                


                		
                  RefCOCO Dataset Preparation
                


                		
                  ADE20K 2016 Dataset Preparation
                


                		
                  Download from OpenDataLab
                


              


            


            		
              Test existing models on standard datasets
              
                		
                  Test existing models
                


                		
                  Examples
                


                		
                  Test without Ground Truth Annotations
                


                		
                  Batch Inference
                


                		
                  Test Time Augmentation (TTA)
                


              


            


            		
              Train predefined models on standard datasets
              
                		
                  Prepare datasets
                


                		
                  Learning rate auto scaling
                


                		
                  Training on a single GPU
                


                		
                  Training on CPU
                


                		
                  Training on multiple GPUs
                


                		
                  Train with multiple machines
                


                		
                  Manage jobs with Slurm
                


              


            


            		
              Train with customized datasets
              
                		
                  Prepare the customized dataset
                


                		
                  Prepare a config
                


                		
                  Train a new model
                


                		
                  Test and inference
                


              


            


            		
              Train with customized models and standard datasets
              
                		
                  Prepare the standard dataset
                


                		
                  Prepare your own customized model
                


                		
                  Prepare a config
                


                		
                  Train a new model
                


                		
                  Test and inference
                


              


            


            		
              Finetuning Models
              
                		
                  Inherit base configs
                


                		
                  Modify head
                


                		
                  Modify dataset
                


                		
                  Modify training schedule
                


                		
                  Use pre-trained model
                


              


            


            		
              Test Results Submission
              
                		
                  Panoptic segmentation test results submission
                


              


            


            		
              Weight initialization
              
                		
                  Description
                


                		
                  Initialize parameters
                


                		
                  Usage of init_cfg
                


              


            


            		
              Use a single stage detector as RPN
              
                		
                  Use FCOSHead as an RPNHead in Faster R-CNN
                


                		
                  Evaluate proposals
                


                		
                  Train the customized Faster R-CNN with pre-trained FCOS
                


              


            


            		
              Semi-supervised Object Detection
              
                		
                  Prepare and split dataset
                


                		
                  Configure multi-branch pipeline
                


                		
                  Configure semi-supervised dataloader
                


                		
                  Configure semi-supervised model
                


                		
                  Configure MeanTeacherHook
                


                		
                  Configure TeacherStudentValLoop
                


              


            


          


        


        		
          Useful Tools
          
            		
              Log Analysis
            


            		
              Result Analysis
            


            		
              Fusing results from multiple models
            


            		
              Visualization
              
                		
                  Visualize Datasets
                


                		
                  Visualize Models
                


                		
                  Visualize Predictions
                


              


            


            		
              Error Analysis
            


            		
              Model Serving
              
                		
                  1. Install TorchServe
                


                		
                  2. Convert model from MMDetection to TorchServe
                


                		
                  3. Start TorchServe
                


                		
                  4. Test deployment
                


                		
                  5. Stop TorchServe
                


              


            


            		
              Model Complexity
            


            		
              Model conversion
              
                		
                  MMDetection model to ONNX
                


                		
                  MMDetection 1.x model to MMDetection 2.x
                


                		
                  RegNet model to MMDetection
                


                		
                  Detectron ResNet to Pytorch
                


                		
                  Prepare a model for publishing
                


              


            


            		
              Dataset Conversion
            


            		
              Dataset Download
            


            		
              Benchmark
              
                		
                  Robust Detection Benchmark
                


                		
                  FPS Benchmark
                


              


            


            		
              Miscellaneous
              
                		
                  Evaluating a metric
                


                		
                  Print the entire config
                


              


            


            		
              Hyper-parameter Optimization
              
                		
                  YOLO Anchor Optimization
                


              


            


            		
              Confusion Matrix
            


            		
              COCO Separated & Occluded Mask Metric
              
                		
                  Offline evaluation
                


                		
                  Online evaluation
                


              


            


            		
              Useful Hooks
              
                		
                  CheckInvalidLossHook
                


                		
                  NumClassCheckHook
                


                		
                  MemoryProfilerHook
                


                		
                  SetEpochInfoHook
                


                		
                  SyncNormHook
                


                		
                  SyncRandomSizeHook
                


                		
                  YOLOXLrUpdaterHook
                


                		
                  YOLOXModeSwitchHook
                


                		
                  How to implement a custom hook
                


              


            


            		
              Visualization
              
                		
                  Configuration
                


                		
                  Storage
                


                		
                  Plot
                


              


            


            		
              Corruption Benchmarking
              
                		
                  Introduction
                


                		
                  About the benchmark
                


                		
                  Inference with pretrained models
                


                		
                  Results for modelzoo models
                


              


            


            		
              Model Deployment
              
                		
                  Installation
                


                		
                  Convert model
                


                		
                  Model specification
                


                		
                  Model inference
                


                		
                  Supported models
                


              


