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Prerequisites

In this section we demonstrate how to prepare an environment with PyTorch.

MMDetection works on Linux, Windows and macOS. It requires Python 3.6+, CUDA 9.2+ and PyTorch 1.5+.


Note

If you are experienced with PyTorch and have already installed it, just skip this part and jump to the next section. Otherwise, you can follow these steps for the preparation.



Step 0. Download and install Miniconda from the official website [https://docs.conda.io/en/latest/miniconda.html].

Step 1. Create a conda environment and activate it.

conda create --name openmmlab python=3.8 -y
conda activate openmmlab





Step 2. Install PyTorch following official instructions [https://pytorch.org/get-started/locally/], e.g.

On GPU platforms:

conda install pytorch torchvision -c pytorch





On CPU platforms:

conda install pytorch torchvision cpuonly -c pytorch








Installation

We recommend that users follow our best practices to install MMDetection. However, the whole process is highly customizable. See Customize Installation section for more information.


Best Practices

Step 0. Install MMCV [https://github.com/open-mmlab/mmcv] using MIM [https://github.com/open-mmlab/mim].

pip install -U openmim
mim install mmcv-full





Step 1. Install MMDetection.

Case a: If you develop and run mmdet directly, install it from source:

git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -v -e .
# "-v" means verbose, or more output
# "-e" means installing a project in editable mode,
# thus any local modifications made to the code will take effect without reinstallation.





Case b: If you use mmdet as a dependency or third-party package, install it with pip:

pip install mmdet








Verify the installation

To verify whether MMDetection is installed correctly, we provide some sample codes to run an inference demo.

Step 1. We need to download config and checkpoint files.

mim download mmdet --config yolov3_mobilenetv2_320_300e_coco --dest .





The downloading will take several seconds or more, depending on your network environment. When it is done, you will find two files yolov3_mobilenetv2_320_300e_coco.py and yolov3_mobilenetv2_320_300e_coco_20210719_215349-d18dff72.pth in your current folder.

Step 2. Verify the inference demo.

Option (a). If you install mmdetection from source, just run the following command.

python demo/image_demo.py demo/demo.jpg yolov3_mobilenetv2_320_300e_coco.py yolov3_mobilenetv2_320_300e_coco_20210719_215349-d18dff72.pth --device cpu --out-file result.jpg





You will see a new image result.jpg on your current folder, where bounding boxes are plotted on cars, benches, etc.

Option (b). If you install mmdetection with pip, open you python interpreter and copy&paste the following codes.

from mmdet.apis import init_detector, inference_detector

config_file = 'yolov3_mobilenetv2_320_300e_coco.py'
checkpoint_file = 'yolov3_mobilenetv2_320_300e_coco_20210719_215349-d18dff72.pth'
model = init_detector(config_file, checkpoint_file, device='cpu')  # or device='cuda:0'
inference_detector(model, 'demo/demo.jpg')





You will see a list of arrays printed, indicating the detected bounding boxes.




Customize Installation


CUDA versions

When installing PyTorch, you need to specify the version of CUDA. If you are not clear on which to choose, follow our recommendations:


	For Ampere-based NVIDIA GPUs, such as GeForce 30 series and NVIDIA A100, CUDA 11 is a must.


	For older NVIDIA GPUs, CUDA 11 is backward compatible, but CUDA 10.2 offers better compatibility and is more lightweight.




Please make sure the GPU driver satisfies the minimum version requirements. See this table [https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions] for more information.


Note

Installing CUDA runtime libraries is enough if you follow our best practices, because no CUDA code will be compiled locally. However if you hope to compile MMCV from source or develop other CUDA operators, you need to install the complete CUDA toolkit from NVIDIA’s website [https://developer.nvidia.com/cuda-downloads], and its version should match the CUDA version of PyTorch. i.e., the specified version of cudatoolkit in conda install command.






Install MMCV without MIM

MMCV contains C++ and CUDA extensions, thus depending on PyTorch in a complex way. MIM solves such dependencies automatically and makes the installation easier. However, it is not a must.

To install MMCV with pip instead of MIM, please follow MMCV installation guides [https://mmcv.readthedocs.io/en/latest/get_started/installation.html]. This requires manually specifying a find-url based on PyTorch version and its CUDA version.

For example, the following command install mmcv-full built for PyTorch 1.10.x and CUDA 11.3.

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html








Install on CPU-only platforms

MMDetection can be built for CPU only environment. In CPU mode you can train (requires MMCV version >= 1.4.4), test or inference a model.

However some functionalities are gone in this mode:


	Deformable Convolution


	Modulated Deformable Convolution


	ROI pooling


	Deformable ROI pooling


	CARAFE


	SyncBatchNorm


	CrissCrossAttention


	MaskedConv2d


	Temporal Interlace Shift


	nms_cuda


	sigmoid_focal_loss_cuda


	bbox_overlaps




If you try to train/test/inference a model containing above ops, an error will be raised.
The following table lists affected algorithms.




	Operator
	Model





	Deformable Convolution/Modulated Deformable Convolution
	DCN、Guided Anchoring、RepPoints、CentripetalNet、VFNet、CascadeRPN、NAS-FCOS、DetectoRS



	MaskedConv2d
	Guided Anchoring



	CARAFE
	CARAFE



	SyncBatchNorm
	ResNeSt








Install on Google Colab

Google Colab [https://research.google.com/] usually has PyTorch installed,
thus we only need to install MMCV and MMDetection with the following commands.

Step 1. Install MMCV [https://github.com/open-mmlab/mmcv] using MIM [https://github.com/open-mmlab/mim].

!pip3 install openmim
!mim install mmcv-full





Step 2. Install MMDetection from the source.

!git clone https://github.com/open-mmlab/mmdetection.git
%cd mmdetection
!pip install -e .





Step 3. Verification.

import mmdet
print(mmdet.__version__)
# Example output: 2.23.0






Note

Within Jupyter, the exclamation mark ! is used to call external executables and %cd is a magic command [https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-cd] to change the current working directory of Python.






Using MMDetection with Docker

We provide a Dockerfile [https://github.com/open-mmlab/mmdetection/blob/master/docker/Dockerfile] to build an image. Ensure that your docker version [https://docs.docker.com/engine/install/] >=19.03.

# build an image with PyTorch 1.6, CUDA 10.1
# If you prefer other versions, just modified the Dockerfile
docker build -t mmdetection docker/





Run it with

docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmdetection/data mmdetection










Trouble shooting

If you have some issues during the installation, please first view the FAQ page.
You may open an issue [https://github.com/open-mmlab/mmdetection/issues/new/choose] on GitHub if no solution is found.







            

          

      

      

    

  

    
      
          
            
  
Benchmark and Model Zoo


Mirror sites

We only use aliyun to maintain the model zoo since MMDetection V2.0. The model zoo of V1.x has been deprecated.




Common settings


	All models were trained on coco_2017_train, and tested on the coco_2017_val.


	We use distributed training.


	All pytorch-style pretrained backbones on ImageNet are from PyTorch model zoo, caffe-style pretrained backbones are converted from the newly released model from detectron2.


	For fair comparison with other codebases, we report the GPU memory as the maximum value of torch.cuda.max_memory_allocated() for all 8 GPUs. Note that this value is usually less than what nvidia-smi shows.


	We report the inference time as the total time of network forwarding and post-processing, excluding the data loading time. Results are obtained with the script benchmark.py [https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/benchmark.py] which computes the average time on 2000 images.







ImageNet Pretrained Models

It is common to initialize from backbone models pre-trained on ImageNet classification task. All pre-trained  model links can be found at open_mmlab [https://github.com/open-mmlab/mmcv/blob/master/mmcv/model_zoo/open_mmlab.json].  According to img_norm_cfg and source of weight, we can divide all the ImageNet  pre-trained  model weights into some cases:


	TorchVision:  Corresponding to torchvision weight, including ResNet50, ResNet101. The img_norm_cfg is dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True).


	Pycls:  Corresponding to pycls [https://github.com/facebookresearch/pycls] weight, including RegNetX. The img_norm_cfg is dict(   mean=[103.530, 116.280, 123.675], std=[57.375, 57.12, 58.395], to_rgb=False).


	MSRA styles: Corresponding to MSRA [https://github.com/KaimingHe/deep-residual-networks] weights, including ResNet50_Caffe and ResNet101_Caffe. The img_norm_cfg is dict(   mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False).


	Caffe2 styles:  Currently only contains ResNext101_32x8d. The img_norm_cfg is dict(mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], to_rgb=False).


	Other styles: E.g SSD which corresponds to img_norm_cfg is dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) and YOLOv3 which corresponds to img_norm_cfg is dict(mean=[0, 0, 0], std=[255., 255., 255.], to_rgb=True).




The detailed table of the commonly used backbone models in MMDetection is listed below :




	model
	source
	link
	description





	ResNet50
	TorchVision
	torchvision's ResNet-50
	From torchvision's ResNet-50.



	ResNet101
	TorchVision
	torchvision's ResNet-101
	From torchvision's ResNet-101.



	RegNetX
	Pycls
	RegNetX_3.2gf, RegNetX_800mf. etc.
	From pycls.



	ResNet50_Caffe
	MSRA
	MSRA's ResNet-50
	Converted copy of Detectron2's R-50.pkl model. The original weight comes from MSRA's original ResNet-50.



	ResNet101_Caffe
	MSRA
	MSRA's ResNet-101
	Converted copy of Detectron2's R-101.pkl model. The original weight comes from MSRA's original ResNet-101.



	ResNext101_32x8d
	Caffe2
	Caffe2 ResNext101_32x8d
	Converted copy of Detectron2's X-101-32x8d.pkl model. The ResNeXt-101-32x8d model trained with Caffe2 at FB.








Baselines


RPN

Please refer to RPN [https://github.com/open-mmlab/mmdetection/blob/master/configs/rpn] for details.




Faster R-CNN

Please refer to Faster R-CNN [https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn] for details.




Mask R-CNN

Please refer to Mask R-CNN [https://github.com/open-mmlab/mmdetection/blob/master/configs/mask_rcnn] for details.




Fast R-CNN (with pre-computed proposals)

Please refer to Fast R-CNN [https://github.com/open-mmlab/mmdetection/blob/master/configs/fast_rcnn] for details.




RetinaNet

Please refer to RetinaNet [https://github.com/open-mmlab/mmdetection/blob/master/configs/retinanet] for details.




Cascade R-CNN and Cascade Mask R-CNN

Please refer to Cascade R-CNN [https://github.com/open-mmlab/mmdetection/blob/master/configs/cascade_rcnn] for details.




Hybrid Task Cascade (HTC)

Please refer to HTC [https://github.com/open-mmlab/mmdetection/blob/master/configs/htc] for details.




SSD

Please refer to SSD [https://github.com/open-mmlab/mmdetection/blob/master/configs/ssd] for details.




Group Normalization (GN)

Please refer to Group Normalization [https://github.com/open-mmlab/mmdetection/blob/master/configs/gn] for details.




Weight Standardization

Please refer to Weight Standardization [https://github.com/open-mmlab/mmdetection/blob/master/configs/gn+ws] for details.




Deformable Convolution v2

Please refer to Deformable Convolutional Networks [https://github.com/open-mmlab/mmdetection/blob/master/configs/dcn] for details.




CARAFE: Content-Aware ReAssembly of FEatures

Please refer to CARAFE [https://github.com/open-mmlab/mmdetection/blob/master/configs/carafe] for details.




Instaboost

Please refer to Instaboost [https://github.com/open-mmlab/mmdetection/blob/master/configs/instaboost] for details.




Libra R-CNN

Please refer to Libra R-CNN [https://github.com/open-mmlab/mmdetection/blob/master/configs/libra_rcnn] for details.




Guided Anchoring

Please refer to Guided Anchoring [https://github.com/open-mmlab/mmdetection/blob/master/configs/guided_anchoring] for details.




FCOS

Please refer to FCOS [https://github.com/open-mmlab/mmdetection/blob/master/configs/fcos] for details.




FoveaBox

Please refer to FoveaBox [https://github.com/open-mmlab/mmdetection/blob/master/configs/foveabox] for details.




RepPoints

Please refer to RepPoints [https://github.com/open-mmlab/mmdetection/blob/master/configs/reppoints] for details.




FreeAnchor

Please refer to FreeAnchor [https://github.com/open-mmlab/mmdetection/blob/master/configs/free_anchor] for details.




Grid R-CNN (plus)

Please refer to Grid R-CNN [https://github.com/open-mmlab/mmdetection/blob/master/configs/grid_rcnn] for details.




GHM

Please refer to GHM [https://github.com/open-mmlab/mmdetection/blob/master/configs/ghm] for details.




GCNet

Please refer to GCNet [https://github.com/open-mmlab/mmdetection/blob/master/configs/gcnet] for details.




HRNet

Please refer to HRNet [https://github.com/open-mmlab/mmdetection/blob/master/configs/hrnet] for details.




Mask Scoring R-CNN

Please refer to Mask Scoring R-CNN [https://github.com/open-mmlab/mmdetection/blob/master/configs/ms_rcnn] for details.




Train from Scratch

Please refer to Rethinking ImageNet Pre-training [https://github.com/open-mmlab/mmdetection/blob/master/configs/scratch] for details.




NAS-FPN

Please refer to NAS-FPN [https://github.com/open-mmlab/mmdetection/blob/master/configs/nas_fpn] for details.




ATSS

Please refer to ATSS [https://github.com/open-mmlab/mmdetection/blob/master/configs/atss] for details.




FSAF

Please refer to FSAF [https://github.com/open-mmlab/mmdetection/blob/master/configs/fsaf] for details.




RegNetX

Please refer to RegNet [https://github.com/open-mmlab/mmdetection/blob/master/configs/regnet] for details.




Res2Net

Please refer to Res2Net [https://github.com/open-mmlab/mmdetection/blob/master/configs/res2net] for details.




GRoIE

Please refer to GRoIE [https://github.com/open-mmlab/mmdetection/blob/master/configs/groie] for details.




Dynamic R-CNN

Please refer to Dynamic R-CNN [https://github.com/open-mmlab/mmdetection/blob/master/configs/dynamic_rcnn] for details.




PointRend

Please refer to PointRend [https://github.com/open-mmlab/mmdetection/blob/master/configs/point_rend] for details.




DetectoRS

Please refer to DetectoRS [https://github.com/open-mmlab/mmdetection/blob/master/configs/detectors] for details.




Generalized Focal Loss

Please refer to Generalized Focal Loss [https://github.com/open-mmlab/mmdetection/blob/master/configs/gfl] for details.




CornerNet

Please refer to CornerNet [https://github.com/open-mmlab/mmdetection/blob/master/configs/cornernet] for details.




YOLOv3

Please refer to YOLOv3 [https://github.com/open-mmlab/mmdetection/blob/master/configs/yolo] for details.




PAA

Please refer to PAA [https://github.com/open-mmlab/mmdetection/blob/master/configs/paa] for details.




SABL

Please refer to SABL [https://github.com/open-mmlab/mmdetection/blob/master/configs/sabl] for details.




CentripetalNet

Please refer to CentripetalNet [https://github.com/open-mmlab/mmdetection/blob/master/configs/centripetalnet] for details.




ResNeSt

Please refer to ResNeSt [https://github.com/open-mmlab/mmdetection/blob/master/configs/resnest] for details.




DETR

Please refer to DETR [https://github.com/open-mmlab/mmdetection/blob/master/configs/detr] for details.




Deformable DETR

Please refer to Deformable DETR [https://github.com/open-mmlab/mmdetection/blob/master/configs/deformable_detr] for details.




AutoAssign

Please refer to AutoAssign [https://github.com/open-mmlab/mmdetection/blob/master/configs/autoassign] for details.




YOLOF

Please refer to YOLOF [https://github.com/open-mmlab/mmdetection/blob/master/configs/yolof] for details.




Seesaw Loss

Please refer to Seesaw Loss [https://github.com/open-mmlab/mmdetection/blob/master/configs/seesaw_loss] for details.




CenterNet

Please refer to CenterNet [https://github.com/open-mmlab/mmdetection/blob/master/configs/centernet] for details.




YOLOX

Please refer to YOLOX [https://github.com/open-mmlab/mmdetection/blob/master/configs/yolox] for details.




PVT

Please refer to PVT [https://github.com/open-mmlab/mmdetection/blob/master/configs/pvt] for details.




SOLO

Please refer to SOLO [https://github.com/open-mmlab/mmdetection/blob/master/configs/solo] for details.




QueryInst

Please refer to QueryInst [https://github.com/open-mmlab/mmdetection/blob/master/configs/queryinst] for details.




PanopticFPN

Please refer to PanopticFPN [https://github.com/open-mmlab/mmdetection/blob/master/configs/panoptic_fpn] for details.




MaskFormer

Please refer to MaskFormer [https://github.com/open-mmlab/mmdetection/blob/master/configs/maskformer] for details.




DyHead

Please refer to DyHead [https://github.com/open-mmlab/mmdetection/blob/master/configs/dyhead] for details.




Mask2Former

Please refer to Mask2Former [https://github.com/open-mmlab/mmdetection/blob/master/configs/mask2former] for details.




Efficientnet

Please refer to Efficientnet [https://github.com/open-mmlab/mmdetection/blob/master/configs/efficientnet] for details.




RF-Next

Please refer to RF-Next [https://github.com/open-mmlab/mmdetection/blob/master/configs/rfnext] for details.




Other datasets

We also benchmark some methods on PASCAL VOC [https://github.com/open-mmlab/mmdetection/blob/master/configs/pascal_voc], Cityscapes [https://github.com/open-mmlab/mmdetection/blob/master/configs/cityscapes], OpenImages [https://github.com/open-mmlab/mmdetection/blob/master/configs/openimages] and WIDER FACE [https://github.com/open-mmlab/mmdetection/blob/master/configs/wider_face].




Pre-trained Models

We also train Faster R-CNN [https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn] and Mask R-CNN [https://github.com/open-mmlab/mmdetection/blob/master/configs/mask_rcnn] using ResNet-50 and RegNetX-3.2G [https://github.com/open-mmlab/mmdetection/blob/master/configs/regnet] with multi-scale training and longer schedules. These models serve as strong pre-trained models for downstream tasks for convenience.






Speed benchmark


Training Speed benchmark

We provide analyze_logs.py [https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/analyze_logs.py] to get average time of iteration in training. You can find examples in Log Analysis [https://mmdetection.readthedocs.io/en/latest/useful_tools.html#log-analysis].

We compare the training speed of Mask R-CNN with some other popular frameworks (The data is copied from detectron2 [https://github.com/facebookresearch/detectron2/blob/master/docs/notes/benchmarks.md/]).
For mmdetection, we benchmark with mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py [https://github.com/open-mmlab/mmdetection/blob/master/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py], which should have the same setting with mask_rcnn_R_50_FPN_noaug_1x.yaml [https://github.com/facebookresearch/detectron2/blob/master/configs/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x.yaml] of detectron2.
We also provide the checkpoint [https://download.openmmlab.com/mmdetection/v2.0/benchmark/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug_compare_20200518-10127928.pth] and training log [https://download.openmmlab.com/mmdetection/v2.0/benchmark/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug_20200518_105755.log.json] for reference. The throughput is computed as the average throughput in iterations 100-500 to skip GPU warmup time.




	Implementation
	Throughput (img/s)





	Detectron2
	62



	MMDetection
	61



	maskrcnn-benchmark
	53



	tensorpack
	50



	simpledet
	39



	Detectron
	19



	matterport/Mask_RCNN
	14








Inference Speed Benchmark

We provide benchmark.py [https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/benchmark.py] to benchmark the inference latency.
The script benchmarkes the model with 2000 images and calculates the average time ignoring first 5 times. You can change the output log interval (defaults: 50) by setting LOG-INTERVAL.

python tools/benchmark.py ${CONFIG} ${CHECKPOINT} [--log-interval $[LOG-INTERVAL]] [--fuse-conv-bn]





The latency of all models in our model zoo is benchmarked without setting fuse-conv-bn, you can get a lower latency by setting it.






Comparison with Detectron2

We compare mmdetection with Detectron2 [https://github.com/facebookresearch/detectron2.git] in terms of speed and performance.
We use the commit id 185c27e [https://github.com/facebookresearch/detectron2/tree/185c27e4b4d2d4c68b5627b3765420c6d7f5a659](30/4/2020) of detectron.
For fair comparison, we install and run both frameworks on the same machine.


Hardware


	8 NVIDIA Tesla V100 (32G) GPUs


	Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz







Software environment


	Python 3.7


	PyTorch 1.4


	CUDA 10.1


	CUDNN 7.6.03


	NCCL 2.4.08







Performance




	Type
	Lr schd
	Detectron2
	mmdetection
	Download





	Faster R-CNN
	1x
	37.9
	38.0
	model | log



	Mask R-CNN
	1x
	38.6 & 35.2
	38.8 & 35.4
	model | log



	Retinanet
	1x
	36.5
	37.0
	model | log








Training Speed

The training speed is measure with s/iter. The lower, the better.