            


            		
              Semi-automatic Object Detection Annotation with MMDetection and Label-Studio
              
                		
                  Environment Configuration
                


                		
                  Start the Service
                


                		
                  Start Semi-Automatic Labeling
                


                		
                  Use MMYOLO as the Backend Inference Service
                


              


            


            		
              MOT Test-time Parameter Search
            


            		
              MOT Error Visualize
            


            		
              Browse dataset
            


            		
              Learn about Configs
              
                		
                  A brief description of a complete config
                


                		
                  Modify config through script arguments
                


                		
                  Config File Structure
                


                		
                  Config Name Style
                


                		
                  FAQ
                


                		
                  Tracking Data Structure Introduction
                


              


            


            		
              Dataset Preparation
              
                		
                  1. Download Datasets
                


                		
                  2. Convert Annotations
                


              


            


            		
              Inference
              
                		
                  Inference MOT models
                


              


            


            		
              Learn to train and test
              
                		
                  Train
                


                		
                  Test
                


              


            


            		
              Learn about Visualization
              
                		
                  Local Visualization
                


              


            


          


        


        		
          Basic Concepts
          
            		
              Data Flow
            


            		
              Structures
            


            		
              Models
            


            		
              Datasets
            


            		
              Data Transforms (Need to update)
              
                		
                  Design of Data transforms pipeline
                


              


            


            		
              Evaluation
            


            		
              Engine
            


            		
              Conventions
              
                		
                  About the order of image shape
                


                		
                  Loss
                


                		
                  Empty Proposals
                


                		
                  Coco Panoptic Dataset
                


              


            


          


        


        		
          Component Customization
          
            		
              Customize Models
              
                		
                  Develop new components
                


              


            


            		
              Customize Losses
              
                		
                  Computation pipeline of a loss
                


                		
                  Set sampling method (step 1)
                


                		
                  Tweaking loss
                


                		
                  Weighting loss (step 3)
                


              


            


            		
              Customize Datasets
              
                		
                  Support new data format
                


                		
                  Customize datasets by dataset wrappers
                


                		
                  Modify Dataset Classes
                


                		
                  COCO Panoptic Dataset
                


              


            


            		
              Customize Data Pipelines
            


            		
              Customize Runtime Settings
              
                		
                  Customize optimization settings
                


                		
                  Customize training schedules
                


                		
                  Customize train loop
                


                		
                  Customize hooks
                


              


            


          


        


        		
          How to
          
            		
              Use backbone network through MMPretrain
              
                		
                  Use backbone network implemented in MMPretrain
                


                		
                  Use backbone network in TIMM through MMPretrain
                


              


            


            		
              Use Mosaic augmentation
            


            		
              Unfreeze backbone network after freezing the backbone in the config
            


            		
              Get the channels of a new backbone
            


            		
              Use Detectron2 Model in MMDetection
              
                		
                  Use Detectron2’s pre-trained weights
                


              


            


          


        


        		
          Migrating from MMDetection 2.x to 3.x
        


        		
          mmdet.apis
        


        		
          mmdet.datasets
          
            		
              datasets
            


            		
              api_wrappers
            


            		
              samplers
            


            		
              transforms
            


          


        


        		
          mmdet.engine
          
            		
              hooks
            


            		
              optimizers
            


            		
              runner
            


            		
              schedulers
            


          


        


        		
          mmdet.evaluation
          
            		
              functional
            


            		
              metrics
            


          


        


        		
          mmdet.models
          
            		
              backbones
            


            		
              data_preprocessors
            


            		
              dense_heads
            


            		
              detectors
            


            		
              layers
            


            		
              losses
            


            		
              necks
            


            		
              roi_heads
            


            		
              seg_heads
            


            		
              task_modules
            


            		
              test_time_augs
            


            		
              utils
            


          


        


        		
          mmdet.structures
          
            		
              structures
            


            		
              bbox
            


            		
              mask
            


          


        


        		
          mmdet.testing
        


        		
          mmdet.visualization
        


        		
          mmdet.utils
        


        		
          Benchmark and Model Zoo
          
            		
              Mirror sites
            


            		
              Common settings
            


            		
              ImageNet Pretrained Models
            


            		
              Baselines
              
                		
                  RPN
                


                		
                  Faster R-CNN
                


                		
                  Mask R-CNN
                


                		
                  Fast R-CNN (with pre-computed proposals)
                


                		
                  RetinaNet
                


                		
                  Cascade R-CNN and Cascade Mask R-CNN
                


                		
                  Hybrid Task Cascade (HTC)
                


                		
                  SSD
                


                		
                  Group Normalization (GN)
                