	Type
	Detectron2
	mmdetection





	Faster R-CNN
	0.210
	0.216



	Mask R-CNN
	0.261
	0.265



	Retinanet
	0.200
	0.205








Inference Speed

The inference speed is measured with fps (img/s) on a single GPU, the higher, the better.
To be consistent with Detectron2, we report the pure inference speed (without the time of data loading).
For Mask R-CNN, we exclude the time of RLE encoding in post-processing.
We also include the officially reported speed in the parentheses, which is slightly higher
than the results tested on our server due to differences of hardwares.




	Type
	Detectron2
	mmdetection





	Faster R-CNN
	25.6 (26.3)
	22.2



	Mask R-CNN
	22.5 (23.3)
	19.6



	Retinanet
	17.8 (18.2)
	20.6








Training memory




	Type
	Detectron2
	mmdetection





	Faster R-CNN
	3.0
	3.8



	Mask R-CNN
	3.4
	3.9



	Retinanet
	3.9
	3.4












            

          

      

      

    

  

    
      
          
            
  
1: Inference and train with existing models and standard datasets

MMDetection provides hundreds of existing and existing detection models in Model Zoo [https://mmdetection.readthedocs.io/en/latest/model_zoo.html]), and supports multiple standard datasets, including Pascal VOC, COCO, CityScapes, LVIS, etc. This note will show how to perform common tasks on these existing models and standard datasets, including:


	Use existing models to inference on given images.


	Test existing models on standard datasets.


	Train predefined models on standard datasets.





Inference with existing models

By inference, we mean using trained models to detect objects on images. In MMDetection, a model is defined by a configuration file and existing model parameters are save in a checkpoint file.

To start with, we recommend Faster RCNN [https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn] with this configuration file [https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py] and this checkpoint file [https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth]. It is recommended to download the checkpoint file to checkpoints directory.


High-level APIs for inference

MMDetection provide high-level Python APIs for inference on images. Here is an example of building the model and inference on given images or videos.

from mmdet.apis import init_detector, inference_detector
import mmcv

# Specify the path to model config and checkpoint file
config_file = 'configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'

# build the model from a config file and a checkpoint file
model = init_detector(config_file, checkpoint_file, device='cuda:0')

# test a single image and show the results
img = 'test.jpg'  # or img = mmcv.imread(img), which will only load it once
result = inference_detector(model, img)
# visualize the results in a new window
model.show_result(img, result)
# or save the visualization results to image files
model.show_result(img, result, out_file='result.jpg')

# test a video and show the results
video = mmcv.VideoReader('video.mp4')
for frame in video:
    result = inference_detector(model, frame)
    model.show_result(frame, result, wait_time=1)





A notebook demo can be found in demo/inference_demo.ipynb [https://github.com/open-mmlab/mmdetection/blob/master/demo/inference_demo.ipynb].

Note:  inference_detector only supports single-image inference for now.




Asynchronous interface - supported for Python 3.7+

For Python 3.7+, MMDetection also supports async interfaces.
By utilizing CUDA streams, it allows not to block CPU on GPU bound inference code and enables better CPU/GPU utilization for single-threaded application. Inference can be done concurrently either between different input data samples or between different models of some inference pipeline.

See tests/async_benchmark.py to compare the speed of synchronous and asynchronous interfaces.

import asyncio
import torch
from mmdet.apis import init_detector, async_inference_detector
from mmdet.utils.contextmanagers import concurrent

async def main():
    config_file = 'configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
    checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
    device = 'cuda:0'
    model = init_detector(config_file, checkpoint=checkpoint_file, device=device)

    # queue is used for concurrent inference of multiple images
    streamqueue = asyncio.Queue()
    # queue size defines concurrency level
    streamqueue_size = 3

    for _ in range(streamqueue_size):
        streamqueue.put_nowait(torch.cuda.Stream(device=device))

    # test a single image and show the results
    img = 'test.jpg'  # or img = mmcv.imread(img), which will only load it once

    async with concurrent(streamqueue):
        result = await async_inference_detector(model, img)

    # visualize the results in a new window
    model.show_result(img, result)
    # or save the visualization results to image files
    model.show_result(img, result, out_file='result.jpg')


asyncio.run(main())









Demos

We also provide three demo scripts, implemented with high-level APIs and supporting functionality codes.
Source codes are available here [https://github.com/open-mmlab/mmdetection/tree/master/demo].


Image demo

This script performs inference on a single image.

python demo/image_demo.py \
    ${IMAGE_FILE} \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    [--device ${GPU_ID}] \
    [--score-thr ${SCORE_THR}]





Examples:

python demo/image_demo.py demo/demo.jpg \
    configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
    checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
    --device cpu








Webcam demo

This is a live demo from a webcam.

python demo/webcam_demo.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    [--device ${GPU_ID}] \
    [--camera-id ${CAMERA-ID}] \
    [--score-thr ${SCORE_THR}]





Examples:

python demo/webcam_demo.py \
    configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
    checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth








Video demo

This script performs inference on a video.

python demo/video_demo.py \
    ${VIDEO_FILE} \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    [--device ${GPU_ID}] \
    [--score-thr ${SCORE_THR}] \
    [--out ${OUT_FILE}] \
    [--show] \
    [--wait-time ${WAIT_TIME}]





Examples:

python demo/video_demo.py demo/demo.mp4 \
    configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
    checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
    --out result.mp4








Video demo with GPU acceleration

This script performs inference on a video with GPU acceleration.

python demo/video_gpuaccel_demo.py \
    ${VIDEO_FILE} \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    [--device ${GPU_ID}] \
    [--score-thr ${SCORE_THR}] \
    [--nvdecode] \
    [--out ${OUT_FILE}] \
    [--show] \
    [--wait-time ${WAIT_TIME}]





Examples:

python demo/video_gpuaccel_demo.py demo/demo.mp4 \
    configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
    checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
    --nvdecode --out result.mp4












Test existing models on standard datasets

To evaluate a model’s accuracy, one usually tests the model on some standard datasets.
MMDetection supports multiple public datasets including COCO, Pascal VOC, CityScapes, and more [https://github.com/open-mmlab/mmdetection/tree/master/configs/_base_/datasets].
This section will show how to test existing models on supported datasets.


Prepare datasets

Public datasets like Pascal VOC [http://host.robots.ox.ac.uk/pascal/VOC/index.html] or mirror and COCO [https://cocodataset.org/#download] are available from official websites or mirrors. Note: In the detection task, Pascal VOC 2012 is an extension of Pascal VOC 2007 without overlap, and we usually use them together.
It is recommended to download and extract the dataset somewhere outside the project directory and symlink the dataset root to $MMDETECTION/data as below.
If your folder structure is different, you may need to change the corresponding paths in config files.

We provide a script to download datasets such as COCO , you can run python tools/misc/download_dataset.py --dataset-name coco2017 to download COCO dataset.

For more usage please refer to dataset-download [https://github.com/open-mmlab/mmdetection/tree/master/docs/en/useful_tools.md#dataset-download]

mmdetection
├── mmdet
├── tools
├── configs
├── data
│   ├── coco
│   │   ├── annotations
│   │   ├── train2017
│   │   ├── val2017
│   │   ├── test2017
│   ├── cityscapes
│   │   ├── annotations
│   │   ├── leftImg8bit
│   │   │   ├── train
│   │   │   ├── val
│   │   ├── gtFine
│   │   │   ├── train
│   │   │   ├── val
│   ├── VOCdevkit
│   │   ├── VOC2007
│   │   ├── VOC2012





Some models require additional COCO-stuff [http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip] datasets, such as HTC, DetectoRS and SCNet, you can download and unzip then move to the coco folder. The directory should be like this.

mmdetection
├── data
│   ├── coco
│   │   ├── annotations
│   │   ├── train2017
│   │   ├── val2017
│   │   ├── test2017
│   │   ├── stuffthingmaps





Panoptic segmentation models like PanopticFPN require additional COCO Panoptic [http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip] datasets, you can download and unzip then move to the coco annotation folder. The directory should be like this.

mmdetection
├── data
│   ├── coco
│   │   ├── annotations
│   │   │   ├── panoptic_train2017.json
│   │   │   ├── panoptic_train2017
│   │   │   ├── panoptic_val2017.json
│   │   │   ├── panoptic_val2017
│   │   ├── train2017
│   │   ├── val2017
│   │   ├── test2017





The cityscapes [https://www.cityscapes-dataset.com/] annotations need to be converted into the coco format using tools/dataset_converters/cityscapes.py:

pip install cityscapesscripts

python tools/dataset_converters/cityscapes.py \
    ./data/cityscapes \
    --nproc 8 \
    --out-dir ./data/cityscapes/annotations





TODO: CHANGE TO THE NEW PATH




Test existing models

We provide testing scripts for evaluating an existing model on the whole dataset (COCO, PASCAL VOC, Cityscapes, etc.).
The following testing environments are supported:


	single GPU


	CPU


	single node multiple GPUs


	multiple nodes




Choose the proper script to perform testing depending on the testing environment.

# single-gpu testing
python tools/test.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    [--out ${RESULT_FILE}] \
    [--eval ${EVAL_METRICS}] \
    [--show]

# CPU: disable GPUs and run single-gpu testing script
export CUDA_VISIBLE_DEVICES=-1
python tools/test.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    [--out ${RESULT_FILE}] \
    [--eval ${EVAL_METRICS}] \
    [--show]

# multi-gpu testing
bash tools/dist_test.sh \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    ${GPU_NUM} \
    [--out ${RESULT_FILE}] \
    [--eval ${EVAL_METRICS}]





tools/dist_test.sh also supports multi-node testing, but relies on PyTorch’s launch utility [https://pytorch.org/docs/stable/distributed.html#launch-utility].

Optional arguments:


	RESULT_FILE: Filename of the output results in pickle format. If not specified, the results will not be saved to a file.


	EVAL_METRICS: Items to be evaluated on the results. Allowed values depend on the dataset, e.g., proposal_fast, proposal, bbox, segm are available for COCO, mAP, recall for PASCAL VOC. Cityscapes could be evaluated by cityscapes as well as all COCO metrics.


	--show: If specified, detection results will be plotted on the images and shown in a new window. It is only applicable to single GPU testing and used for debugging and visualization. Please make sure that GUI is available in your environment. Otherwise, you may encounter an error like cannot connect to X server.


	--show-dir: If specified, detection results will be plotted on the images and saved to the specified directory. It is only applicable to single GPU testing and used for debugging and visualization. You do NOT need a GUI available in your environment for using this option.


	--show-score-thr: If specified, detections with scores below this threshold will be removed.


	--cfg-options:  if specified, the key-value pair optional cfg will be merged into config file


	--eval-options: if specified, the key-value pair optional eval cfg will be kwargs for dataset.evaluate() function, it’s only for evaluation







Examples

Assuming that you have already downloaded the checkpoints to the directory checkpoints/.


	Test Faster R-CNN and visualize the results. Press any key for the next image.
Config and checkpoint files are available here [https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn].

python tools/test.py \
    configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
    checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
    --show







	Test Faster R-CNN and save the painted images for future visualization.
Config and checkpoint files are available here [https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn].

python tools/test.py \
    configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
    checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
    --show-dir faster_rcnn_r50_fpn_1x_results







	Test Faster R-CNN on PASCAL VOC (without saving the test results) and evaluate the mAP.
Config and checkpoint files are available here [https://github.com/open-mmlab/mmdetection/tree/master/configs/pascal_voc].

python tools/test.py \
    configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc.py \
    checkpoints/faster_rcnn_r50_fpn_1x_voc0712_20200624-c9895d40.pth \
    --eval mAP







	Test Mask R-CNN with 8 GPUs, and evaluate the bbox and mask AP.
Config and checkpoint files are available here [https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn].

./tools/dist_test.sh \
    configs/mask_rcnn_r50_fpn_1x_coco.py \
    checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
    8 \
    --out results.pkl \
    --eval bbox segm







	Test Mask R-CNN with 8 GPUs, and evaluate the classwise bbox and mask AP.
Config and checkpoint files are available here [https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn].

./tools/dist_test.sh \
    configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py \
    checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
    8 \
    --out results.pkl \
    --eval bbox segm \
    --options "classwise=True"







	Test Mask R-CNN on COCO test-dev with 8 GPUs, and generate JSON files for submitting to the official evaluation server.
Config and checkpoint files are available here [https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn].

./tools/dist_test.sh \
    configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py \
    checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
    8 \
    --format-only \
    --options "jsonfile_prefix=./mask_rcnn_test-dev_results"





This command generates two JSON files mask_rcnn_test-dev_results.bbox.json and mask_rcnn_test-dev_results.segm.json.



	Test Mask R-CNN on Cityscapes test with 8 GPUs, and generate txt and png files for submitting to the official evaluation server.
Config and checkpoint files are available here [https://github.com/open-mmlab/mmdetection/tree/master/configs/cityscapes].

./tools/dist_test.sh \
    configs/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes.py \
    checkpoints/mask_rcnn_r50_fpn_1x_cityscapes_20200227-afe51d5a.pth \
    8 \
    --format-only \
    --options "txtfile_prefix=./mask_rcnn_cityscapes_test_results"





The generated png and txt would be under ./mask_rcnn_cityscapes_test_results directory.








Test without Ground Truth Annotations

MMDetection supports to test models without ground-truth annotations using CocoDataset. If your dataset format is not in COCO format, please convert them to COCO format. For example, if your dataset format is VOC, you can directly convert it to COCO format by the script in tools. [https://github.com/open-mmlab/mmdetection/tree/master/tools/dataset_converters/pascal_voc.py] If your dataset format is Cityscapes, you can directly convert it to COCO format by the script in tools. [https://github.com/open-mmlab/mmdetection/tree/master/tools/dataset_converters/cityscapes.py] The rest of the formats can be converted using this script [https://github.com/open-mmlab/mmdetection/tree/master/tools/dataset_converters/images2coco.py].

python tools/dataset_converters/images2coco.py \
    ${IMG_PATH} \
    ${CLASSES} \
    ${OUT} \
    [--exclude-extensions]





arguments：


	IMG_PATH: The root path of images.


	CLASSES: The text file with a list of categories.


	OUT: The output annotation json file name. The save dir is in the same directory as IMG_PATH.


	exclude-extensions: The suffix of images to be excluded, such as ‘png’ and ‘bmp’.




After the conversion is complete, you can use the following command to test

# single-gpu testing
python tools/test.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    --format-only \
    --options ${JSONFILE_PREFIX} \
    [--show]

# CPU: disable GPUs and run single-gpu testing script
export CUDA_VISIBLE_DEVICES=-1
python tools/test.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    [--out ${RESULT_FILE}] \
    [--eval ${EVAL_METRICS}] \
    [--show]

# multi-gpu testing
bash tools/dist_test.sh \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    ${GPU_NUM} \
    --format-only \
    --options ${JSONFILE_PREFIX} \
    [--show]





Assuming that the checkpoints in the model zoo [https://mmdetection.readthedocs.io/en/latest/modelzoo_statistics.html] have been downloaded to the directory checkpoints/, we can test Mask R-CNN on COCO test-dev with 8 GPUs, and generate JSON files using the following command.

./tools/dist_test.sh \
    configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py \
    checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
    8 \
    -format-only \
    --options "jsonfile_prefix=./mask_rcnn_test-dev_results"





This command generates two JSON files mask_rcnn_test-dev_results.bbox.json and mask_rcnn_test-dev_results.segm.json.




Batch Inference

MMDetection supports inference with a single image or batched images in test mode. By default, we use single-image inference and you can use batch inference by modifying samples_per_gpu in the config of test data. You can do that either by modifying the config as below.

data = dict(train=dict(...), val=dict(...), test=dict(samples_per_gpu=2, ...))





Or you can set it through --cfg-options as --cfg-options data.test.samples_per_gpu=2




Deprecated ImageToTensor

In test mode,  ImageToTensor  pipeline is deprecated, it’s replaced by DefaultFormatBundle that recommended to manually replace it in the test data pipeline in your config file.  examples:

# use ImageToTensor (deprecated)
pipelines = [
   dict(type='LoadImageFromFile'),
   dict(
       type='MultiScaleFlipAug',
       img_scale=(1333, 800),
       flip=False,
       transforms=[
           dict(type='Resize', keep_ratio=True),
           dict(type='RandomFlip'),
           dict(type='Normalize', mean=[0, 0, 0], std=[1, 1, 1]),
           dict(type='Pad', size_divisor=32),
           dict(type='ImageToTensor', keys=['img']),
           dict(type='Collect', keys=['img']),
       ])
   ]

# manually replace ImageToTensor to DefaultFormatBundle (recommended)
pipelines = [
   dict(type='LoadImageFromFile'),
   dict(
       type='MultiScaleFlipAug',
       img_scale=(1333, 800),
       flip=False,
       transforms=[
           dict(type='Resize', keep_ratio=True),
           dict(type='RandomFlip'),
           dict(type='Normalize', mean=[0, 0, 0], std=[1, 1, 1]),
           dict(type='Pad', size_divisor=32),
           dict(type='DefaultFormatBundle'),
           dict(type='Collect', keys=['img']),
       ])
   ]










Train predefined models on standard datasets

MMDetection also provides out-of-the-box tools for training detection models.
This section will show how to train predefined models (under configs [https://github.com/open-mmlab/mmdetection/tree/master/configs]) on standard datasets i.e. COCO.


Prepare datasets

Training requires preparing datasets too. See section Prepare datasets above for details.

Note:
Currently, the config files under configs/cityscapes use COCO pretrained weights to initialize.
You could download the existing models in advance if the network connection is unavailable or slow. Otherwise, it would cause errors at the beginning of training.




Learning rate automatically scale

Important: The default learning rate in config files is for 8 GPUs and 2 sample per gpu (batch size = 8 * 2 = 16). And it had been set to auto_scale_lr.base_batch_size in config/_base_/default_runtime.py. Learning rate will be automatically scaled base on this value when the batch size is 16. Meanwhile, in order not to affect other codebase which based on mmdet, the flag auto_scale_lr.enable is set to False by default.

If you want to enable this feature, you need to add argument --auto-scale-lr. And you need to check the config name which you want to use before you process the command, because the config name indicates the default batch size.
By default, it is 8 x 2 = 16 batch size, like faster_rcnn_r50_caffe_fpn_90k_coco.py or pisa_faster_rcnn_x101_32x4d_fpn_1x_coco.py. In other cases, you will see the config file name have _NxM_ in dictating, like cornernet_hourglass104_mstest_32x3_210e_coco.py which batch size is 32 x 3 = 96, or scnet_x101_64x4d_fpn_8x1_20e_coco.py which batch size is 8 x 1 = 8.

Please remember to check the bottom of the specific config file you want to use, it will have auto_scale_lr.base_batch_size if the batch size is not 16. If you can’t find those values, check the config file which in _base_=[xxx] and you will find it. Please do not modify its values if you want to automatically scale the LR.

Learning rate automatically scale basic usage is as follows.

python tools/train.py \
    ${CONFIG_FILE} \
    --auto-scale-lr \
    [optional arguments]





If you enabled this feature, the learning rate will be automatically scaled according to the number of GPUs of the machine and the batch size of training. See linear scaling rule [https://arxiv.org/abs/1706.02677] for details. For example, If there are 4 GPUs and 2 pictures on each GPU, lr = 0.01, then if there are 16 GPUs and 4 pictures on each GPU, it will automatically scale to lr = 0.08.

If you don’t want to use it, you need to calculate the learning rate according to the linear scaling rule [https://arxiv.org/abs/1706.02677] manually then change optimizer.lr in specific config file.




Training on a single GPU

We provide tools/train.py to launch training jobs on a single GPU.
The basic usage is as follows.

python tools/train.py \
    ${CONFIG_FILE} \
    [optional arguments]





During training, log files and checkpoints will be saved to the working directory, which is specified by work_dir in the config file or via CLI argument --work-dir.

By default, the model is evaluated on the validation set every epoch, the evaluation interval can be specified in the config file as shown below.

# evaluate the model every 12 epoch.
evaluation = dict(interval=12)





This tool accepts several optional arguments, including:


	--no-validate (not suggested): Disable evaluation during training.


	--work-dir ${WORK_DIR}: Override the working directory.


	--resume-from ${CHECKPOINT_FILE}: Resume from a previous checkpoint file.


	--options 'Key=value': Overrides other settings in the used config.




Note:

Difference between resume-from and load-from:

resume-from loads both the model weights and optimizer status, and the epoch is also inherited from the specified checkpoint. It is usually used for resuming the training process that is interrupted accidentally.
load-from only loads the model weights and the training epoch starts from 0. It is usually used for finetuning.




Training on CPU

The process of training on the CPU is consistent with single GPU training. We just need to disable GPUs before the training process.

export CUDA_VISIBLE_DEVICES=-1





And then run the script above.

Note:

We do not recommend users to use CPU for training because it is too slow. We support this feature to allow users to debug on machines without GPU for convenience.




Training on multiple GPUs

We provide tools/dist_train.sh to launch training on multiple GPUs.
The basic usage is as follows.

bash ./tools/dist_train.sh \
    ${CONFIG_FILE} \
    ${GPU_NUM} \
    [optional arguments]





Optional arguments remain the same as stated above.