                		
                  Weight Standardization
                


                		
                  Deformable Convolution v2
                


                		
                  CARAFE: Content-Aware ReAssembly of FEatures
                


                		
                  Instaboost
                


                		
                  Libra R-CNN
                


                		
                  Guided Anchoring
                


                		
                  FCOS
                


                		
                  FoveaBox
                


                		
                  RepPoints
                


                		
                  FreeAnchor
                


                		
                  Grid R-CNN (plus)
                


                		
                  GHM
                


                		
                  GCNet
                


                		
                  HRNet
                


                		
                  Mask Scoring R-CNN
                


                		
                  Train from Scratch
                


                		
                  NAS-FPN
                


                		
                  ATSS
                


                		
                  FSAF
                


                		
                  RegNetX
                


                		
                  Res2Net
                


                		
                  GRoIE
                


                		
                  Dynamic R-CNN
                


                		
                  PointRend
                


                		
                  DetectoRS
                


                		
                  Generalized Focal Loss
                


                		
                  CornerNet
                


                		
                  YOLOv3
                


                		
                  PAA
                


                		
                  SABL
                


                		
                  CentripetalNet
                


                		
                  ResNeSt
                


                		
                  DETR
                


                		
                  Deformable DETR
                


                		
                  AutoAssign
                


                		
                  YOLOF
                


                		
                  Seesaw Loss
                


                		
                  CenterNet
                


                		
                  YOLOX
                


                		
                  PVT
                


                		
                  SOLO
                


                		
                  QueryInst
                


                		
                  PanopticFPN
                


                		
                  MaskFormer
                


                		
                  DyHead
                


                		
                  Mask2Former
                


                		
                  Efficientnet
                


                		
                  Other datasets
                


                		
                  Pre-trained Models
                


              


            


            		
              Speed benchmark
              
                		
                  Training Speed benchmark
                


                		
                  Inference Speed Benchmark
                


              


            


            		
              Comparison with Detectron2
              
                		
                  Hardware
                


                		
                  Software environment
                


                		
                  Performance
                


                		
                  Training Speed
                


                		
                  Inference Speed
                


                		
                  Training memory
                


              


            


          


        


        		
          Contribution
        


        		
          Projects based on MMDetection
          
            		
              Projects as an extension
            


            		
              Projects of papers
            


          


        


        		
          Changelog of v3.x
          
            		
              v3.3.0 (05/01/2024)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Contributors
                


              


            


            		
              v3.2.0 (12/10/2023)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  Contributors
                


              


            


            		
              v3.1.0 (30/6/2023)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  Contributors
                


              


            


            		
              v3.0.0 (6/4/2023)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  Contributors
                


              


            


            		
              v3.0.0rc6 (24/2/2023)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  New Contributors
                


                		
                  Contributors
                


              


            


            		
              v3.0.0rc5 (26/12/2022)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  New Contributors
                


                		
                  Contributors
                


              


            


            		
              v3.0.0rc4 (23/11/2022)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  New Contributors
                


                		
                  Contributors
                


              


            


            		
              v3.0.0rc3 (4/11/2022)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  New Contributors
                


                		
                  Contributors
                


              


            


            		
              v3.0.0rc2 (21/10/2022)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  New Contributors
                


                		
                  Contributors
                


              


            


            		
              v3.0.0rc1 (26/9/2022)
              
                		
                  Highlights
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  Contributors
                


              


            


            		
              v3.0.0rc0 (31/8/2022)
              
                		
                  Highlights
                


                		
                  Breaking Changes
                


                		
                  Improvements
                


                		
                  Bug Fixes
                


                		
                  New Features
                


                		
                  Planned changes
                


                		
                  Contributors
                


              


            


          


        


        		
          Changelog v2.x
          
            		
              v2.25.0 (31/5/2022)
              
                		
                  Highlights
                


                		
                  Backwards incompatible changes
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  Contributors
                


              


            


            		
              v2.24.0 (26/4/2022)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  Contributors
                


              


            


            		
              v2.23.0 (28/3/2022)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  Contributors
                


              


            


            		
              v2.22.0 (24/2/2022)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Breaking Changes
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  Contributors
                


              


            


            		
              v2.21.0 (8/2/2022)
            


            		
              Breaking Changes
              
                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  Contributors
                


              


            


            		
              v2.20.0 (27/12/2021)
              
                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  Contributors
                


              


            


            		
              v2.19.1 (14/12/2021)
              
                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  Documents
                


                		
                  Contributors
                


              


            


            		
              v2.19.0 (29/11/2021)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  Documents
                


                		
                  Contributors
                


              


            


            		
              v2.18.1 (15/11/2021)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  Documents
                


                		
                  Contributors
                


              


            


            		
              v2.18.0 (27/10/2021)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  Refactors
                


                		
                  Contributors
                


              


            