Launch multiple jobs simultaneously

If you would like to launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs,
you need to specify different ports (29500 by default) for each job to avoid communication conflict.

If you use dist_train.sh to launch training jobs, you can set the port in commands.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh ${CONFIG_FILE} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh ${CONFIG_FILE} 4










Train with multiple machines

If you launch with multiple machines simply connected with ethernet, you can simply run following commands:

On the first machine:

NNODES=2 NODE_RANK=0 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh $CONFIG $GPUS





On the second machine:

NNODES=2 NODE_RANK=1 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh $CONFIG $GPUS





Usually it is slow if you do not have high speed networking like InfiniBand.




Manage jobs with Slurm

Slurm [https://slurm.schedmd.com/] is a good job scheduling system for computing clusters.
On a cluster managed by Slurm, you can use slurm_train.sh to spawn training jobs. It supports both single-node and multi-node training.

The basic usage is as follows.

[GPUS=${GPUS}] ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR}





Below is an example of using 16 GPUs to train Mask R-CNN on a Slurm partition named dev, and set the work-dir to some shared file systems.

GPUS=16 ./tools/slurm_train.sh dev mask_r50_1x configs/mask_rcnn_r50_fpn_1x_coco.py /nfs/xxxx/mask_rcnn_r50_fpn_1x





You can check the source code [https://github.com/open-mmlab/mmdetection/blob/master/tools/slurm_train.sh] to review full arguments and environment variables.

When using Slurm, the port option need to be set in one of the following ways:


	Set the port through --options. This is more recommended since it does not change the original configs.

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config1.py ${WORK_DIR} --options 'dist_params.port=29500'
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config2.py ${WORK_DIR} --options 'dist_params.port=29501'







	Modify the config files to set different communication ports.

In config1.py, set

dist_params = dict(backend='nccl', port=29500)





In config2.py, set

dist_params = dict(backend='nccl', port=29501)





Then you can launch two jobs with config1.py and config2.py.

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config1.py ${WORK_DIR}
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config2.py ${WORK_DIR}

















            

          

      

      

    

  

    
      
          
            
  
2: Train with customized datasets

In this note, you will know how to inference, test, and train predefined models with customized datasets. We use the balloon dataset [https://github.com/matterport/Mask_RCNN/tree/master/samples/balloon] as an example to describe the whole process.

The basic steps are as below:


	Prepare the customized dataset


	Prepare a config


	Train, test, inference models on the customized dataset.





Prepare the customized dataset

There are three ways to support a new dataset in MMDetection:


	reorganize the dataset into COCO format.


	reorganize the dataset into a middle format.


	implement a new dataset.




Usually we recommend to use the first two methods which are usually easier than the third.

In this note, we give an example for converting the data into COCO format.

Note: MMDetection only supports evaluating mask AP of dataset in COCO format for now.
So for instance segmentation task users should convert the data into coco format.


COCO annotation format

The necessary keys of COCO format for instance segmentation is as below, for the complete details, please refer here [https://cocodataset.org/#format-data].

{
    "images": [image],
    "annotations": [annotation],
    "categories": [category]
}


image = {
    "id": int,
    "width": int,
    "height": int,
    "file_name": str,
}

annotation = {
    "id": int,
    "image_id": int,
    "category_id": int,
    "segmentation": RLE or [polygon],
    "area": float,
    "bbox": [x,y,width,height],
    "iscrowd": 0 or 1,
}

categories = [{
    "id": int,
    "name": str,
    "supercategory": str,
}]





Assume we use the balloon dataset.
After downloading the data, we need to implement a function to convert the annotation format into the COCO format. Then we can use implemented COCODataset to load the data and perform training and evaluation.

If you take a look at the dataset, you will find the dataset format is as below:

{'base64_img_data': '',
 'file_attributes': {},
 'filename': '34020010494_e5cb88e1c4_k.jpg',
 'fileref': '',
 'regions': {'0': {'region_attributes': {},
   'shape_attributes': {'all_points_x': [1020,
     1000,
     994,
     1003,
     1023,
     1050,
     1089,
     1134,
     1190,
     1265,
     1321,
     1361,
     1403,
     1428,
     1442,
     1445,
     1441,
     1427,
     1400,
     1361,
     1316,
     1269,
     1228,
     1198,
     1207,
     1210,
     1190,
     1177,
     1172,
     1174,
     1170,
     1153,
     1127,
     1104,
     1061,
     1032,
     1020],
    'all_points_y': [963,
     899,
     841,
     787,
     738,
     700,
     663,
     638,
     621,
     619,
     643,
     672,
     720,
     765,
     800,
     860,
     896,
     942,
     990,
     1035,
     1079,
     1112,
     1129,
     1134,
     1144,
     1153,
     1166,
     1166,
     1150,
     1136,
     1129,
     1122,
     1112,
     1084,
     1037,
     989,
     963],
    'name': 'polygon'}}},
 'size': 1115004}





The annotation is a JSON file where each key indicates an image’s all annotations.
The code to convert the balloon dataset into coco format is as below.

import os.path as osp
import mmcv

def convert_balloon_to_coco(ann_file, out_file, image_prefix):
    data_infos = mmcv.load(ann_file)

    annotations = []
    images = []
    obj_count = 0
    for idx, v in enumerate(mmcv.track_iter_progress(data_infos.values())):
        filename = v['filename']
        img_path = osp.join(image_prefix, filename)
        height, width = mmcv.imread(img_path).shape[:2]

        images.append(dict(
            id=idx,
            file_name=filename,
            height=height,
            width=width))

        bboxes = []
        labels = []
        masks = []
        for _, obj in v['regions'].items():
            assert not obj['region_attributes']
            obj = obj['shape_attributes']
            px = obj['all_points_x']
            py = obj['all_points_y']
            poly = [(x + 0.5, y + 0.5) for x, y in zip(px, py)]
            poly = [p for x in poly for p in x]

            x_min, y_min, x_max, y_max = (
                min(px), min(py), max(px), max(py))


            data_anno = dict(
                image_id=idx,
                id=obj_count,
                category_id=0,
                bbox=[x_min, y_min, x_max - x_min, y_max - y_min],
                area=(x_max - x_min) * (y_max - y_min),
                segmentation=[poly],
                iscrowd=0)
            annotations.append(data_anno)
            obj_count += 1

    coco_format_json = dict(
        images=images,
        annotations=annotations,
        categories=[{'id':0, 'name': 'balloon'}])
    mmcv.dump(coco_format_json, out_file)






Using the function above, users can successfully convert the annotation file into json format, then we can use CocoDataset to train and evaluate the model.






Prepare a config

The second step is to prepare a config thus the dataset could be successfully loaded. Assume that we want to use Mask R-CNN with FPN, the config to train the detector on balloon dataset is as below. Assume the config is under directory configs/balloon/ and named as mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py, the config is as below.

# The new config inherits a base config to highlight the necessary modification
_base_ = 'mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py'

# We also need to change the num_classes in head to match the dataset's annotation
model = dict(
    roi_head=dict(
        bbox_head=dict(num_classes=1),
        mask_head=dict(num_classes=1)))

# Modify dataset related settings
dataset_type = 'COCODataset'
classes = ('balloon',)
data = dict(
    train=dict(
        img_prefix='balloon/train/',
        classes=classes,
        ann_file='balloon/train/annotation_coco.json'),
    val=dict(
        img_prefix='balloon/val/',
        classes=classes,
        ann_file='balloon/val/annotation_coco.json'),
    test=dict(
        img_prefix='balloon/val/',
        classes=classes,
        ann_file='balloon/val/annotation_coco.json'))

# We can use the pre-trained Mask RCNN model to obtain higher performance
load_from = 'checkpoints/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth'





This checkpoint file can be downloaded here [https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth]




Train a new model

To train a model with the new config, you can simply run

python tools/train.py configs/balloon/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py





For more detailed usages, please refer to the Case 1.




Test and inference

To test the trained model, you can simply run

python tools/test.py configs/balloon/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py work_dirs/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon/latest.pth --eval bbox segm





For more detailed usages, please refer to the Case 1.







            

          

      

      

    

  

    
      
          
            
  
3: Train with customized models and standard datasets

In this note, you will know how to train, test and inference your own customized models under standard datasets. We use the cityscapes dataset to train a customized Cascade Mask R-CNN R50 model as an example to demonstrate the whole process, which using AugFPN [https://github.com/Gus-Guo/AugFPN] to replace the default FPN as neck, and add Rotate or Translate as training-time auto augmentation.

The basic steps are as below:


	Prepare the standard dataset


	Prepare your own customized model


	Prepare a config


	Train, test, and inference models on the standard dataset.





Prepare the standard dataset

In this note, as we use the standard cityscapes dataset as an example.

It is recommended to symlink the dataset root to $MMDETECTION/data.
If your folder structure is different, you may need to change the corresponding paths in config files.

mmdetection
├── mmdet
├── tools
├── configs
├── data
│   ├── coco
│   │   ├── annotations
│   │   ├── train2017
│   │   ├── val2017
│   │   ├── test2017
│   ├── cityscapes
│   │   ├── annotations
│   │   ├── leftImg8bit
│   │   │   ├── train
│   │   │   ├── val
│   │   ├── gtFine
│   │   │   ├── train
│   │   │   ├── val
│   ├── VOCdevkit
│   │   ├── VOC2007
│   │   ├── VOC2012






Or you can set your dataset root through

export MMDET_DATASETS=$data_root





We will replace dataset root with $MMDET_DATASETS, so you don’t have to modify the corresponding path in config files.

The cityscapes annotations have to be converted into the coco format using tools/dataset_converters/cityscapes.py:

pip install cityscapesscripts
python tools/dataset_converters/cityscapes.py ./data/cityscapes --nproc 8 --out-dir ./data/cityscapes/annotations





Currently the config files in cityscapes use COCO pre-trained weights to initialize.
You could download the pre-trained models in advance if network is unavailable or slow, otherwise it would cause errors at the beginning of training.




Prepare your own customized model

The second step is to use your own module or training setting. Assume that we want to implement a new neck called AugFPN to replace with the default FPN under the existing detector Cascade Mask R-CNN R50. The following implementsAugFPN under MMDetection.


1. Define a new neck (e.g. AugFPN)

Firstly create a new file mmdet/models/necks/augfpn.py.

from ..builder import NECKS

@NECKS.register_module()
class AugFPN(nn.Module):

    def __init__(self,
                in_channels,
                out_channels,
                num_outs,
                start_level=0,
                end_level=-1,
                add_extra_convs=False):
        pass

    def forward(self, inputs):
        # implementation is ignored
        pass








2. Import the module

You can either add the following line to mmdet/models/necks/__init__.py,

from .augfpn import AugFPN





or alternatively add

custom_imports = dict(
    imports=['mmdet.models.necks.augfpn.py'],
    allow_failed_imports=False)





to the config file and avoid modifying the original code.




3. Modify the config file

neck=dict(
    type='AugFPN',
    in_channels=[256, 512, 1024, 2048],
    out_channels=256,
    num_outs=5)





For more detailed usages about customize your own models (e.g. implement a new backbone, head, loss, etc) and runtime training settings (e.g. define a new optimizer, use gradient clip, customize training schedules and hooks, etc), please refer to the guideline Customize Models and Customize Runtime Settings respectively.






Prepare a config

The third step is to prepare a config for your own training setting. Assume that we want to add AugFPN and Rotate or Translate augmentation to existing Cascade Mask R-CNN R50 to train the cityscapes dataset, and assume the config is under directory configs/cityscapes/ and named as cascade_mask_rcnn_r50_augfpn_autoaug_10e_cityscapes.py, the config is as below.

# The new config inherits the base configs to highlight the necessary modification
_base_ = [
    '../_base_/models/cascade_mask_rcnn_r50_fpn.py',
    '../_base_/datasets/cityscapes_instance.py', '../_base_/default_runtime.py'
]

model = dict(
    # set None to avoid loading ImageNet pretrained backbone,
    # instead here we set `load_from` to load from COCO pretrained detectors.
    backbone=dict(init_cfg=None),
    # replace neck from defaultly `FPN` to our new implemented module `AugFPN`
    neck=dict(
        type='AugFPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        num_outs=5),
    # We also need to change the num_classes in head from 80 to 8, to match the
    # cityscapes dataset's annotation. This modification involves `bbox_head` and `mask_head`.
    roi_head=dict(
        bbox_head=[
            dict(
                type='Shared2FCBBoxHead',
                in_channels=256,
                fc_out_channels=1024,
                roi_feat_size=7,
                # change the number of classes from defaultly COCO to cityscapes
                num_classes=8,
                bbox_coder=dict(
                    type='DeltaXYWHBBoxCoder',
                    target_means=[0., 0., 0., 0.],
                    target_stds=[0.1, 0.1, 0.2, 0.2]),
                reg_class_agnostic=True,
                loss_cls=dict(
                    type='CrossEntropyLoss',
                    use_sigmoid=False,
                    loss_weight=1.0),
                loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
                               loss_weight=1.0)),
            dict(
                type='Shared2FCBBoxHead',
                in_channels=256,
                fc_out_channels=1024,
                roi_feat_size=7,
                # change the number of classes from defaultly COCO to cityscapes
                num_classes=8,
                bbox_coder=dict(
                    type='DeltaXYWHBBoxCoder',
                    target_means=[0., 0., 0., 0.],
                    target_stds=[0.05, 0.05, 0.1, 0.1]),
                reg_class_agnostic=True,
                loss_cls=dict(
                    type='CrossEntropyLoss',
                    use_sigmoid=False,
                    loss_weight=1.0),
                loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
                               loss_weight=1.0)),
            dict(
                type='Shared2FCBBoxHead',
                in_channels=256,
                fc_out_channels=1024,
                roi_feat_size=7,
                # change the number of classes from defaultly COCO to cityscapes
                num_classes=8,
                bbox_coder=dict(
                    type='DeltaXYWHBBoxCoder',
                    target_means=[0., 0., 0., 0.],
                    target_stds=[0.033, 0.033, 0.067, 0.067]),
                reg_class_agnostic=True,
                loss_cls=dict(
                    type='CrossEntropyLoss',
                    use_sigmoid=False,
                    loss_weight=1.0),
                loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
        ],
        mask_head=dict(
            type='FCNMaskHead',
            num_convs=4,
            in_channels=256,
            conv_out_channels=256,
            # change the number of classes from defaultly COCO to cityscapes
            num_classes=8,
            loss_mask=dict(
                type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))))

# over-write `train_pipeline` for new added `AutoAugment` training setting
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
    dict(
        type='AutoAugment',
        policies=[
            [dict(
                 type='Rotate',
                 level=5,
                 img_fill_val=(124, 116, 104),
                 prob=0.5,
                 scale=1)
            ],
            [dict(type='Rotate', level=7, img_fill_val=(124, 116, 104)),
             dict(
                 type='Translate',
                 level=5,
                 prob=0.5,
                 img_fill_val=(124, 116, 104))
            ],
        ]),
    dict(
        type='Resize', img_scale=[(2048, 800), (2048, 1024)], keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]

# set batch_size per gpu, and set new training pipeline
data = dict(
    samples_per_gpu=1,
    workers_per_gpu=3,
    # over-write `pipeline` with new training pipeline setting
    train=dict(dataset=dict(pipeline=train_pipeline)))

# Set optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# Set customized learning policy
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=0.001,
    step=[8])
runner = dict(type='EpochBasedRunner', max_epochs=10)

# We can use the COCO pretrained Cascade Mask R-CNN R50 model for more stable performance initialization
load_from = 'https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco/cascade_mask_rcnn_r50_fpn_1x_coco_20200203-9d4dcb24.pth'








Train a new model

To train a model with the new config, you can simply run

python tools/train.py configs/cityscapes/cascade_mask_rcnn_r50_augfpn_autoaug_10e_cityscapes.py





For more detailed usages, please refer to the Case 1.




Test and inference

To test the trained model, you can simply run

python tools/test.py configs/cityscapes/cascade_mask_rcnn_r50_augfpn_autoaug_10e_cityscapes.py work_dirs/cascade_mask_rcnn_r50_augfpn_autoaug_10e_cityscapes.py/latest.pth --eval bbox segm





For more detailed usages, please refer to the Case 1.







            

          

      

      

    

  

    
      
          
            
  
Tutorial 1: Learn about Configs

We incorporate modular and inheritance design into our config system, which is convenient to conduct various experiments.
If you wish to inspect the config file, you may run python tools/misc/print_config.py /PATH/TO/CONFIG to see the complete config.


Modify config through script arguments

When submitting jobs using “tools/train.py” or “tools/test.py”, you may specify --cfg-options to in-place modify the config.


	Update config keys of dict chains.

The config options can be specified following the order of the dict keys in the original config.
For example, --cfg-options model.backbone.norm_eval=False changes the all BN modules in model backbones to train mode.



	Update keys inside a list of configs.

Some config dicts are composed as a list in your config. For example, the training pipeline data.train.pipeline is normally a list
e.g. [dict(type='LoadImageFromFile'), ...]. If you want to change 'LoadImageFromFile' to 'LoadImageFromWebcam' in the pipeline,
you may specify --cfg-options data.train.pipeline.0.type=LoadImageFromWebcam.



	Update values of list/tuples.

If the value to be updated is a list or a tuple. For example, the config file normally sets workflow=[('train', 1)]. If you want to
change this key, you may specify --cfg-options workflow="[(train,1),(val,1)]". Note that the quotation mark ” is necessary to
support list/tuple data types, and that NO white space is allowed inside the quotation marks in the specified value.








Config File Structure

There are 4 basic component types under config/_base_, dataset, model, schedule, default_runtime.
Many methods could be easily constructed with one of each like Faster R-CNN, Mask R-CNN, Cascade R-CNN, RPN, SSD.
The configs that are composed by components from _base_ are called primitive.

For all configs under the same folder, it is recommended to have only one primitive config. All other configs should inherit from the primitive config. In this way, the maximum of inheritance level is 3.

For easy understanding, we recommend contributors to inherit from existing methods.
For example, if some modification is made base on Faster R-CNN, user may first inherit the basic Faster R-CNN structure by specifying _base_ = ../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py, then modify the necessary fields in the config files.

If you are building an entirely new method that does not share the structure with any of the existing methods, you may create a folder xxx_rcnn under configs,

Please refer to mmcv [https://mmcv.readthedocs.io/en/latest/understand_mmcv/config.html] for detailed documentation.




Config Name Style

We follow the below style to name config files. Contributors are advised to follow the same style.

{model}_[model setting]_{backbone}_{neck}_[norm setting]_[misc]_[gpu x batch_per_gpu]_{schedule}_{dataset}





{xxx} is required field and [yyy] is optional.


	{model}: model type like faster_rcnn, mask_rcnn, etc.


	[model setting]: specific setting for some model, like without_semantic for htc, moment for reppoints, etc.


	{backbone}: backbone type like r50 (ResNet-50), x101 (ResNeXt-101).


	{neck}: neck type like fpn, pafpn, nasfpn, c4.


	[norm_setting]: bn (Batch Normalization) is used unless specified, other norm layer type could be gn (Group Normalization), syncbn (Synchronized Batch Normalization).
gn-head/gn-neck indicates GN is applied in head/neck only, while gn-all means GN is applied in the entire model, e.g. backbone, neck, head.


	[misc]: miscellaneous setting/plugins of model, e.g. dconv, gcb, attention, albu, mstrain.


	[gpu x batch_per_gpu]: GPUs and samples per GPU, 8x2 is used by default.


	{schedule}: training schedule, options are 1x, 2x, 20e, etc.
1x and 2x means 12 epochs and 24 epochs respectively.
20e is adopted in cascade models, which denotes 20 epochs.
For 1x/2x, initial learning rate decays by a factor of 10 at the 8/16th and 11/22th epochs.
For 20e, initial learning rate decays by a factor of 10 at the 16th and 19th epochs.


	{dataset}: dataset like coco, cityscapes, voc_0712, wider_face.







Deprecated train_cfg/test_cfg

The train_cfg and test_cfg are deprecated in config file, please specify them in the model config. The original config structure is as below.

# deprecated
model = dict(
    type=...,
    ...
)
train_cfg=dict(...)
test_cfg=dict(...)





The migration example is as below.

# recommended
model = dict(
    type=...,
    ...
train_cfg=dict(...),
          test_cfg=dict(...),
)








An Example of Mask R-CNN

To help the users have a basic idea of a complete config and the modules in a modern detection system,
we make brief comments on the config of Mask R-CNN using ResNet50 and FPN as the following.
For more detailed usage and the corresponding alternative for each modules, please refer to the API documentation.

model = dict(
    type='MaskRCNN',  # The name of detector
    backbone=dict(  # The config of backbone
        type='ResNet',  # The type of the backbone, refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/backbones/resnet.py#L308 for more details.
        depth=50,  # The depth of backbone, usually it is 50 or 101 for ResNet and ResNext backbones.
        num_stages=4,  # Number of stages of the backbone.
        out_indices=(0, 1, 2, 3),  # The index of output feature maps produced in each stages
        frozen_stages=1,  # The weights in the first 1 stage are frozen
        norm_cfg=dict(  # The config of normalization layers.
            type='BN',  # Type of norm layer, usually it is BN or GN
            requires_grad=True),  # Whether to train the gamma and beta in BN
        norm_eval=True,  # Whether to freeze the statistics in BN
        style='pytorch', # The style of backbone, 'pytorch' means that stride 2 layers are in 3x3 conv, 'caffe' means stride 2 layers are in 1x1 convs.
        init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),  # The ImageNet pretrained backbone to be loaded
    neck=dict(
        type='FPN',  # The neck of detector is FPN. We also support 'NASFPN', 'PAFPN', etc. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/necks/fpn.py#L10 for more details.
        in_channels=[256, 512, 1024, 2048],  # The input channels, this is consistent with the output channels of backbone
        out_channels=256,  # The output channels of each level of the pyramid feature map
        num_outs=5),  # The number of output scales
    rpn_head=dict(
        type='RPNHead',  # The type of RPN head is 'RPNHead', we also support 'GARPNHead', etc. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/rpn_head.py#L12 for more details.
        in_channels=256,  # The input channels of each input feature map, this is consistent with the output channels of neck
        feat_channels=256,  # Feature channels of convolutional layers in the head.
        anchor_generator=dict(  # The config of anchor generator
            type='AnchorGenerator',  # Most of methods use AnchorGenerator, SSD Detectors uses `SSDAnchorGenerator`. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/anchor/anchor_generator.py#L10 for more details
            scales=[8],  # Basic scale of the anchor, the area of the anchor in one position of a feature map will be scale * base_sizes
            ratios=[0.5, 1.0, 2.0],  # The ratio between height and width.
            strides=[4, 8, 16, 32, 64]),  # The strides of the anchor generator. This is consistent with the FPN feature strides. The strides will be taken as base_sizes if base_sizes is not set.
        bbox_coder=dict(  # Config of box coder to encode and decode the boxes during training and testing
            type='DeltaXYWHBBoxCoder',  # Type of box coder. 'DeltaXYWHBBoxCoder' is applied for most of methods. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/coder/delta_xywh_bbox_coder.py#L9 for more details.
            target_means=[0.0, 0.0, 0.0, 0.0],  # The target means used to encode and decode boxes
            target_stds=[1.0, 1.0, 1.0, 1.0]),  # The standard variance used to encode and decode boxes
        loss_cls=dict(  # Config of loss function for the classification branch
            type='CrossEntropyLoss',  # Type of loss for classification branch, we also support FocalLoss etc.
            use_sigmoid=True,  # RPN usually perform two-class classification, so it usually uses sigmoid function.
            loss_weight=1.0),  # Loss weight of the classification branch.
        loss_bbox=dict(  # Config of loss function for the regression branch.
            type='L1Loss',  # Type of loss, we also support many IoU Losses and smooth L1-loss, etc. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/losses/smooth_l1_loss.py#L56 for implementation.
            loss_weight=1.0)),  # Loss weight of the regression branch.
    roi_head=dict(  # RoIHead encapsulates the second stage of two-stage/cascade detectors.
        type='StandardRoIHead',  # Type of the RoI head. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/roi_heads/standard_roi_head.py#L10 for implementation.
        bbox_roi_extractor=dict(  # RoI feature extractor for bbox regression.
            type='SingleRoIExtractor',  # Type of the RoI feature extractor, most of methods uses SingleRoIExtractor. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/roi_heads/roi_extractors/single_level.py#L10 for details.
            roi_layer=dict(  # Config of RoI Layer
                type='RoIAlign',  # Type of RoI Layer, DeformRoIPoolingPack and ModulatedDeformRoIPoolingPack are also supported. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/ops/roi_align/roi_align.py#L79 for details.
                output_size=7,  # The output size of feature maps.
                sampling_ratio=0),  # Sampling ratio when extracting the RoI features. 0 means adaptive ratio.
            out_channels=256,  # output channels of the extracted feature.
            featmap_strides=[4, 8, 16, 32]),  # Strides of multi-scale feature maps. It should be consistent to the architecture of the backbone.
        bbox_head=dict(  # Config of box head in the RoIHead.
            type='Shared2FCBBoxHead',  # Type of the bbox head, Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/roi_heads/bbox_heads/convfc_bbox_head.py#L177 for implementation details.
            in_channels=256,  # Input channels for bbox head. This is consistent with the out_channels in roi_extractor
            fc_out_channels=1024,  # Output feature channels of FC layers.
            roi_feat_size=7,  # Size of RoI features
            num_classes=80,  # Number of classes for classification
            bbox_coder=dict(  # Box coder used in the second stage.
                type='DeltaXYWHBBoxCoder',  # Type of box coder. 'DeltaXYWHBBoxCoder' is applied for most of methods.
                target_means=[0.0, 0.0, 0.0, 0.0],  # Means used to encode and decode box
                target_stds=[0.1, 0.1, 0.2, 0.2]),  # Standard variance for encoding and decoding. It is smaller since the boxes are more accurate. [0.1, 0.1, 0.2, 0.2] is a conventional setting.
            reg_class_agnostic=False,  # Whether the regression is class agnostic.
            loss_cls=dict(  # Config of loss function for the classification branch
                type='CrossEntropyLoss',  # Type of loss for classification branch, we also support FocalLoss etc.
                use_sigmoid=False,  # Whether to use sigmoid.
                loss_weight=1.0),  # Loss weight of the classification branch.
            loss_bbox=dict(  # Config of loss function for the regression branch.
                type='L1Loss',  # Type of loss, we also support many IoU Losses and smooth L1-loss, etc.
                loss_weight=1.0)),  # Loss weight of the regression branch.
        mask_roi_extractor=dict(  # RoI feature extractor for mask generation.
            type='SingleRoIExtractor',  # Type of the RoI feature extractor, most of methods uses SingleRoIExtractor.
            roi_layer=dict(  # Config of RoI Layer that extracts features for instance segmentation
                type='RoIAlign',  # Type of RoI Layer, DeformRoIPoolingPack and ModulatedDeformRoIPoolingPack are also supported
                output_size=14,  # The output size of feature maps.
                sampling_ratio=0),  # Sampling ratio when extracting the RoI features.
            out_channels=256,  # Output channels of the extracted feature.
            featmap_strides=[4, 8, 16, 32]),  # Strides of multi-scale feature maps.
        mask_head=dict(  # Mask prediction head
            type='FCNMaskHead',  # Type of mask head, refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/roi_heads/mask_heads/fcn_mask_head.py#L21 for implementation details.
            num_convs=4,  # Number of convolutional layers in mask head.
            in_channels=256,  # Input channels, should be consistent with the output channels of mask roi extractor.
            conv_out_channels=256,  # Output channels of the convolutional layer.
            num_classes=80,  # Number of class to be segmented.
            loss_mask=dict(  # Config of loss function for the mask branch.
                type='CrossEntropyLoss',  # Type of loss used for segmentation
                use_mask=True,  # Whether to only train the mask in the correct class.
                loss_weight=1.0))),  # Loss weight of mask branch.
    train_cfg = dict(  # Config of training hyperparameters for rpn and rcnn
        rpn=dict(  # Training config of rpn
            assigner=dict(  # Config of assigner
                type='MaxIoUAssigner',  # Type of assigner, MaxIoUAssigner is used for many common detectors. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/assigners/max_iou_assigner.py#L10 for more details.
                pos_iou_thr=0.7,  # IoU >= threshold 0.7 will be taken as positive samples
                neg_iou_thr=0.3,  # IoU < threshold 0.3 will be taken as negative samples
                min_pos_iou=0.3,  # The minimal IoU threshold to take boxes as positive samples
                match_low_quality=True,  # Whether to match the boxes under low quality (see API doc for more details).
                ignore_iof_thr=-1),  # IoF threshold for ignoring bboxes
            sampler=dict(  # Config of positive/negative sampler
                type='RandomSampler',  # Type of sampler, PseudoSampler and other samplers are also supported. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/samplers/random_sampler.py#L8 for implementation details.
                num=256,  # Number of samples
                pos_fraction=0.5,  # The ratio of positive samples in the total samples.
                neg_pos_ub=-1,  # The upper bound of negative samples based on the number of positive samples.
                add_gt_as_proposals=False),  # Whether add GT as proposals after sampling.
            allowed_border=-1,  # The border allowed after padding for valid anchors.
            pos_weight=-1,  # The weight of positive samples during training.
            debug=False),  # Whether to set the debug mode
        rpn_proposal=dict(  # The config to generate proposals during training
            nms_across_levels=False,  # Whether to do NMS for boxes across levels. Only work in `GARPNHead`, naive rpn does not support do nms cross levels.
            nms_pre=2000,  # The number of boxes before NMS
            nms_post=1000,  # The number of boxes to be kept by NMS, Only work in `GARPNHead`.
            max_per_img=1000,  # The number of boxes to be kept after NMS.
            nms=dict( # Config of NMS
                type='nms',  # Type of NMS
                iou_threshold=0.7 # NMS threshold
                ),
            min_bbox_size=0),  # The allowed minimal box size
        rcnn=dict(  # The config for the roi heads.
            assigner=dict(  # Config of assigner for second stage, this is different for that in rpn
                type='MaxIoUAssigner',  # Type of assigner, MaxIoUAssigner is used for all roi_heads for now. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/assigners/max_iou_assigner.py#L10 for more details.
                pos_iou_thr=0.5,  # IoU >= threshold 0.5 will be taken as positive samples
                neg_iou_thr=0.5,  # IoU < threshold 0.5 will be taken as negative samples
                min_pos_iou=0.5,  # The minimal IoU threshold to take boxes as positive samples
                match_low_quality=False,  # Whether to match the boxes under low quality (see API doc for more details).
                ignore_iof_thr=-1),  # IoF threshold for ignoring bboxes
            sampler=dict(
                type='RandomSampler',  # Type of sampler, PseudoSampler and other samplers are also supported. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/samplers/random_sampler.py#L8 for implementation details.
                num=512,  # Number of samples
                pos_fraction=0.25,  # The ratio of positive samples in the total samples.
                neg_pos_ub=-1,  # The upper bound of negative samples based on the number of positive samples.
                add_gt_as_proposals=True
            ),  # Whether add GT as proposals after sampling.
            mask_size=28,  # Size of mask
            pos_weight=-1,  # The weight of positive samples during training.
            debug=False)),  # Whether to set the debug mode
    test_cfg = dict(  # Config for testing hyperparameters for rpn and rcnn
        rpn=dict(  # The config to generate proposals during testing
            nms_across_levels=False,  # Whether to do NMS for boxes across levels. Only work in `GARPNHead`, naive rpn does not support do nms cross levels.
            nms_pre=1000,  # The number of boxes before NMS
            nms_post=1000,  # The number of boxes to be kept by NMS, Only work in `GARPNHead`.
            max_per_img=1000,  # The number of boxes to be kept after NMS.
            nms=dict( # Config of NMS
                type='nms',  #Type of NMS
                iou_threshold=0.7 # NMS threshold
                ),
            min_bbox_size=0),  # The allowed minimal box size
        rcnn=dict(  # The config for the roi heads.
            score_thr=0.05,  # Threshold to filter out boxes
            nms=dict(  # Config of NMS in the second stage
                type='nms',  # Type of NMS
                iou_thr=0.5),  # NMS threshold
            max_per_img=100,  # Max number of detections of each image
            mask_thr_binary=0.5)))  # Threshold of mask prediction

dataset_type = 'CocoDataset'  # Dataset type, this will be used to define the dataset
data_root = 'data/coco/'  # Root path of data
img_norm_cfg = dict(  # Image normalization config to normalize the input images
    mean=[123.675, 116.28, 103.53],  # Mean values used to pre-training the pre-trained backbone models
    std=[58.395, 57.12, 57.375],  # Standard variance used to pre-training the pre-trained backbone models
    to_rgb=True
)  # The channel orders of image used to pre-training the pre-trained backbone models
train_pipeline = [  # Training pipeline
    dict(type='LoadImageFromFile'),  # First pipeline to load images from file path
    dict(
        type='LoadAnnotations',  # Second pipeline to load annotations for current image
        with_bbox=True,  # Whether to use bounding box, True for detection
        with_mask=True,  # Whether to use instance mask, True for instance segmentation
        poly2mask=False),  # Whether to convert the polygon mask to instance mask, set False for acceleration and to save memory
    dict(
        type='Resize',  # Augmentation pipeline that resize the images and their annotations
        img_scale=(1333, 800),  # The largest scale of image
        keep_ratio=True
    ),  # whether to keep the ratio between height and width.
    dict(
        type='RandomFlip',  # Augmentation pipeline that flip the images and their annotations
        flip_ratio=0.5),  # The ratio or probability to flip
    dict(
        type='Normalize',  # Augmentation pipeline that normalize the input images
        mean=[123.675, 116.28, 103.53],  # These keys are the same of img_norm_cfg since the
        std=[58.395, 57.12, 57.375],  # keys of img_norm_cfg are used here as arguments
        to_rgb=True),
    dict(
        type='Pad',  # Padding config
        size_divisor=32),  # The number the padded images should be divisible
    dict(type='DefaultFormatBundle'),  # Default format bundle to gather data in the pipeline
    dict(
        type='Collect',  # Pipeline that decides which keys in the data should be passed to the detector
        keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),  # First pipeline to load images from file path
    dict(
        type='MultiScaleFlipAug',  # An encapsulation that encapsulates the testing augmentations
        img_scale=(1333, 800),  # Decides the largest scale for testing, used for the Resize pipeline
        flip=False,  # Whether to flip images during testing
        transforms=[
            dict(type='Resize',  # Use resize augmentation
                 keep_ratio=True),  # Whether to keep the ratio between height and width, the img_scale set here will be suppressed by the img_scale set above.
            dict(type='RandomFlip'),  # Thought RandomFlip is added in pipeline, it is not used because flip=False
            dict(
                type='Normalize',  # Normalization config, the values are from img_norm_cfg
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(
                type='Pad',  # Padding config to pad images divisible by 32.
                size_divisor=32),
            dict(
                type='ImageToTensor',  # convert image to tensor
                keys=['img']),
            dict(
                type='Collect',  # Collect pipeline that collect necessary keys for testing.
                keys=['img'])
        ])
]
data = dict(
    samples_per_gpu=2,  # Batch size of a single GPU
    workers_per_gpu=2,  # Worker to pre-fetch data for each single GPU
    train=dict(  # Train dataset config
        type='CocoDataset',  # Type of dataset, refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/coco.py#L19 for details.
        ann_file='data/coco/annotations/instances_train2017.json',  # Path of annotation file
        img_prefix='data/coco/train2017/',  # Prefix of image path
        pipeline=[  # pipeline, this is passed by the train_pipeline created before.
            dict(type='LoadImageFromFile'),
            dict(
                type='LoadAnnotations',
                with_bbox=True,
                with_mask=True,
                poly2mask=False),
            dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
            dict(type='RandomFlip', flip_ratio=0.5),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='Pad', size_divisor=32),
            dict(type='DefaultFormatBundle'),
            dict(
                type='Collect',
                keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
        ]),
    val=dict(  # Validation dataset config
        type='CocoDataset',
        ann_file='data/coco/annotations/instances_val2017.json',
        img_prefix='data/coco/val2017/',
        pipeline=[  # Pipeline is passed by test_pipeline created before
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(1333, 800),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='Pad', size_divisor=32),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ]),
    test=dict(  # Test dataset config, modify the ann_file for test-dev/test submission
        type='CocoDataset',
        ann_file='data/coco/annotations/instances_val2017.json',
        img_prefix='data/coco/val2017/',
        pipeline=[  # Pipeline is passed by test_pipeline created before
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(1333, 800),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='Pad', size_divisor=32),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ],
        samples_per_gpu=2  # Batch size of a single GPU used in testing
    ))
evaluation = dict(  # The config to build the evaluation hook, refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/evaluation/eval_hooks.py#L7 for more details.
    interval=1,  # Evaluation interval
    metric=['bbox', 'segm'])  # Metrics used during evaluation
optimizer = dict(  # Config used to build optimizer, support all the optimizers in PyTorch whose arguments are also the same as those in PyTorch
    type='SGD',  # Type of optimizers, refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/optimizer/default_constructor.py#L13 for more details
    lr=0.02,  # Learning rate of optimizers, see detail usages of the parameters in the documentation of PyTorch
    momentum=0.9,  # Momentum
    weight_decay=0.0001)  # Weight decay of SGD
optimizer_config = dict(  # Config used to build the optimizer hook, refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/optimizer.py#L8 for implementation details.
    grad_clip=None)  # Most of the methods do not use gradient clip
lr_config = dict(  # Learning rate scheduler config used to register LrUpdater hook
    policy='step',  # The policy of scheduler, also support CosineAnnealing, Cyclic, etc. Refer to details of supported LrUpdater from https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py#L9.
    warmup='linear',  # The warmup policy, also support `exp` and `constant`.
    warmup_iters=500,  # The number of iterations for warmup
    warmup_ratio=
    0.001,  # The ratio of the starting learning rate used for warmup
    step=[8, 11])  # Steps to decay the learning rate
runner = dict(
    type='EpochBasedRunner', # Type of runner to use (i.e. IterBasedRunner or EpochBasedRunner)
    max_epochs=12) # Runner that runs the workflow in total max_epochs. For IterBasedRunner use `max_iters`
checkpoint_config = dict(  # Config to set the checkpoint hook, Refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/checkpoint.py for implementation.
    interval=1)  # The save interval is 1
log_config = dict(  # config to register logger hook
    interval=50,  # Interval to print the log
    hooks=[
        dict(type='TextLoggerHook', by_epoch=False),
        dict(type='TensorboardLoggerHook', by_epoch=False),
        dict(type='MMDetWandbHook', by_epoch=False, # The Wandb logger is also supported, It requires `wandb` to be installed.
             init_kwargs={'entity': "OpenMMLab", # The entity used to log on Wandb
                          'project': "MMDet", # Project name in WandB
                          'config': cfg_dict}), # Check https://docs.wandb.ai/ref/python/init for more init arguments.
        # MMDetWandbHook is mmdet implementation of WandbLoggerHook. ClearMLLoggerHook, DvcliveLoggerHook, MlflowLoggerHook, NeptuneLoggerHook, PaviLoggerHook, SegmindLoggerHook are also supported based on MMCV implementation.
    ])  # The logger used to record the training process.

dist_params = dict(backend='nccl')  # Parameters to setup distributed training, the port can also be set.
log_level = 'INFO'  # The level of logging.
load_from = None  # load models as a pre-trained model from a given path. This will not resume training.
resume_from = None  # Resume checkpoints from a given path, the training will be resumed from the epoch when the checkpoint's is saved.
workflow = [('train', 1)]  # Workflow for runner. [('train', 1)] means there is only one workflow and the workflow named 'train' is executed once. The workflow trains the model by 12 epochs according to the total_epochs.
work_dir = 'work_dir'  # Directory to save the model checkpoints and logs for the current experiments.








FAQ


Ignore some fields in the base configs

Sometimes, you may set _delete_=True to ignore some of fields in base configs.
You may refer to mmcv [https://mmcv.readthedocs.io/en/latest/understand_mmcv/config.html#inherit-from-base-config-with-ignored-fields] for simple illustration.

In MMDetection, for example, to change the backbone of Mask R-CNN with the following config.

model = dict(
    type='MaskRCNN',
    pretrained='torchvision://resnet50',
    backbone=dict(
        type='ResNet',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        norm_cfg=dict(type='BN', requires_grad=True),
        norm_eval=True,
        style='pytorch'),
    neck=dict(...),
    rpn_head=dict(...),
    roi_head=dict(...))





ResNet and HRNet use different keywords to construct.

_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
model = dict(
    pretrained='open-mmlab://msra/hrnetv2_w32',
    backbone=dict(
        _delete_=True,
        type='HRNet',
        extra=dict(
            stage1=dict(
                num_modules=1,
                num_branches=1,
                block='BOTTLENECK',
                num_blocks=(4, ),
                num_channels=(64, )),
            stage2=dict(
                num_modules=1,
                num_branches=2,
                block='BASIC',
                num_blocks=(4, 4),
                num_channels=(32, 64)),
            stage3=dict(
                num_modules=4,
                num_branches=3,
                block='BASIC',
                num_blocks=(4, 4, 4),
                num_channels=(32, 64, 128)),
            stage4=dict(
                num_modules=3,
                num_branches=4,
                block='BASIC',
                num_blocks=(4, 4, 4, 4),
                num_channels=(32, 64, 128, 256)))),
    neck=dict(...))





The _delete_=True would replace all old keys in backbone field with new keys.




Use intermediate variables in configs

Some intermediate variables are used in the configs files, like train_pipeline/test_pipeline in datasets.
It’s worth noting that when modifying intermediate variables in the children configs, user need to pass the intermediate variables into corresponding fields again.
For example, we would like to use multi scale strategy to train a Mask R-CNN. train_pipeline/test_pipeline are intermediate variable we would like modify.