            		
              v2.17.0 (28/9/2021)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  Contributors
                


              


            


            		
              v2.16.0 (30/8/2021)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  Contributors
                


              


            


            		
              v2.15.1 (11/8/2021)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  Contributors
                


              


            


            		
              v2.15.0 (02/8/2021)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


                		
                  Contributors
                


              


            


            		
              v2.14.0 (29/6/2021)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


              


            


            		
              v2.13.0 (01/6/2021)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


              


            


            		
              v2.12.0 (01/5/2021)
              
                		
                  Highlights
                


                		
                  Backwards Incompatible Changes
                


                		
                  New Features
                


                		
                  Improvements
                


                		
                  Bug Fixes
                


              


            


            		
              v2.11.0 (01/4/2021)
            


            		
              v2.10.0 (01/03/2021)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


              


            


            		
              v2.9.0 (01/02/2021)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


              


            


            		
              v2.8.0 (04/01/2021)
              
                		
                  Highlights
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


              


            


            		
              v2.7.0 (30/11/2020)
              
                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


              


            


            		
              v2.6.0 (1/11/2020)
              
                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


              


            


            		
              v2.5.0 (5/10/2020)
              
                		
                  Highlights
                


                		
                  Backwards Incompatible Changes
                


                		
                  New Features
                


                		
                  Bug Fixes
                


                		
                  Improvements
                


              


            


            		
              v2.4.0 (5/9/2020)
            


            		
              v2.3.0 (5/8/2020)
            


            		
              v2.2.0 (1/7/2020)
            


            		
              v2.1.0 (8/6/2020)
            


            		
              v2.0.0 (6/5/2020)
            


            		
              v1.1.0 (24/2/2020)
            


            		
              v1.0.0 (30/1/2020)
            


            		
              v1.0rc1 (13/12/2019)
            


            		
              v1.0rc0 (27/07/2019)
            


            		
              v0.6.0 (14/04/2019)
            


            		
              v0.6rc0(06/02/2019)
            


            		
              v0.5.7 (06/02/2019)
            


            		
              v0.5.6 (17/01/2019)
            


            		
              v0.5.5 (22/12/2018)
            


            		
              v0.5.4 (27/11/2018)
            


            		
              v0.5.3 (26/11/2018)
            


            		
              v0.5.2 (21/10/2018)
            


            		
              v0.5.1 (20/10/2018)
            


          


        


        		
          Frequently Asked Questions
          
            		
              PyTorch 2.0 Support
            


            		
              Installation
            


            		
              Coding
            


            		
              PyTorch/CUDA Environment
            


            		
              Training
            


            		
              Evaluation
            


            		
              Model
            


          


        


        		
          Compatibility of MMDetection 2.x
          
            		
              MMDetection 2.25.0
            


            		
              MMDetection 2.21.0
            


            		
              MMDetection 2.18.1
              
                		
                  MMCV compatibility
                


              


            


            		
              MMDetection 2.18.0
              
                		
                  DIIHead compatibility
                


              


            


            		
              MMDetection 2.14.0
              
                		
                  MMCV Version
                


                		
                  SSD compatibility
                


              


            


            		
              MMDetection 2.12.0
              
                		
                  MMCV Version
                


                		
                  Unified model initialization
                


                		
                  Unified model registry
                


                		
                  Mask AP evaluation
                


              


            


            		
              Compatibility with MMDetection 1.x
              
                		
                  Coordinate System
                


                		
                  Codebase Conventions
                


                		
                  Training Hyperparameters
                


                		
                  Upgrade Models from 1.x to 2.0
                


              


            


            		
              pycocotools compatibility
            


          


        


        		
          <a href='https://mmdetection.readthedocs.io/en/latest/'>English</a>
        


        		
          <a href='https://mmdetection.readthedocs.io/zh_CN/latest/'>简体中文</a>
        


      


    
  

_images/picgo20230330133715.png
B> THPC » DATA(D) > datasets > cat dataset > images - c »

older - E @
- W
523 : :
a J ) ) r’!

IMG_20210627.22  IMG_20210705.08  IMG_20210713.21  IMG_20210716.18  IMG_20210718.21  IMG_20210725.19  IMG_20210726_16  IMG_20210726_16  IMG_20210727.21
5110 1125_01 312302 435 E 1004 1009 3236

AaEE o~

IMG_2021072820  IMG_20210726.20 IMG_20210728.20  IMG_20210728 20 |IMG_20210728.20 IMG_20210728.22  IMG_20210729.20  IMG_20210730.20  IMG_20210821.22

s 5126 231 B 42 5308 618 ne s104
) s 2 o
N
r-,.' - - A !
§ e
| — 3 el A
MG 2021062122 IMG20211006.17  IMG2021008.21  IMG_202TI0N17 IMG_