_base_ = './mask_rcnn_r50_fpn_1x_coco.py'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
    dict(
        type='Resize',
        img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
                   (1333, 768), (1333, 800)],
        multiscale_mode="value",
        keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]
data = dict(
    train=dict(pipeline=train_pipeline),
    val=dict(pipeline=test_pipeline),
    test=dict(pipeline=test_pipeline))





We first define the new train_pipeline/test_pipeline and pass them into data.

Similarly, if we would like to switch from SyncBN to BN or MMSyncBN, we need to substitute every norm_cfg in the config.

_base_ = './mask_rcnn_r50_fpn_1x_coco.py'
norm_cfg = dict(type='BN', requires_grad=True)
model = dict(
    backbone=dict(norm_cfg=norm_cfg),
    neck=dict(norm_cfg=norm_cfg),
    ...)













            

          

      

      

    

  

    
      
          
            
  
Tutorial 2: Customize Datasets


Support new data format

To support a new data format, you can either convert them to existing formats (COCO format or PASCAL format) or directly convert them to the middle format. You could also choose to convert them offline (before training by a script) or online (implement a new dataset and do the conversion at training). In MMDetection, we recommend to convert the data into COCO formats and do the conversion offline, thus you only need to modify the config’s data annotation paths and classes after the conversion of your data.


Reorganize new data formats to existing format

The simplest way is to convert your dataset to existing dataset formats (COCO or PASCAL VOC).

The annotation json files in COCO format has the following necessary keys:

'images': [
    {
        'file_name': 'COCO_val2014_000000001268.jpg',
        'height': 427,
        'width': 640,
        'id': 1268
    },
    ...
],

'annotations': [
    {
        'segmentation': [[192.81,
            247.09,
            ...
            219.03,
            249.06]],  # if you have mask labels
        'area': 1035.749,
        'iscrowd': 0,
        'image_id': 1268,
        'bbox': [192.81, 224.8, 74.73, 33.43],
        'category_id': 16,
        'id': 42986
    },
    ...
],

'categories': [
    {'id': 0, 'name': 'car'},
 ]





There are three necessary keys in the json file:


	images: contains a list of images with their information like file_name, height, width, and id.


	annotations: contains the list of instance annotations.


	categories: contains the list of categories names and their ID.




After the data pre-processing, there are two steps for users to train the customized new dataset with existing format (e.g. COCO format):


	Modify the config file for using the customized dataset.


	Check the annotations of the customized dataset.




Here we give an example to show the above two steps, which uses a customized dataset of 5 classes with COCO format to train an existing Cascade Mask R-CNN R50-FPN detector.


1. Modify the config file for using the customized dataset

There are two aspects involved in the modification of config file:


	The data field. Specifically, you need to explicitly add the classes fields in data.train, data.val and data.test.


	The num_classes field in the model part. Explicitly over-write all the num_classes from default value (e.g. 80 in COCO) to your classes number.




In configs/my_custom_config.py:


# the new config inherits the base configs to highlight the necessary modification
_base_ = './cascade_mask_rcnn_r50_fpn_1x_coco.py'

# 1. dataset settings
dataset_type = 'CocoDataset'
classes = ('a', 'b', 'c', 'd', 'e')
data = dict(
    samples_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        # explicitly add your class names to the field `classes`
        classes=classes,
        ann_file='path/to/your/train/annotation_data',
        img_prefix='path/to/your/train/image_data'),
    val=dict(
        type=dataset_type,
        # explicitly add your class names to the field `classes`
        classes=classes,
        ann_file='path/to/your/val/annotation_data',
        img_prefix='path/to/your/val/image_data'),
    test=dict(
        type=dataset_type,
        # explicitly add your class names to the field `classes`
        classes=classes,
        ann_file='path/to/your/test/annotation_data',
        img_prefix='path/to/your/test/image_data'))

# 2. model settings

# explicitly over-write all the `num_classes` field from default 80 to 5.
model = dict(
    roi_head=dict(
        bbox_head=[
            dict(
                type='Shared2FCBBoxHead',
                # explicitly over-write all the `num_classes` field from default 80 to 5.
                num_classes=5),
            dict(
                type='Shared2FCBBoxHead',
                # explicitly over-write all the `num_classes` field from default 80 to 5.
                num_classes=5),
            dict(
                type='Shared2FCBBoxHead',
                # explicitly over-write all the `num_classes` field from default 80 to 5.
                num_classes=5)],
    # explicitly over-write all the `num_classes` field from default 80 to 5.
    mask_head=dict(num_classes=5)))








2. Check the annotations of the customized dataset

Assuming your customized dataset is COCO format, make sure you have the correct annotations in the customized dataset:


	The length for categories field in annotations should exactly equal the tuple length of classes fields in your config, meaning the number of classes (e.g. 5 in this example).


	The classes fields in your config file should have exactly the same elements and the same order with the name in categories of annotations. MMDetection automatically maps the uncontinuous id in categories to the continuous label indices, so the string order of name in categories field affects the order of label indices. Meanwhile, the string order of classes in config affects the label text during visualization of predicted bounding boxes.


	The category_id in annotations field should be valid, i.e., all values in category_id should belong to id in categories.




Here is a valid example of annotations:


'annotations': [
    {
        'segmentation': [[192.81,
            247.09,
            ...
            219.03,
            249.06]],  # if you have mask labels
        'area': 1035.749,
        'iscrowd': 0,
        'image_id': 1268,
        'bbox': [192.81, 224.8, 74.73, 33.43],
        'category_id': 16,
        'id': 42986
    },
    ...
],

# MMDetection automatically maps the uncontinuous `id` to the continuous label indices.
'categories': [
    {'id': 1, 'name': 'a'}, {'id': 3, 'name': 'b'}, {'id': 4, 'name': 'c'}, {'id': 16, 'name': 'd'}, {'id': 17, 'name': 'e'},
 ]





We use this way to support CityScapes dataset. The script is in cityscapes.py [https://github.com/open-mmlab/mmdetection/blob/master/tools/dataset_converters/cityscapes.py] and we also provide the finetuning configs [https://github.com/open-mmlab/mmdetection/blob/master/configs/cityscapes].

Note


	For instance segmentation datasets, MMDetection only supports evaluating mask AP of dataset in COCO format for now.


	It is recommended to convert the data offline before training, thus you can still use CocoDataset and only need to modify the path of annotations and the training classes.









Reorganize new data format to middle format

It is also fine if you do not want to convert the annotation format to COCO or PASCAL format.
Actually, we define a simple annotation format and all existing datasets are
processed to be compatible with it, either online or offline.

The annotation of a dataset is a list of dict, each dict corresponds to an image.
There are 3 field filename (relative path), width, height for testing,
and an additional field ann for training. ann is also a dict containing at least 2 fields:
bboxes and labels, both of which are numpy arrays. Some datasets may provide
annotations like crowd/difficult/ignored bboxes, we use bboxes_ignore and labels_ignore
to cover them.

Here is an example.


[
    {
        'filename': 'a.jpg',
        'width': 1280,
        'height': 720,
        'ann': {
            'bboxes': <np.ndarray, float32> (n, 4),
            'labels': <np.ndarray, int64> (n, ),
            'bboxes_ignore': <np.ndarray, float32> (k, 4),
            'labels_ignore': <np.ndarray, int64> (k, ) (optional field)
        }
    },
    ...
]





There are two ways to work with custom datasets.


	online conversion

You can write a new Dataset class inherited from CustomDataset, and overwrite two methods
load_annotations(self, ann_file) and get_ann_info(self, idx),
like CocoDataset [https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/coco.py] and VOCDataset [https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/voc.py].



	offline conversion

You can convert the annotation format to the expected format above and save it to
a pickle or json file, like pascal_voc.py [https://github.com/open-mmlab/mmdetection/blob/master/tools/dataset_converters/pascal_voc.py].
Then you can simply use CustomDataset.








An example of customized dataset

Assume the annotation is in a new format in text files.
The bounding boxes annotations are stored in text file annotation.txt as the following

#
000001.jpg
1280 720
2
10 20 40 60 1
20 40 50 60 2
#
000002.jpg
1280 720
3
50 20 40 60 2
20 40 30 45 2
30 40 50 60 3





We can create a new dataset in mmdet/datasets/my_dataset.py to load the data.

import mmcv
import numpy as np

from .builder import DATASETS
from .custom import CustomDataset


@DATASETS.register_module()
class MyDataset(CustomDataset):

    CLASSES = ('person', 'bicycle', 'car', 'motorcycle')

    def load_annotations(self, ann_file):
        ann_list = mmcv.list_from_file(ann_file)

        data_infos = []
        for i, ann_line in enumerate(ann_list):
            if ann_line != '#':
                continue

            img_shape = ann_list[i + 2].split(' ')
            width = int(img_shape[0])
            height = int(img_shape[1])
            bbox_number = int(ann_list[i + 3])

            anns = ann_line.split(' ')
            bboxes = []
            labels = []
            for anns in ann_list[i + 4:i + 4 + bbox_number]:
                bboxes.append([float(ann) for ann in anns[:4]])
                labels.append(int(anns[4]))

            data_infos.append(
                dict(
                    filename=ann_list[i + 1],
                    width=width,
                    height=height,
                    ann=dict(
                        bboxes=np.array(bboxes).astype(np.float32),
                        labels=np.array(labels).astype(np.int64))
                ))

        return data_infos

    def get_ann_info(self, idx):
        return self.data_infos[idx]['ann']






Then in the config, to use MyDataset you can modify the config as the following

dataset_A_train = dict(
    type='MyDataset',
    ann_file = 'image_list.txt',
    pipeline=train_pipeline
)










Customize datasets by dataset wrappers

MMDetection also supports many dataset wrappers to mix the dataset or modify the dataset distribution for training.
Currently it supports to three dataset wrappers as below:


	RepeatDataset: simply repeat the whole dataset.


	ClassBalancedDataset: repeat dataset in a class balanced manner.


	ConcatDataset: concat datasets.





Repeat dataset

We use RepeatDataset as wrapper to repeat the dataset. For example, suppose the original dataset is Dataset_A, to repeat it, the config looks like the following

dataset_A_train = dict(
        type='RepeatDataset',
        times=N,
        dataset=dict(  # This is the original config of Dataset_A
            type='Dataset_A',
            ...
            pipeline=train_pipeline
        )
    )








Class balanced dataset

We use ClassBalancedDataset as wrapper to repeat the dataset based on category
frequency. The dataset to repeat needs to instantiate function self.get_cat_ids(idx)
to support ClassBalancedDataset.
For example, to repeat Dataset_A with oversample_thr=1e-3, the config looks like the following

dataset_A_train = dict(
        type='ClassBalancedDataset',
        oversample_thr=1e-3,
        dataset=dict(  # This is the original config of Dataset_A
            type='Dataset_A',
            ...
            pipeline=train_pipeline
        )
    )





You may refer to source code [https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/dataset_wrappers.py#L211] for details.




Concatenate dataset

There are three ways to concatenate the dataset.


	If the datasets you want to concatenate are in the same type with different annotation files, you can concatenate the dataset configs like the following.

dataset_A_train = dict(
    type='Dataset_A',
    ann_file = ['anno_file_1', 'anno_file_2'],
    pipeline=train_pipeline
)





If the concatenated dataset is used for test or evaluation, this manner supports to evaluate each dataset separately. To test the concatenated datasets as a whole, you can set separate_eval=False as below.

dataset_A_train = dict(
    type='Dataset_A',
    ann_file = ['anno_file_1', 'anno_file_2'],
    separate_eval=False,
    pipeline=train_pipeline
)







	In case the dataset you want to concatenate is different, you can concatenate the dataset configs like the following.

dataset_A_train = dict()
dataset_B_train = dict()

data = dict(
    imgs_per_gpu=2,
    workers_per_gpu=2,
    train = [
        dataset_A_train,
        dataset_B_train
    ],
    val = dataset_A_val,
    test = dataset_A_test
    )





If the concatenated dataset is used for test or evaluation, this manner also supports to evaluate each dataset separately.



	We also support to define ConcatDataset explicitly as the following.

dataset_A_val = dict()
dataset_B_val = dict()

data = dict(
    imgs_per_gpu=2,
    workers_per_gpu=2,
    train=dataset_A_train,
    val=dict(
        type='ConcatDataset',
        datasets=[dataset_A_val, dataset_B_val],
        separate_eval=False))





This manner allows users to evaluate all the datasets as a single one by setting separate_eval=False.





Note:


	The option separate_eval=False assumes the datasets use self.data_infos during evaluation. Therefore, COCO datasets do not support this behavior since COCO datasets do not fully rely on self.data_infos for evaluation. Combining different types of datasets and evaluating them as a whole is not tested thus is not suggested.


	Evaluating ClassBalancedDataset and RepeatDataset is not supported thus evaluating concatenated datasets of these types is also not supported.




A more complex example that repeats Dataset_A and Dataset_B by N and M times, respectively, and then concatenates the repeated datasets is as the following.

dataset_A_train = dict(
    type='RepeatDataset',
    times=N,
    dataset=dict(
        type='Dataset_A',
        ...
        pipeline=train_pipeline
    )
)
dataset_A_val = dict(
    ...
    pipeline=test_pipeline
)
dataset_A_test = dict(
    ...
    pipeline=test_pipeline
)
dataset_B_train = dict(
    type='RepeatDataset',
    times=M,
    dataset=dict(
        type='Dataset_B',
        ...
        pipeline=train_pipeline
    )
)
data = dict(
    imgs_per_gpu=2,
    workers_per_gpu=2,
    train = [
        dataset_A_train,
        dataset_B_train
    ],
    val = dataset_A_val,
    test = dataset_A_test
)











Modify Dataset Classes

With existing dataset types, we can modify the class names of them to train subset of the annotations.
For example, if you want to train only three classes of the current dataset,
you can modify the classes of dataset.
The dataset will filter out the ground truth boxes of other classes automatically.

classes = ('person', 'bicycle', 'car')
data = dict(
    train=dict(classes=classes),
    val=dict(classes=classes),
    test=dict(classes=classes))





MMDetection V2.0 also supports to read the classes from a file, which is common in real applications.
For example, assume the classes.txt contains the name of classes as the following.

person
bicycle
car





Users can set the classes as a file path, the dataset will load it and convert it to a list automatically.

classes = 'path/to/classes.txt'
data = dict(
    train=dict(classes=classes),
    val=dict(classes=classes),
    test=dict(classes=classes))





Note:


	Before MMDetection v2.5.0, the dataset will filter out the empty GT images automatically if the classes are set and there is no way to disable that through config. This is an undesirable behavior and introduces confusion because if the classes are not set, the dataset only filter the empty GT images when filter_empty_gt=True and test_mode=False. After MMDetection v2.5.0, we decouple the image filtering process and the classes modification, i.e., the dataset will only filter empty GT images when filter_empty_gt=True and test_mode=False, no matter whether the classes are set. Thus, setting the classes only influences the annotations of classes used for training and users could decide whether to filter empty GT images by themselves.


	Since the middle format only has box labels and does not contain the class names, when using CustomDataset, users cannot filter out the empty GT images through configs but only do this offline.


	Please remember to modify the num_classes in the head when specifying classes in dataset. We implemented NumClassCheckHook [https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/utils.py] to check whether the numbers are consistent since v2.9.0(after PR#4508).


	The features for setting dataset classes and dataset filtering will be refactored to be more user-friendly in the future (depends on the progress).







COCO Panoptic Dataset

Now we support COCO Panoptic Dataset, the format of panoptic annotations is different from COCO format.
Both the foreground and the background will exist in the annotation file.
The annotation json files in COCO Panoptic format has the following necessary keys:

'images': [
    {
        'file_name': '000000001268.jpg',
        'height': 427,
        'width': 640,
        'id': 1268
    },
    ...
]

'annotations': [
    {
        'filename': '000000001268.jpg',
        'image_id': 1268,
        'segments_info': [
            {
                'id':8345037,  # One-to-one correspondence with the id in the annotation map.
                'category_id': 51,
                'iscrowd': 0,
                'bbox': (x1, y1, w, h),  # The bbox of the background is the outer rectangle of its mask.
                'area': 24315
            },
            ...
        ]
    },
    ...
]

'categories': [  # including both foreground categories and background categories
    {'id': 0, 'name': 'person'},
    ...
 ]





Moreover, the seg_prefix must be set to the path of the panoptic annotation images.

data = dict(
    type='CocoPanopticDataset',
    train=dict(
        seg_prefix = 'path/to/your/train/panoptic/image_annotation_data'
    ),
    val=dict(
        seg_prefix = 'path/to/your/train/panoptic/image_annotation_data'
    )
)











            

          

      

      

    

  

    
      
          
            
  
Tutorial 3: Customize Data Pipelines


Design of Data pipelines

Following typical conventions, we use Dataset and DataLoader for data loading
with multiple workers. Dataset returns a dict of data items corresponding
the arguments of models’ forward method.
Since the data in object detection may not be the same size (image size, gt bbox size, etc.),
we introduce a new DataContainer type in MMCV to help collect and distribute
data of different size.
See here [https://github.com/open-mmlab/mmcv/blob/master/mmcv/parallel/data_container.py] for more details.

The data preparation pipeline and the dataset is decomposed. Usually a dataset
defines how to process the annotations and a data pipeline defines all the steps to prepare a data dict.
A pipeline consists of a sequence of operations. Each operation takes a dict as input and also output a dict for the next transform.

We present a classical pipeline in the following figure. The blue blocks are pipeline operations. With the pipeline going on, each operator can add new keys (marked as green) to the result dict or update the existing keys (marked as orange).
[image: pipeline figure]

The operations are categorized into data loading, pre-processing, formatting and test-time augmentation.

Here is a pipeline example for Faster R-CNN.

img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]





For each operation, we list the related dict fields that are added/updated/removed.


Data loading

LoadImageFromFile


	add: img, img_shape, ori_shape




LoadAnnotations


	add: gt_bboxes, gt_bboxes_ignore, gt_labels, gt_masks, gt_semantic_seg, bbox_fields, mask_fields




LoadProposals


	add: proposals







Pre-processing

Resize


	add: scale, scale_idx, pad_shape, scale_factor, keep_ratio


	update: img, img_shape, *bbox_fields, *mask_fields, *seg_fields




RandomFlip


	add: flip


	update: img, *bbox_fields, *mask_fields, *seg_fields




Pad


	add: pad_fixed_size, pad_size_divisor


	update: img, pad_shape, *mask_fields, *seg_fields




RandomCrop


	update: img, pad_shape, gt_bboxes, gt_labels, gt_masks, *bbox_fields




Normalize


	add: img_norm_cfg


	update: img




SegRescale


	update: gt_semantic_seg




PhotoMetricDistortion


	update: img




Expand


	update: img, gt_bboxes




MinIoURandomCrop


	update: img, gt_bboxes, gt_labels




Corrupt


	update: img







Formatting

ToTensor


	update: specified by keys.




ImageToTensor


	update: specified by keys.




Transpose


	update: specified by keys.




ToDataContainer


	update: specified by fields.




DefaultFormatBundle


	update: img, proposals, gt_bboxes, gt_bboxes_ignore, gt_labels, gt_masks, gt_semantic_seg




Collect


	add: img_meta (the keys of img_meta is specified by meta_keys)


	remove: all other keys except for those specified by keys







Test time augmentation

MultiScaleFlipAug






Extend and use custom pipelines


	Write a new pipeline in a file, e.g., in my_pipeline.py. It takes a dict as input and returns a dict.

import random
from mmdet.datasets import PIPELINES


@PIPELINES.register_module()
class MyTransform:
    """Add your transform

    Args:
        p (float): Probability of shifts. Default 0.5.
    """

    def __init__(self, p=0.5):
        self.p = p

    def __call__(self, results):
        if random.random() > self.p:
            results['dummy'] = True
        return results







	Import and use the pipeline in your config file.
Make sure the import is relative to where your train script is located.

custom_imports = dict(imports=['path.to.my_pipeline'], allow_failed_imports=False)

img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='MyTransform', p=0.2),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]







	Visualize the output of your augmentation pipeline

To visualize the output of your augmentation pipeline, tools/misc/browse_dataset.py
can help the user to browse a detection dataset (both images and bounding box annotations)
visually, or save the image to a designated directory. More details can refer to
useful_tools











            

          

      

      

    

  

    
      
          
            
  
Tutorial 4: Customize Models

We basically categorize model components into 5 types.


	backbone: usually an FCN network to extract feature maps, e.g., ResNet, MobileNet.


	neck: the component between backbones and heads, e.g., FPN, PAFPN.


	head: the component for specific tasks, e.g., bbox prediction and mask prediction.


	roi extractor: the part for extracting RoI features from feature maps, e.g., RoI Align.


	loss: the component in head for calculating losses, e.g., FocalLoss, L1Loss, and GHMLoss.





Develop new components


Add a new backbone

Here we show how to develop new components with an example of MobileNet.


1. Define a new backbone (e.g. MobileNet)

Create a new file mmdet/models/backbones/mobilenet.py.

import torch.nn as nn

from ..builder import BACKBONES


@BACKBONES.register_module()
class MobileNet(nn.Module):

    def __init__(self, arg1, arg2):
        pass

    def forward(self, x):  # should return a tuple
        pass








2. Import the module

You can either add the following line to mmdet/models/backbones/__init__.py

from .mobilenet import MobileNet





or alternatively add

custom_imports = dict(
    imports=['mmdet.models.backbones.mobilenet'],
    allow_failed_imports=False)





to the config file to avoid modifying the original code.




3. Use the backbone in your config file

model = dict(
    ...
    backbone=dict(
        type='MobileNet',
        arg1=xxx,
        arg2=xxx),
    ...










Add new necks


1. Define a neck (e.g. PAFPN)

Create a new file mmdet/models/necks/pafpn.py.

from ..builder import NECKS

@NECKS.register_module()
class PAFPN(nn.Module):

    def __init__(self,
                in_channels,
                out_channels,
                num_outs,
                start_level=0,
                end_level=-1,
                add_extra_convs=False):
        pass

    def forward(self, inputs):
        # implementation is ignored
        pass








2. Import the module

You can either add the following line to mmdet/models/necks/__init__.py,

from .pafpn import PAFPN





or alternatively add

custom_imports = dict(
    imports=['mmdet.models.necks.pafpn.py'],
    allow_failed_imports=False)





to the config file and avoid modifying the original code.




3. Modify the config file

neck=dict(
    type='PAFPN',
    in_channels=[256, 512, 1024, 2048],
    out_channels=256,
    num_outs=5)










Add new heads

Here we show how to develop a new head with the example of Double Head R-CNN [https://arxiv.org/abs/1904.06493] as the following.

First, add a new bbox head in mmdet/models/roi_heads/bbox_heads/double_bbox_head.py.
Double Head R-CNN implements a new bbox head for object detection.
To implement a bbox head, basically we need to implement three functions of the new module as the following.

from mmdet.models.builder import HEADS
from .bbox_head import BBoxHead

@HEADS.register_module()
class DoubleConvFCBBoxHead(BBoxHead):
    r"""Bbox head used in Double-Head R-CNN

                                      /-> cls
                  /-> shared convs ->
                                      \-> reg
    roi features
                                      /-> cls
                  \-> shared fc    ->
                                      \-> reg
    """  # noqa: W605

    def __init__(self,
                 num_convs=0,
                 num_fcs=0,
                 conv_out_channels=1024,
                 fc_out_channels=1024,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 **kwargs):
        kwargs.setdefault('with_avg_pool', True)
        super(DoubleConvFCBBoxHead, self).__init__(**kwargs)


    def forward(self, x_cls, x_reg):






Second, implement a new RoI Head if it is necessary. We plan to inherit the new DoubleHeadRoIHead from StandardRoIHead. We can find that a StandardRoIHead already implements the following functions.

import torch

from mmdet.core import bbox2result, bbox2roi, build_assigner, build_sampler
from ..builder import HEADS, build_head, build_roi_extractor
from .base_roi_head import BaseRoIHead
from .test_mixins import BBoxTestMixin, MaskTestMixin


@HEADS.register_module()
class StandardRoIHead(BaseRoIHead, BBoxTestMixin, MaskTestMixin):
    """Simplest base roi head including one bbox head and one mask head.
    """

    def init_assigner_sampler(self):

    def init_bbox_head(self, bbox_roi_extractor, bbox_head):

    def init_mask_head(self, mask_roi_extractor, mask_head):


    def forward_dummy(self, x, proposals):


    def forward_train(self,
                      x,
                      img_metas,
                      proposal_list,
                      gt_bboxes,
                      gt_labels,
                      gt_bboxes_ignore=None,
                      gt_masks=None):

    def _bbox_forward(self, x, rois):

    def _bbox_forward_train(self, x, sampling_results, gt_bboxes, gt_labels,
                            img_metas):

    def _mask_forward_train(self, x, sampling_results, bbox_feats, gt_masks,
                            img_metas):

    def _mask_forward(self, x, rois=None, pos_inds=None, bbox_feats=None):


    def simple_test(self,
                    x,
                    proposal_list,
                    img_metas,
                    proposals=None,
                    rescale=False):
        """Test without augmentation."""






Double Head’s modification is mainly in the bbox_forward logic, and it inherits other logics from the StandardRoIHead.
In the mmdet/models/roi_heads/double_roi_head.py, we implement the new RoI Head as the following:

from ..builder import HEADS
from .standard_roi_head import StandardRoIHead


@HEADS.register_module()
class DoubleHeadRoIHead(StandardRoIHead):
    """RoI head for Double Head RCNN

    https://arxiv.org/abs/1904.06493
    """

    def __init__(self, reg_roi_scale_factor, **kwargs):
        super(DoubleHeadRoIHead, self).__init__(**kwargs)
        self.reg_roi_scale_factor = reg_roi_scale_factor

    def _bbox_forward(self, x, rois):
        bbox_cls_feats = self.bbox_roi_extractor(
            x[:self.bbox_roi_extractor.num_inputs], rois)
        bbox_reg_feats = self.bbox_roi_extractor(
            x[:self.bbox_roi_extractor.num_inputs],
            rois,
            roi_scale_factor=self.reg_roi_scale_factor)
        if self.with_shared_head:
            bbox_cls_feats = self.shared_head(bbox_cls_feats)
            bbox_reg_feats = self.shared_head(bbox_reg_feats)
        cls_score, bbox_pred = self.bbox_head(bbox_cls_feats, bbox_reg_feats)

        bbox_results = dict(
            cls_score=cls_score,
            bbox_pred=bbox_pred,
            bbox_feats=bbox_cls_feats)
        return bbox_results





Last, the users need to add the module in
mmdet/models/bbox_heads/__init__.py and mmdet/models/roi_heads/__init__.py thus the corresponding registry could find and load them.

Alternatively, the users can add

custom_imports=dict(
    imports=['mmdet.models.roi_heads.double_roi_head', 'mmdet.models.bbox_heads.double_bbox_head'])





to the config file and achieve the same goal.

The config file of Double Head R-CNN is as the following

_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
model = dict(
    roi_head=dict(
        type='DoubleHeadRoIHead',
        reg_roi_scale_factor=1.3,
        bbox_head=dict(
            _delete_=True,
            type='DoubleConvFCBBoxHead',
            num_convs=4,
            num_fcs=2,
            in_channels=256,
            conv_out_channels=1024,
            fc_out_channels=1024,
            roi_feat_size=7,
            num_classes=80,
            bbox_coder=dict(
                type='DeltaXYWHBBoxCoder',
                target_means=[0., 0., 0., 0.],
                target_stds=[0.1, 0.1, 0.2, 0.2]),
            reg_class_agnostic=False,
            loss_cls=dict(
                type='CrossEntropyLoss', use_sigmoid=False, loss_weight=2.0),
            loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=2.0))))






Since MMDetection 2.0, the config system supports to inherit configs such that the users can focus on the modification.
The Double Head R-CNN mainly uses a new DoubleHeadRoIHead and a new
DoubleConvFCBBoxHead, the arguments are set according to the __init__ function of each module.




Add new loss

Assume you want to add a new loss as MyLoss, for bounding box regression.
To add a new loss function, the users need implement it in mmdet/models/losses/my_loss.py.
The decorator weighted_loss enable the loss to be weighted for each element.

import torch
import torch.nn as nn

from ..builder import LOSSES
from .utils import weighted_loss

@weighted_loss
def my_loss(pred, target):
    assert pred.size() == target.size() and target.numel() > 0
    loss = torch.abs(pred - target)
    return loss

@LOSSES.register_module()
class MyLoss(nn.Module):

    def __init__(self, reduction='mean', loss_weight=1.0):
        super(MyLoss, self).__init__()
        self.reduction = reduction
        self.loss_weight = loss_weight

    def forward(self,
                pred,
                target,
                weight=None,
                avg_factor=None,
                reduction_override=None):
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (
            reduction_override if reduction_override else self.reduction)
        loss_bbox = self.loss_weight * my_loss(
            pred, target, weight, reduction=reduction, avg_factor=avg_factor)
        return loss_bbox





Then the users need to add it in the mmdet/models/losses/__init__.py.

from .my_loss import MyLoss, my_loss






Alternatively, you can add

custom_imports=dict(
    imports=['mmdet.models.losses.my_loss'])





to the config file and achieve the same goal.

To use it, modify the loss_xxx field.
Since MyLoss is for regression, you need to modify the loss_bbox field in the head.

loss_bbox=dict(type='MyLoss', loss_weight=1.0))













            

          

      

      

    

  

    
      
          
            
  
Tutorial 5: Customize Runtime Settings


Customize optimization settings


Customize optimizer supported by Pytorch

We already support to use all the optimizers implemented by PyTorch, and the only modification is to change the optimizer field of config files.
For example, if you want to use ADAM (note that the performance could drop a lot), the modification could be as the following.

optimizer = dict(type='Adam', lr=0.0003, weight_decay=0.0001)





To modify the learning rate of the model, the users only need to modify the lr in the config of optimizer. The users can directly set arguments following the API doc [https://pytorch.org/docs/stable/optim.html?highlight=optim#module-torch.optim] of PyTorch.




Customize self-implemented optimizer


1. Define a new optimizer

A customized optimizer could be defined as following.

Assume you want to add a optimizer named MyOptimizer, which has arguments a, b, and c.
You need to create a new directory named mmdet/core/optimizer.
And then implement the new optimizer in a file, e.g., in mmdet/core/optimizer/my_optimizer.py:

from .registry import OPTIMIZERS
from torch.optim import Optimizer


@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):

    def __init__(self, a, b, c)









2. Add the optimizer to registry

To find the above module defined above, this module should be imported into the main namespace at first. There are two options to achieve it.


	Modify mmdet/core/optimizer/__init__.py to import it.

The newly defined module should be imported in mmdet/core/optimizer/__init__.py so that the registry will
find the new module and add it:





from .my_optimizer import MyOptimizer






	Use custom_imports in the config to manually import it




custom_imports = dict(imports=['mmdet.core.optimizer.my_optimizer'], allow_failed_imports=False)





The module mmdet.core.optimizer.my_optimizer will be imported at the beginning of the program and the class MyOptimizer is then automatically registered.
Note that only the package containing the class MyOptimizer should be imported.
mmdet.core.optimizer.my_optimizer.MyOptimizer cannot be imported directly.

Actually users can use a totally different file directory structure using this importing method, as long as the module root can be located in PYTHONPATH.




3. Specify the optimizer in the config file

Then you can use MyOptimizer in optimizer field of config files.
In the configs, the optimizers are defined by the field optimizer like the following:

optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)





To use your own optimizer, the field can be changed to

optimizer = dict(type='MyOptimizer', a=a_value, b=b_value, c=c_value)










Customize optimizer constructor

Some models may have some parameter-specific settings for optimization, e.g. weight decay for BatchNorm layers.
The users can do those fine-grained parameter tuning through customizing optimizer constructor.

from mmcv.utils import build_from_cfg

from mmcv.runner.optimizer import OPTIMIZER_BUILDERS, OPTIMIZERS
from mmdet.utils import get_root_logger
from .my_optimizer import MyOptimizer


@OPTIMIZER_BUILDERS.register_module()
class MyOptimizerConstructor(object):

    def __init__(self, optimizer_cfg, paramwise_cfg=None):

    def __call__(self, model):

        return my_optimizer






The default optimizer constructor is implemented here [https://github.com/open-mmlab/mmcv/blob/9ecd6b0d5ff9d2172c49a182eaa669e9f27bb8e7/mmcv/runner/optimizer/default_constructor.py#L11], which could also serve as a template for new optimizer constructor.




Additional settings

Tricks not implemented by the optimizer should be implemented through optimizer constructor (e.g., set parameter-wise learning rates) or hooks. We list some common settings that could stabilize the training or accelerate the training. Feel free to create PR, issue for more settings.


	Use gradient clip to stabilize training:
Some models need gradient clip to clip the gradients to stabilize the training process. An example is as below:

optimizer_config = dict(
    _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))





If your config inherits the base config which already sets the optimizer_config, you might need _delete_=True to override the unnecessary settings. See the config documentation [https://mmdetection.readthedocs.io/en/latest/tutorials/config.html] for more details.



	Use momentum schedule to accelerate model convergence:
We support momentum scheduler to modify model’s momentum according to learning rate, which could make the model converge in a faster way.
Momentum scheduler is usually used with LR scheduler, for example, the following config is used in 3D detection to accelerate convergence.
For more details, please refer to the implementation of CyclicLrUpdater [https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/lr_updater.py#L327] and CyclicMomentumUpdater [https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/momentum_updater.py#L130].

lr_config = dict(
    policy='cyclic',
    target_ratio=(10, 1e-4),
    cyclic_times=1,
    step_ratio_up=0.4,
)
momentum_config = dict(
    policy='cyclic',
    target_ratio=(0.85 / 0.95, 1),
    cyclic_times=1,
    step_ratio_up=0.4,
)














Customize training schedules

By default we use step learning rate with 1x schedule, this calls StepLRHook [https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/lr_updater.py#L153] in MMCV.
We support many other learning rate schedule here [https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py], such as CosineAnnealing and Poly schedule. Here are some examples


	Poly schedule:

lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)







	ConsineAnnealing schedule:

lr_config = dict(
    policy='CosineAnnealing',
    warmup='linear',
    warmup_iters=1000,
    warmup_ratio=1.0 / 10,
    min_lr_ratio=1e-5)












Customize workflow

Workflow is a list of (phase, epochs) to specify the running order and epochs.
By default it is set to be

workflow = [('train', 1)]





which means running 1 epoch for training.
Sometimes user may want to check some metrics (e.g. loss, accuracy) about the model on the validate set.
In such case, we can set the workflow as

[('train', 1), ('val', 1)]





so that 1 epoch for training and 1 epoch for validation will be run iteratively.

Note:


	The parameters of model will not be updated during val epoch.


	Keyword total_epochs in the config only controls the number of training epochs and will not affect the validation workflow.


	Workflows [('train', 1), ('val', 1)] and [('train', 1)] will not change the behavior of EvalHook because EvalHook is called by after_train_epoch and validation workflow only affect hooks that are called through after_val_epoch. Therefore, the only difference between [('train', 1), ('val', 1)] and [('train', 1)] is that the runner will calculate losses on validation set after each training epoch.







Customize hooks


Customize self-implemented hooks


1. Implement a new hook

There are some occasions when the users might need to implement a new hook. MMDetection supports customized hooks in training (#3395) since v2.3.0. Thus the users could implement a hook directly in mmdet or their mmdet-based codebases and use the hook by only modifying the config in training.
Before v2.3.0, the users need to modify the code to get the hook registered before training starts.
Here we give an example of creating a new hook in mmdet and using it in training.

from mmcv.runner import HOOKS, Hook


@HOOKS.register_module()
class MyHook(Hook):

    def __init__(self, a, b):
        pass

    def before_run(self, runner):
        pass

    def after_run(self, runner):
        pass

    def before_epoch(self, runner):
        pass

    def after_epoch(self, runner):
        pass

    def before_iter(self, runner):
        pass

    def after_iter(self, runner):
        pass





Depending on the functionality of the hook, the users need to specify what the hook will do at each stage of the training in before_run, after_run, before_epoch, after_epoch, before_iter, and after_iter.




2. Register the new hook

Then we need to make MyHook imported. Assuming the file is in mmdet/core/utils/my_hook.py there are two ways to do that:


	Modify mmdet/core/utils/__init__.py to import it.

The newly defined module should be imported in mmdet/core/utils/__init__.py so that the registry will
find the new module and add it:





from .my_hook import MyHook






	Use custom_imports in the config to manually import it




custom_imports = dict(imports=['mmdet.core.utils.my_hook'], allow_failed_imports=False)








3. Modify the config

custom_hooks = [
    dict(type='MyHook', a=a_value, b=b_value)
]





You can also set the priority of the hook by adding key priority to 'NORMAL' or 'HIGHEST' as below

custom_hooks = [
    dict(type='MyHook', a=a_value, b=b_value, priority='NORMAL')
]





By default the hook’s priority is set as NORMAL during registration.






Use hooks implemented in MMCV

If the hook is already implemented in MMCV, you can directly modify the config to use the hook as below


4. Example: NumClassCheckHook

We implement a customized hook named  NumClassCheckHook [https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/utils.py] to check whether the num_classes in head matches the length of CLASSES in dataset.

We set it in default_runtime.py [https://github.com/open-mmlab/mmdetection/blob/master/configs/_base_/default_runtime.py].

custom_hooks = [dict(type='NumClassCheckHook')]










Modify default runtime hooks

There are some common hooks that are not registered through custom_hooks, they are


	log_config


	checkpoint_config


	evaluation


	lr_config


	optimizer_config


	momentum_config




In those hooks, only the logger hook has the VERY_LOW priority, others’ priority are NORMAL.
The above-mentioned tutorials already covers how to modify optimizer_config, momentum_config, and lr_config.
Here we reveals how what we can do with log_config, checkpoint_config, and evaluation.


Checkpoint config

The MMCV runner will use checkpoint_config to initialize CheckpointHook [https://github.com/open-mmlab/mmcv/blob/9ecd6b0d5ff9d2172c49a182eaa669e9f27bb8e7/mmcv/runner/hooks/checkpoint.py#L9].

checkpoint_config = dict(interval=1)





The users could set max_keep_ckpts to only save only small number of checkpoints or decide whether to store state dict of optimizer by save_optimizer. More details of the arguments are here [https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.CheckpointHook]




Log config

The log_config wraps multiple logger hooks and enables to set intervals. Now MMCV supports WandbLoggerHook, MlflowLoggerHook, and TensorboardLoggerHook.
The detail usages can be found in the doc [https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.LoggerHook].

log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        dict(type='TensorboardLoggerHook')
    ])








Evaluation config

The config of evaluation will be used to initialize the EvalHook [https://github.com/open-mmlab/mmdetection/blob/7a404a2c000620d52156774a5025070d9e00d918/mmdet/core/evaluation/eval_hooks.py#L8].
Except the key interval, other arguments such as metric will be passed to the dataset.evaluate()

evaluation = dict(interval=1, metric='bbox')















            

          

      

      

    

  

    
      
          
            
  
Tutorial 6: Customize Losses

MMDetection provides users with different loss functions. But the default configuration may be not applicable for different datasets or models, so users may want to modify a specific loss to adapt the new situation.

This tutorial first elaborate the computation pipeline of losses, then give some instructions about how to modify each step. The modification can be categorized as tweaking and weighting.


Computation pipeline of a loss

Given the input prediction and target, as well as the weights, a loss function maps the input tensor to the final loss scalar. The mapping can be divided into five steps:


	Set the sampling method to sample positive and negative samples.


	Get element-wise or sample-wise loss by the loss kernel function.


	Weighting the loss with a weight tensor element-wisely.


	Reduce the loss tensor to a scalar.


	Weighting the loss with a scalar.







Set sampling method (step 1)

For some loss functions, sampling strategies are needed to avoid imbalance between positive and negative samples.

For example, when using CrossEntropyLoss in RPN head, we need to set RandomSampler in train_cfg

train_cfg=dict(
    rpn=dict(
        sampler=dict(
            type='RandomSampler',
            num=256,
            pos_fraction=0.5,
            neg_pos_ub=-1,
            add_gt_as_proposals=False))





For some other losses which have positive and negative sample balance mechanism such as Focal Loss, GHMC, and QualityFocalLoss, the sampler is no more necessary.




Tweaking loss

Tweaking a loss is more related with step 2, 4, 5, and most modifications can be specified in the config.
Here we take Focal Loss (FL) [https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/losses/focal_loss.py] as an example.
The following code sniper are the construction method and config of FL respectively, they are actually one to one correspondence.

@LOSSES.register_module()
class FocalLoss(nn.Module):

    def __init__(self,
                 use_sigmoid=True,
                 gamma=2.0,
                 alpha=0.25,
                 reduction='mean',
                 loss_weight=1.0):





loss_cls=dict(
    type='FocalLoss',
    use_sigmoid=True,
    gamma=2.0,
    alpha=0.25,
    loss_weight=1.0)






Tweaking hyper-parameters (step 2)

gamma and beta are two hyper-parameters in the Focal Loss. Say if we want to change the value of gamma to be 1.5 and alpha to be 0.5, then we can specify them in the config as follows:

loss_cls=dict(
    type='FocalLoss',
    use_sigmoid=True,
    gamma=1.5,
    alpha=0.5,
    loss_weight=1.0)








Tweaking the way of reduction (step 3)

The default way of reduction is mean for FL. Say if we want to change the reduction from mean to sum, we can specify it in the config as follows:

loss_cls=dict(
    type='FocalLoss',
    use_sigmoid=True,
    gamma=2.0,
    alpha=0.25,
    loss_weight=1.0,
    reduction='sum')








Tweaking loss weight (step 5)

The loss weight here is a scalar which controls the weight of different losses in multi-task learning, e.g. classification loss and regression loss. Say if we want to change to loss weight of classification loss to be 0.5, we can specify it in the config as follows:

loss_cls=dict(
    type='FocalLoss',
    use_sigmoid=True,
    gamma=2.0,
    alpha=0.25,
    loss_weight=0.5)










Weighting loss (step 3)

Weighting loss means we re-weight the loss element-wisely. To be more specific, we multiply the loss tensor with a weight tensor which has the same shape. As a result, different entries of the loss can be scaled differently, and so called element-wisely.
The loss weight varies across different models and highly context related, but overall there are two kinds of loss weights, label_weights for classification loss and bbox_weights for bbox regression loss. You can find them in the get_target method of the corresponding head. Here we take ATSSHead [https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/atss_head.py#L530] as an example, which inherit AnchorHead [https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/anchor_head.py] but overwrite its get_targets method which yields different label_weights and bbox_weights.

class ATSSHead(AnchorHead):

    ...

    def get_targets(self,
                    anchor_list,
                    valid_flag_list,
                    gt_bboxes_list,
                    img_metas,
                    gt_bboxes_ignore_list=None,
                    gt_labels_list=None,
                    label_channels=1,
                    unmap_outputs=True):











            

          

      

      

    

  

    
      
          
            
  
Tutorial 7: Finetuning Models

Detectors pre-trained on the COCO dataset can serve as a good pre-trained model for other datasets, e.g., CityScapes and KITTI Dataset.
This tutorial provides instruction for users to use the models provided in the Model Zoo for other datasets to obtain better performance.

There are two steps to finetune a model on a new dataset.


	Add support for the new dataset following Tutorial 2: Customize Datasets.


	Modify the configs as will be discussed in this tutorial.




Take the finetuning process on Cityscapes Dataset as an example, the users need to modify five parts in the config.


Inherit base configs

To release the burden and reduce bugs in writing the whole configs, MMDetection V2.0 support inheriting configs from multiple existing configs. To finetune a Mask RCNN model, the new config needs to inherit
_base_/models/mask_rcnn_r50_fpn.py to build the basic structure of the model. To use the Cityscapes Dataset, the new config can also simply inherit _base_/datasets/cityscapes_instance.py. For runtime settings such as training schedules, the new config needs to inherit _base_/default_runtime.py. This configs are in the configs directory and the users can also choose to write the whole contents rather than use inheritance.

_base_ = [
    '../_base_/models/mask_rcnn_r50_fpn.py',
    '../_base_/datasets/cityscapes_instance.py', '../_base_/default_runtime.py'
]








Modify head

Then the new config needs to modify the head according to the class numbers of the new datasets. By only changing num_classes in the roi_head, the weights of the pre-trained models are mostly reused except the final prediction head.

model = dict(
    pretrained=None,
    roi_head=dict(
        bbox_head=dict(
            type='Shared2FCBBoxHead',
            in_channels=256,
            fc_out_channels=1024,
            roi_feat_size=7,
            num_classes=8,
            bbox_coder=dict(
                type='DeltaXYWHBBoxCoder',
                target_means=[0., 0., 0., 0.],
                target_stds=[0.1, 0.1, 0.2, 0.2]),
            reg_class_agnostic=False,
            loss_cls=dict(
                type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
            loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
        mask_head=dict(
            type='FCNMaskHead',
            num_convs=4,
            in_channels=256,
            conv_out_channels=256,
            num_classes=8,
            loss_mask=dict(
                type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))))








Modify dataset

The users may also need to prepare the dataset and write the configs about dataset. MMDetection V2.0 already support VOC, WIDER FACE, COCO and Cityscapes Dataset.




Modify training schedule

The finetuning hyperparameters vary from the default schedule. It usually requires smaller learning rate and less training epochs

# optimizer
# lr is set for a batch size of 8
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=0.001,
    step=[7])
# the max_epochs and step in lr_config need specifically tuned for the customized dataset
runner = dict(max_epochs=8)
log_config = dict(interval=100)








Use pre-trained model

To use the pre-trained model, the new config add the link of pre-trained models in the load_from. The users might need to download the model weights before training to avoid the download time during training.

load_from = 'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth'  # noqa












            

          

      

      

    

  

    
      
          
            
  
Tutorial 8: Pytorch to ONNX (Experimental)


Try the new MMDeploy to deploy your model [https://mmdeploy.readthedocs.io/]
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How to convert models from Pytorch to ONNX


Prerequisite


	Install the prerequisites following get_started.md/Prepare environment.


	Build custom operators for ONNX Runtime and install MMCV manually following How to build custom operators for ONNX Runtime [https://github.com/open-mmlab/mmcv/blob/master/docs/en/deployment/onnxruntime_op.md/#how-to-build-custom-operators-for-onnx-runtime]


	Install MMdetection manually following steps 2-3 in get_started.md/Install MMdetection.







Usage

python tools/deployment/pytorch2onnx.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    --output-file ${OUTPUT_FILE} \
    --input-img ${INPUT_IMAGE_PATH} \
    --shape ${IMAGE_SHAPE} \
    --test-img ${TEST_IMAGE_PATH} \
    --opset-version ${OPSET_VERSION} \
    --cfg-options ${CFG_OPTIONS}
    --dynamic-export \
    --show \
    --verify \
    --simplify \








Description of all arguments


	config : The path of a model config file.


	checkpoint : The path of a model checkpoint file.


	--output-file: The path of output ONNX model. If not specified, it will be set to tmp.onnx.


	--input-img: The path of an input image for tracing and conversion. By default, it will be set to tests/data/color.jpg.


	--shape: The height and width of input tensor to the model. If not specified, it will be set to 800 1216.


	--test-img : The path of an image to verify the exported ONNX model. By default, it will be set to None, meaning it will use --input-img for verification.


	--opset-version : The opset version of ONNX. If not specified, it will be set to 11.


	--dynamic-export: Determines whether to export ONNX model with dynamic input and output shapes. If not specified, it will be set to False.


	--show: Determines whether to print the architecture of the exported model and whether to show detection outputs when --verify is set to True. If not specified, it will be set to False.


	--verify: Determines whether to verify the correctness of an exported model. If not specified, it will be set to False.


	--simplify: Determines whether to simplify the exported ONNX model. If not specified, it will be set to False.


	--cfg-options: Override some settings in the used config file, the key-value pair in xxx=yyy format will be merged into config file.


	--skip-postprocess: Determines whether export model without post process. If not specified, it will be set to False. Notice: This is an experimental option. Only work for some single stage models. Users need to implement the post-process by themselves. We do not guarantee the correctness of the exported model.




Example:

python tools/deployment/pytorch2onnx.py \
    configs/yolo/yolov3_d53_mstrain-608_273e_coco.py \
    checkpoints/yolo/yolov3_d53_mstrain-608_273e_coco.pth \
    --output-file checkpoints/yolo/yolov3_d53_mstrain-608_273e_coco.onnx \
    --input-img demo/demo.jpg \
    --test-img tests/data/color.jpg \
    --shape 608 608 \
    --show \
    --verify \
    --dynamic-export \
    --cfg-options \
      model.test_cfg.deploy_nms_pre=-1 \










How to evaluate the exported models

We prepare a tool tools/deplopyment/test.py to evaluate ONNX models with ONNXRuntime and TensorRT.


Prerequisite


	Install onnx and onnxruntime (CPU version)

pip install onnx onnxruntime==1.5.1







	If you want to run the model on GPU, please remove the CPU version before using the GPU version.

pip uninstall onnxruntime
pip install onnxruntime-gpu





Note: onnxruntime-gpu is version-dependent on CUDA and CUDNN, please ensure that your
environment meets the requirements.



	Build custom operators for ONNX Runtime following How to build custom operators for ONNX Runtime [https://github.com/open-mmlab/mmcv/blob/master/docs/en/deployment/onnxruntime_op.md/#how-to-build-custom-operators-for-onnx-runtime]


	Install TensorRT by referring to How to build TensorRT plugins in MMCV [https://mmcv.readthedocs.io/en/latest/deployment/tensorrt_plugin.html#how-to-build-tensorrt-plugins-in-mmcv] (optional)







Usage

python tools/deployment/test.py \
    ${CONFIG_FILE} \
    ${MODEL_FILE} \
    --out ${OUTPUT_FILE} \
    --backend ${BACKEND} \
    --format-only ${FORMAT_ONLY} \
    --eval ${EVALUATION_METRICS} \
    --show-dir ${SHOW_DIRECTORY} \
    ----show-score-thr ${SHOW_SCORE_THRESHOLD} \
    ----cfg-options ${CFG_OPTIONS} \
    ----eval-options ${EVALUATION_OPTIONS} \








Description of all arguments


	config: The path of a model config file.


	model: The path of an input model file.


	--out: The path of output result file in pickle format.


	--backend: Backend for input model to run and should be onnxruntime or tensorrt.


	--format-only : Format the output results without perform evaluation. It is useful when you want to format the result to a specific format and submit it to the test server. If not specified, it will be set to False.


	--eval: Evaluation metrics, which depends on the dataset, e.g., “bbox”, “segm”, “proposal” for COCO, and “mAP”, “recall” for PASCAL VOC.


	--show-dir: Directory where painted images will be saved


	--show-score-thr: Score threshold. Default is set to 0.3.


	--cfg-options: Override some settings in the used config file, the key-value pair in xxx=yyy format will be merged into config file.


	--eval-options: Custom options for evaluation, the key-value pair in xxx=yyy format will be kwargs for dataset.evaluate() function




Notes:


	If the deployed backend platform is TensorRT, please add environment variables before running the file:

export ONNX_BACKEND=MMCVTensorRT







	If you want to use the --dynamic-export parameter in the TensorRT backend to export ONNX, please remove the --simplify parameter, and vice versa.







Results and Models


	
	    	Model
	    	Config
	    	Metric
	    	PyTorch
	    	ONNX Runtime
	    	TensorRT
	

  
	    	FCOS
	    	configs/fcos/fcos_r50_caffe_fpn_gn-head_4x4_1x_coco.py
	    	Box AP
	    	36.6
	    	36.5
	    	36.3
	

  
	    	FSAF
	    	configs/fsaf/fsaf_r50_fpn_1x_coco.py
	    	Box AP
	    	36.0
	    	36.0
	    	35.9
	

  
	    	RetinaNet
	    	configs/retinanet/retinanet_r50_fpn_1x_coco.py
	    	Box AP
	    	36.5
	    	36.4
	    	36.3
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Tutorial 9: ONNX to TensorRT (Experimental)


Try the new MMDeploy to deploy your model [https://mmdeploy.readthedocs.io/]





	Tutorial 9: ONNX to TensorRT (Experimental)


	How to convert models from ONNX to TensorRT


	Prerequisite


	Usage






	How to evaluate the exported models


	List of supported models convertible to TensorRT


	Reminders


	FAQs










How to convert models from ONNX to TensorRT


Prerequisite


	Please refer to get_started.md [https://mmdetection.readthedocs.io/en/latest/get_started.html] for installation of MMCV and MMDetection from source.


	Please refer to ONNXRuntime in mmcv [https://mmcv.readthedocs.io/en/latest/deployment/onnxruntime_op.html] and TensorRT plugin in mmcv [https://github.com/open-mmlab/mmcv/blob/master/docs/en/deployment/tensorrt_plugin.md/] to install mmcv-full with ONNXRuntime custom ops and TensorRT plugins.


	Use our tool pytorch2onnx [https://mmdetection.readthedocs.io/en/latest/tutorials/pytorch2onnx.html] to convert the model from PyTorch to ONNX.







Usage

python tools/deployment/onnx2tensorrt.py \
    ${CONFIG} \
    ${MODEL} \
    --trt-file ${TRT_FILE} \
    --input-img ${INPUT_IMAGE_PATH} \
    --shape ${INPUT_IMAGE_SHAPE} \
    --min-shape ${MIN_IMAGE_SHAPE} \
    --max-shape ${MAX_IMAGE_SHAPE} \
    --workspace-size {WORKSPACE_SIZE} \
    --show \
    --verify \





Description of all arguments:


	config : The path of a model config file.


	model : The path of an ONNX model file.


	--trt-file: The Path of output TensorRT engine file. If not specified, it will be set to tmp.trt.


	--input-img : The path of an input image for tracing and conversion. By default, it will be set to demo/demo.jpg.


	--shape: The height and width of model input. If not specified, it will be set to 400 600.


	--min-shape: The minimum height and width of model input. If not specified, it will be set to the same as --shape.


	--max-shape: The maximum height and width of model input. If not specified, it will be set to the same as --shape.


	--workspace-size : The required GPU workspace size in GiB to build TensorRT engine. If not specified, it will be set to 1 GiB.


	--show: Determines whether to show the outputs of the model. If not specified, it will be set to False.


	--verify: Determines whether to verify the correctness of models between ONNXRuntime and TensorRT. If not specified, it will be set to False.


	--verbose: Determines whether to print logging messages. It’s useful for debugging. If not specified, it will be set to False.




Example:

python tools/deployment/onnx2tensorrt.py \
    configs/retinanet/retinanet_r50_fpn_1x_coco.py \
    checkpoints/retinanet_r50_fpn_1x_coco.onnx \
    --trt-file checkpoints/retinanet_r50_fpn_1x_coco.trt \
    --input-img demo/demo.jpg \
    --shape 400 600 \
    --show \
    --verify \










How to evaluate the exported models

We prepare a tool tools/deplopyment/test.py to evaluate TensorRT models.

Please refer to following links for more information.


	how-to-evaluate-the-exported-models


	results-and-models







List of supported models convertible to TensorRT

The table below lists the models that are guaranteed to be convertible to TensorRT.




	Model
	Config
	Dynamic Shape
	Batch Inference
	Note





	SSD
	configs/ssd/ssd300_coco.py
	Y
	Y
	



	FSAF
	configs/fsaf/fsaf_r50_fpn_1x_coco.py
	Y
	Y
	



	FCOS
	configs/fcos/fcos_r50_caffe_fpn_4x4_1x_coco.py
	Y
	Y
	



	YOLOv3
	configs/yolo/yolov3_d53_mstrain-608_273e_coco.py
	Y
	Y
	



	RetinaNet
	configs/retinanet/retinanet_r50_fpn_1x_coco.py
	Y
	Y
	



	Faster R-CNN
	configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
	Y
	Y
	



	Cascade R-CNN
	configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py
	Y
	Y
	



	Mask R-CNN
	configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py
	Y
	Y
	



	Cascade Mask R-CNN
	configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py
	Y
	Y
	



	PointRend
	configs/point_rend/point_rend_r50_caffe_fpn_mstrain_1x_coco.py
	Y
	Y
	





Notes:


	All models above are tested with Pytorch==1.6.0, onnx==1.7.0 and TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0







Reminders


	If you meet any problem with the listed models above, please create an issue and it would be taken care of soon. For models not included in the list, we may not provide much help here due to the limited resources. Please try to dig a little deeper and debug by yourself.


	Because this feature is experimental and may change fast, please always try with the latest mmcv and mmdetecion.







FAQs


	None
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Tutorial 10: Weight initialization

During training, a proper initialization strategy is beneficial to speeding up the training or obtaining a higher performance. MMCV [https://github.com/open-mmlab/mmcv/blob/master/mmcv/cnn/utils/weight_init.py] provide some commonly used methods for initializing modules like nn.Conv2d. Model initialization in MMdetection mainly uses init_cfg. Users can initialize models with following two steps:


	Define init_cfg for a model or its components in model_cfg,  but init_cfg of children components have higher priority and will override init_cfg of parents modules.


	Build model as usual, but call model.init_weights() method explicitly, and model parameters will be initialized as configuration.




The high-level workflow of initialization in MMdetection is :

model_cfg(init_cfg) -> build_from_cfg -> model -> init_weight() -> initialize(self, self.init_cfg) -> children’s init_weight()


Description

It is dict or list[dict], and contains the following keys and values:


	type (str), containing the initializer name in INTIALIZERS, and followed by arguments of the initializer.


	layer (str or list[str]), containing the names of basiclayers in Pytorch or MMCV with learnable parameters that will be initialized, e.g. 'Conv2d','DeformConv2d'.


	override (dict or list[dict]),  containing the sub-modules that not inherit from BaseModule and whose initialization configuration is different from other layers’ which are in 'layer' key. Initializer defined in type will work for all layers defined in layer, so if sub-modules are not derived Classes of BaseModule but can be initialized as same ways of layers in layer, it does not need to use override. override contains:


	type followed by arguments of initializer;


	name to indicate sub-module which will be initialized.











Initialize parameters

Inherit a new model from mmcv.runner.BaseModule or mmdet.models  Here we show an example of FooModel.

import torch.nn as nn
from mmcv.runner import BaseModule

class FooModel(BaseModule)
	def __init__(self,
                 arg1,
                 arg2,
                 init_cfg=None):
    	super(FooModel, self).__init__(init_cfg)
		...






	Initialize model by using init_cfg directly in code

import torch.nn as nn
from mmcv.runner import BaseModule
# or directly inherit mmdet models

class FooModel(BaseModule)
	def __init__(self,
                arg1,
                arg2,
                init_cfg=XXX):
		super(FooModel, self).__init__(init_cfg)
	    ...







	Initialize model by using init_cfg directly in mmcv.Sequential or mmcv.ModuleList code

from mmcv.runner import BaseModule, ModuleList

class FooModel(BaseModule)
	def __init__(self,
            	arg1,
            	arg2,
            	init_cfg=None):
		super(FooModel, self).__init__(init_cfg)
    	...
    	self.conv1 = ModuleList(init_cfg=XXX)







	Initialize model by using init_cfg in config file

model = dict(
	...
	model = dict(
    	type='FooModel',
    	arg1=XXX,
    	arg2=XXX,
    	init_cfg=XXX),
        ...












Usage of init_cfg


	Initialize model by layer key

If we only define layer, it just initialize the layer in layer key.

NOTE: Value of layer key is the class name with attributes weights and bias of Pytorch, (so such as  MultiheadAttention layer is not supported).






	Define layer key for initializing module with same configuration.

init_cfg = dict(type='Constant', layer=['Conv1d', 'Conv2d', 'Linear'], val=1)
# initialize whole module with same configuration







	Define layer key for initializing layer with different configurations.




init_cfg = [dict(type='Constant', layer='Conv1d', val=1),
            dict(type='Constant', layer='Conv2d', val=2),
            dict(type='Constant', layer='Linear', val=3)]
# nn.Conv1d will be initialized with dict(type='Constant', val=1)
# nn.Conv2d will be initialized with dict(type='Constant', val=2)
# nn.Linear will be initialized with dict(type='Constant', val=3)






	Initialize model by override key





	When initializing some specific part with its attribute name, we can use override key, and the value in override will ignore the value in init_cfg.

# layers：
# self.feat = nn.Conv1d(3, 1, 3)
# self.reg = nn.Conv2d(3, 3, 3)
# self.cls = nn.Linear(1,2)

init_cfg = dict(type='Constant',
                layer=['Conv1d','Conv2d'], val=1, bias=2,
                override=dict(type='Constant', name='reg', val=3, bias=4))
# self.feat and self.cls will be initialized with 	dict(type='Constant', val=1, bias=2)
# The module called 'reg' will be initialized with dict(type='Constant', val=3, bias=4)







	If layer is None in init_cfg, only sub-module with the name in override will be initialized, and type and other args in override can be omitted.

# layers：
# self.feat = nn.Conv1d(3, 1, 3)
# self.reg = nn.Conv2d(3, 3, 3)
# self.cls = nn.Linear(1,2)

init_cfg = dict(type='Constant', val=1, bias=2, 	override=dict(name='reg'))

# self.feat and self.cls will be initialized by Pytorch
# The module called 'reg' will be initialized with dict(type='Constant', val=1, bias=2)







	If we don’t define layer key or override key, it will not initialize anything.


	Invalid usage

# It is invalid that override don't have name key
init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'], val=1, bias=2,
            	override=dict(type='Constant', val=3, bias=4))

# It is also invalid that override has name and other args except type
init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'], val=1, bias=2,
                override=dict(name='reg', val=3, bias=4))










	Initialize model with the pretrained model

init_cfg = dict(type='Pretrained',
            checkpoint='torchvision://resnet50')









More details can refer to the documentation in MMCV [https://mmcv.readthedocs.io/en/latest/cnn.html#weight-initialization] and MMCV PR #780 [https://github.com/open-mmlab/mmcv/pull/780]
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Tutorial 11: How to xxx

This tutorial collects answers to any How to xxx with MMDetection. Feel free to update this doc if you meet new questions about How to and find the answers!


Use backbone network through MMClassification

The model registry in MMDet, MMCls, MMSeg all inherit from the root registry in MMCV. This allows these repositories to directly use the modules already implemented by each other. Therefore, users can use backbone networks from MMClassification in MMDetection without implementing a network that already exists in MMClassification.


Use backbone network implemented in MMClassification

Suppose you want to use MobileNetV3-small as the backbone network of RetinaNet, the example config is as the following.

_base_ = [
    '../_base_/models/retinanet_r50_fpn.py',
    '../_base_/datasets/coco_detection.py',
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
# please install mmcls>=0.20.0
# import mmcls.models to trigger register_module in mmcls
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
pretrained = 'https://download.openmmlab.com/mmclassification/v0/mobilenet_v3/convert/mobilenet_v3_small-8427ecf0.pth'
model = dict(
    backbone=dict(
        _delete_=True, # Delete the backbone field in _base_
        type='mmcls.MobileNetV3', # Using MobileNetV3 from mmcls
        arch='small',
        out_indices=(3, 8, 11), # Modify out_indices
        init_cfg=dict(
            type='Pretrained',
            checkpoint=pretrained,
            prefix='backbone.')), # The pre-trained weights of backbone network in MMCls have prefix='backbone.'. The prefix in the keys will be removed so that these weights can be normally loaded.
    # Modify in_channels
    neck=dict(in_channels=[24, 48, 96], start_level=0))








Use backbone network in TIMM through MMClassification

MMClassification also provides a wrapper for the PyTorch Image Models (timm) backbone network, users can directly use the backbone network in timm through MMClassification. Suppose you want to use EfficientNet-B1 as the backbone network of RetinaNet, the example config is as the following.

# https://github.com/open-mmlab/mmdetection/blob/master/configs/timm_example/retinanet_timm_efficientnet_b1_fpn_1x_coco.py

_base_ = [
    '../_base_/models/retinanet_r50_fpn.py',
    '../_base_/datasets/coco_detection.py',
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]

# please install mmcls>=0.20.0
# import mmcls.models to trigger register_module in mmcls
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
model = dict(
    backbone=dict(
        _delete_=True, # Delete the backbone field in _base_
        type='mmcls.TIMMBackbone', # Using timm from mmcls
        model_name='efficientnet_b1',
        features_only=True,
        pretrained=True,
        out_indices=(1, 2, 3, 4)), # Modify out_indices
    neck=dict(in_channels=[24, 40, 112, 320])) # Modify in_channels

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)





type='mmcls.TIMMBackbone' means use the TIMMBackbone class from MMClassification in MMDetection, and the model used is EfficientNet-B1, where mmcls means the MMClassification repo and TIMMBackbone means the TIMMBackbone wrapper implemented in MMClassification.

For the principle of the Hierarchy Registry, please refer to the MMCV document [https://github.com/open-mmlab/mmcv/blob/master/docs/en/understand_mmcv/registry.md#hierarchy-registry]. For how to use other backbones in MMClassification, you can refer to the MMClassification document [https://github.com/open-mmlab/mmclassification/blob/master/docs/en/tutorials/config.md].






Use Mosaic augmentation

If you want to use Mosaic in training, please make sure that you use MultiImageMixDataset at the same time. Taking the ‘Faster R-CNN’ algorithm as an example, you should modify the values of train_pipeline and train_dataset in the config as below:

# Open configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py directly and add the following fields
data_root = 'data/coco/'
dataset_type = 'CocoDataset'
img_scale=(1333, 800)​
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)

train_pipeline = [
    dict(type='Mosaic', img_scale=img_scale, pad_val=114.0),
    dict(
        type='RandomAffine',
        scaling_ratio_range=(0.1, 2),
        border=(-img_scale[0] // 2, -img_scale[1] // 2)), # The image will be enlarged by 4 times after Mosaic processing,so we use affine transformation to restore the image size.
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]

train_dataset = dict(
    _delete_ = True, # remove unnecessary Settings
    type='MultiImageMixDataset',
    dataset=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_train2017.json',
        img_prefix=data_root + 'train2017/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='LoadAnnotations', with_bbox=True)
        ],
        filter_empty_gt=False,
    ),
    pipeline=train_pipeline
    )
​
data = dict(
    train=train_dataset
    )








Unfreeze backbone network after freezing the backbone in the config

If you have freezed the backbone network in the config and want to unfreeze it after some epoches, you can write a hook function to do it.  Taking the Faster R-CNN with the resnet backbone as an example, you can freeze one stage of the backbone network and  add a custom_hooks in the config as below:

_base_ = [
    '../_base_/models/faster_rcnn_r50_fpn.py',
    '../_base_/datasets/coco_detection.py',
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
    # freeze one stage of the backbone network.
    backbone=dict(frozen_stages=1),
)
custom_hooks = [dict(type="UnfreezeBackboneEpochBasedHook", unfreeze_epoch=1)]





Meanwhile write the hook class UnfreezeBackboneEpochBasedHook in mmdet/core/hook/unfreeze_backbone_epoch_based_hook.py

from mmcv.parallel import is_module_wrapper
from mmcv.runner.hooks import HOOKS, Hook


@HOOKS.register_module()
class UnfreezeBackboneEpochBasedHook(Hook):
    """Unfreeze backbone network Hook.

    Args:
        unfreeze_epoch (int): The epoch unfreezing the backbone network.
    """

    def __init__(self, unfreeze_epoch=1):
        self.unfreeze_epoch = unfreeze_epoch

    def before_train_epoch(self, runner):
        # Unfreeze the backbone network.
        # Only valid for resnet.
        if runner.epoch == self.unfreeze_epoch:
            model = runner.model
            if is_module_wrapper(model):
                model = model.module
            backbone = model.backbone
            if backbone.frozen_stages >= 0:
                if backbone.deep_stem:
                    backbone.stem.train()
                    for param in backbone.stem.parameters():
                        param.requires_grad = True
                else:
                    backbone.norm1.train()
                    for m in [backbone.conv1, backbone.norm1]:
                        for param in m.parameters():
                            param.requires_grad = True

            for i in range(1, backbone.frozen_stages + 1):
                m = getattr(backbone, f'layer{i}')
                m.train()
                for param in m.parameters():
                    param.requires_grad = True








Get the channels of a new backbone

If you want to get the channels of a new backbone, you can build this backbone alone and input a pseudo image to get each stage output.

Take ResNet as an example:

from mmdet.models import ResNet
import torch
self = ResNet(depth=18)
self.eval()
inputs = torch.rand(1, 3, 32, 32)
level_outputs = self.forward(inputs)
for level_out in level_outputs:
    print(tuple(level_out.shape))






Output of the above script is as below:

(1, 64, 8, 8)
(1, 128, 4, 4)
(1, 256, 2, 2)
(1, 512, 1, 1)





Users can get the channels of the new backbone by Replacing the ResNet(depth=18) in this script with their customized backbone.
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Tutorial 12: Test Results Submission


Panoptic segmentation test results submission

The following sections introduce how to produce the prediction results of panoptic segmentation models on the COCO test-dev set and submit the predictions to COCO evaluation server [https://competitions.codalab.org/competitions/19507].


Prerequisites


	Download COCO test dataset images [http://images.cocodataset.org/zips/test2017.zip], testing image info [http://images.cocodataset.org/annotations/image_info_test2017.zip], and panoptic train/val annotations [http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip], then unzip them, put ‘test2017’ to data/coco/, put json files and annotation files to data/coco/annotations/.




# suppose data/coco/ does not exist
mkdir -pv data/coco/

# download test2017
wget -P data/coco/ http://images.cocodataset.org/zips/test2017.zip
wget -P data/coco/ http://images.cocodataset.org/annotations/image_info_test2017.zip
wget -P data/coco/ http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip

# unzip them
unzip data/coco/test2017.zip -d data/coco/
unzip data/coco/image_info_test2017.zip -d data/coco/
unzip data/coco/panoptic_annotations_trainval2017.zip -d data/coco/

# remove zip files (optional)
rm -rf data/coco/test2017.zip data/coco/image_info_test2017.zip data/coco/panoptic_annotations_trainval2017.zip






	Run the following code to update category information in testing image info. Since the attribute isthing is missing in category information of ‘image_info_test-dev2017.json’, we need to update it with the category information in ‘panoptic_val2017.json’.




python tools/misc/gen_coco_panoptic_test_info.py data/coco/annotations





After completing the above preparations, your directory structure of data should be like this:

data
`-- coco
    |-- annotations
    |   |-- image_info_test-dev2017.json
    |   |-- image_info_test2017.json
    |   |-- panoptic_image_info_test-dev2017.json
    |   |-- panoptic_train2017.json
    |   |-- panoptic_train2017.zip
    |   |-- panoptic_val2017.json
    |   `-- panoptic_val2017.zip
    `-- test2017








Inference on coco test-dev

The commands to perform inference on test2017 are as below:

# test with single gpu
CUDA_VISIBLE_DEVICES=0 python tools/test.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    --format-only \
    --cfg-options data.test.ann_file=data/coco/annotations/panoptic_image_info_test-dev2017.json data.test.img_prefix=data/coco/test2017 \
    --eval-options jsonfile_prefix=${WORK_DIR}/results

# test with four gpus
CUDA_VISIBLE_DEVICES=0,1,3,4 bash tools/dist_test.sh \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    4 \ # four gpus
    --format-only \
    --cfg-options data.test.ann_file=data/coco/annotations/panoptic_image_info_test-dev2017.json data.test.img_prefix=data/coco/test2017 \
    --eval-options jsonfile_prefix=${WORK_DIR}/results

# test with slurm
GPUS=8 tools/slurm_test.sh \
    ${Partition} \
    ${JOB_NAME} \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    --format-only \
    --cfg-options data.test.ann_file=data/coco/annotations/panoptic_image_info_test-dev2017.json data.test.img_prefix=data/coco/test2017 \
    --eval-options jsonfile_prefix=${WORK_DIR}/results





Example

Suppose we perform inference on test2017 using pretrained MaskFormer with ResNet-50 backbone.

# test with single gpu
CUDA_VISIBLE_DEVICES=0 python tools/test.py \
    configs/maskformer/maskformer_r50_mstrain_16x1_75e_coco.py \
    checkpoints/maskformer_r50_mstrain_16x1_75e_coco_20220221_141956-bc2699cb.pth \
    --format-only \
    --cfg-options data.test.ann_file=data/coco/annotations/panoptic_image_info_test-dev2017.json data.test.img_prefix=data/coco/test2017 \
    --eval-options jsonfile_prefix=work_dirs/maskformer/results








Rename files and zip results

After inference, the panoptic segmentation results (a json file and a directory where the masks are stored) will be in WORK_DIR. We should rename them according to the naming convention described on COCO’s Website [https://cocodataset.org/#upload]. Finally, we need to compress the json and the directory where the masks are stored into a zip file, and rename the zip file according to the naming convention. Note that the zip file should directly contains the above two files.

The commands to rename files and zip results:

# In WORK_DIR, we have panoptic segmentation results: 'panoptic' and 'results.panoptic.json'.
cd ${WORK_DIR}

# replace '[algorithm_name]' with the name of algorithm you used.
mv ./panoptic ./panoptic_test-dev2017_[algorithm_name]_results
mv ./results.panoptic.json ./panoptic_test-dev2017_[algorithm_name]_results.json
zip panoptic_test-dev2017_[algorithm_name]_results.zip -ur panoptic_test-dev2017_[algorithm_name]_results panoptic_test-dev2017_[algorithm_name]_results.json
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Tutorial 13: Useful Hooks

MMDetection and MMCV provide users with various useful hooks including log hooks, evaluation hooks, NumClassCheckHook, etc. This tutorial introduces the functionalities and usages of hooks implemented in MMDetection. For using hooks in MMCV, please read the API documentation in MMCV [https://github.com/open-mmlab/mmcv/blob/master/docs/en/understand_mmcv/runner.md].


CheckInvalidLossHook




EvalHook and DistEvalHook




ExpMomentumEMAHook and LinearMomentumEMAHook




NumClassCheckHook




MemoryProfilerHook [https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/hook/memory_profiler_hook.py]

Memory profiler hook records memory information including virtual memory, swap memory, and the memory of the current process. This hook helps grasp the memory usage of the system and discover potential memory leak bugs. To use this hook, users should install memory_profiler and psutil by pip install memory_profiler psutil first.


Usage

To use this hook, users should add the following code to the config file.

custom_hooks = [
    dict(type='MemoryProfilerHook', interval=50)
]








Result

During training, you can see the messages in the log recorded by MemoryProfilerHook as below. The system has 250 GB (246360 MB + 9407 MB) of memory and 8 GB (5740 MB + 2452 MB) of swap memory in total. Currently 9407 MB (4.4%) of memory and 5740 MB (29.9%) of swap memory were consumed. And the current training process consumed 5434 MB of memory.

2022-04-21 08:49:56,881 - mmdet - INFO - Memory information available_memory: 246360 MB, used_memory: 9407 MB, memory_utilization: 4.4 %, available_swap_memory: 5740 MB, used_swap_memory: 2452 MB, swap_memory_utilization: 29.9 %, current_process_memory: 5434 MB










SetEpochInfoHook




SyncNormHook




SyncRandomSizeHook




YOLOXLrUpdaterHook




YOLOXModeSwitchHook




How to implement a custom hook

In general, there are 10 points where hooks can be inserted from the beginning to the end of model training. The users can implement custom hooks and insert them at different points in the process of training to do what they want.


	global points: before_run, after_run


	points in training: before_train_epoch, before_train_iter, after_train_iter, after_train_epoch


	points in validation: before_val_epoch, before_val_iter, after_val_iter, after_val_epoch




For example, users can implement a hook to check loss and terminate training when loss goes NaN. To achieve that, there are three steps to go:


	Implement a new hook that inherits the Hook class in MMCV, and implement after_train_iter method which checks whether loss goes NaN after every n training iterations.


	The implemented hook should be registered in HOOKS by @HOOKS.register_module() as shown in the code below.


	Add custom_hooks = [dict(type='CheckInvalidLossHook', interval=50)] in the config file.




import torch
from mmcv.runner.hooks import HOOKS, Hook


@HOOKS.register_module()
class CheckInvalidLossHook(Hook):
    """Check invalid loss hook.
    This hook will regularly check whether the loss is valid
    during training.
    Args:
        interval (int): Checking interval (every k iterations).
            Default: 50.
    """

    def __init__(self, interval=50):
        self.interval = interval

    def after_train_iter(self, runner):
        if self.every_n_iters(runner, self.interval):
            assert torch.isfinite(runner.outputs['loss']), \
                runner.logger.info('loss become infinite or NaN!')





Please read customize_runtime [https://mmdetection.readthedocs.io/en/latest/tutorials/customize_runtime.html#customize-self-implemented-hooks] for more about implementing a custom hook.
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  Apart from training/testing scripts, We provide lots of useful tools under the
tools/ directory.


Log Analysis

tools/analysis_tools/analyze_logs.py plots loss/mAP curves given a training
log file. Run pip install seaborn first to install the dependency.

python tools/analysis_tools/analyze_logs.py plot_curve [--keys ${KEYS}] [--eval-interval ${EVALUATION_INTERVAL}] [--title ${TITLE}] [--legend ${LEGEND}] [--backend ${BACKEND}] [--style ${STYLE}] [--out ${OUT_FILE}]





[image: loss curve image]

Examples:


	Plot the classification loss of some run.

python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_cls --legend loss_cls







	Plot the classification and regression loss of some run, and save the figure to a pdf.

python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_cls loss_bbox --out losses.pdf







	Compare the bbox mAP of two runs in the same figure.

python tools/analysis_tools/analyze_logs.py plot_curve log1.json log2.json --keys bbox_mAP --legend run1 run2







	Compute the average training speed.

python tools/analysis_tools/analyze_logs.py cal_train_time log.json [--include-outliers]





The output is expected to be like the following.

-----Analyze train time of work_dirs/some_exp/20190611_192040.log.json-----
slowest epoch 11, average time is 1.2024
fastest epoch 1, average time is 1.1909
time std over epochs is 0.0028
average iter time: 1.1959 s/iter












Result Analysis

tools/analysis_tools/analyze_results.py calculates single image mAP and saves or shows the topk images with the highest and lowest scores based on prediction results.

Usage

python tools/analysis_tools/analyze_results.py \
      ${CONFIG} \
      ${PREDICTION_PATH} \
      ${SHOW_DIR} \
      [--show] \
      [--wait-time ${WAIT_TIME}] \
      [--topk ${TOPK}] \
      [--show-score-thr ${SHOW_SCORE_THR}] \
      [--cfg-options ${CFG_OPTIONS}]





Description of all arguments:


	config : The path of a model config file.


	prediction_path:  Output result file in pickle format from tools/test.py


	show_dir: Directory where painted GT and detection images will be saved


	--show：Determines whether to show painted images, If not specified, it will be set to False


	--wait-time: The interval of show (s), 0 is block


	--topk: The number of saved images that have the highest and lowest topk scores after sorting. If not specified, it will be set to 20.


	--show-score-thr:  Show score threshold. If not specified, it will be set to 0.


	--cfg-options: If specified, the key-value pair optional cfg will be merged into config file




Examples:

Assume that you have got result file in pickle format from tools/test.py  in the path ‘./result.pkl’.


	Test Faster R-CNN and visualize the results, save images to the directory results/




python tools/analysis_tools/analyze_results.py \
       configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
       result.pkl \
       results \
       --show






	Test Faster R-CNN and specified topk to 50, save images to the directory results/




python tools/analysis_tools/analyze_results.py \
       configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
       result.pkl \
       results \
       --topk 50






	If you want to filter the low score prediction results, you can specify the show-score-thr parameter




python tools/analysis_tools/analyze_results.py \
       configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
       result.pkl \
       results \
       --show-score-thr 0.3








Visualization


Visualize Datasets

tools/misc/browse_dataset.py helps the user to browse a detection dataset (both
images and bounding box annotations) visually, or save the image to a
designated directory.

python tools/misc/browse_dataset.py ${CONFIG} [-h] [--skip-type ${SKIP_TYPE[SKIP_TYPE...]}] [--output-dir ${OUTPUT_DIR}] [--not-show] [--show-interval ${SHOW_INTERVAL}]








Visualize Models

First, convert the model to ONNX as described
here.
Note that currently only RetinaNet is supported, support for other models
will be coming in later versions.
The converted model could be visualized by tools like Netron [https://github.com/lutzroeder/netron].




Visualize Predictions

If you need a lightweight GUI for visualizing the detection results, you can refer DetVisGUI project [https://github.com/Chien-Hung/DetVisGUI/tree/mmdetection].






Error Analysis

tools/analysis_tools/coco_error_analysis.py analyzes COCO results per category and by
different criterion. It can also make a plot to provide useful information.

python tools/analysis_tools/coco_error_analysis.py ${RESULT} ${OUT_DIR} [-h] [--ann ${ANN}] [--types ${TYPES[TYPES...]}]





Example:

Assume that you have got Mask R-CNN checkpoint file [https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth] in the path ‘checkpoint’. For other checkpoints, please refer to our model zoo. You can use the following command to get the results bbox and segmentation json file.

# out: results.bbox.json and results.segm.json
python tools/test.py \
       configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py \
       checkpoint/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
       --format-only \
       --options "jsonfile_prefix=./results"






	Get COCO bbox error results per category , save analyze result images to the directory results/




python tools/analysis_tools/coco_error_analysis.py \
       results.bbox.json \
       results \
       --ann=data/coco/annotations/instances_val2017.json \






	Get COCO segmentation error results per category , save analyze result images to the directory results/




python tools/analysis_tools/coco_error_analysis.py \
       results.segm.json \
       results \
       --ann=data/coco/annotations/instances_val2017.json \
       --types='segm'








Model Serving

In order to serve an MMDetection model with TorchServe [https://pytorch.org/serve/], you can follow the steps:


1. Convert model from MMDetection to TorchServe

python tools/deployment/mmdet2torchserve.py ${CONFIG_FILE} ${CHECKPOINT_FILE} \
--output-folder ${MODEL_STORE} \
--model-name ${MODEL_NAME}





Note: ${MODEL_STORE} needs to be an absolute path to a folder.




2. Build mmdet-serve docker image

docker build -t mmdet-serve:latest docker/serve/








3. Run mmdet-serve

Check the official docs for running TorchServe with docker [https://github.com/pytorch/serve/blob/master/docker/README.md#running-torchserve-in-a-production-docker-environment].

In order to run in GPU, you need to install nvidia-docker [https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html]. You can omit the --gpus argument in order to run in CPU.

Example:

docker run --rm \
--cpus 8 \
--gpus device=0 \
-p8080:8080 -p8081:8081 -p8082:8082 \
--mount type=bind,source=$MODEL_STORE,target=/home/model-server/model-store \
mmdet-serve:latest





Read the docs [https://github.com/pytorch/serve/blob/072f5d088cce9bb64b2a18af065886c9b01b317b/docs/rest_api.md/] about the Inference (8080), Management (8081) and Metrics (8082) APis




4. Test deployment

curl -O curl -O https://raw.githubusercontent.com/pytorch/serve/master/docs/images/3dogs.jpg
curl http://127.0.0.1:8080/predictions/${MODEL_NAME} -T 3dogs.jpg





You should obtain a response similar to:

[
  {
    "class_name": "dog",
    "bbox": [
      294.63409423828125,
      203.99111938476562,
      417.048583984375,
      281.62744140625
    ],
    "score": 0.9987992644309998
  },
  {
    "class_name": "dog",
    "bbox": [
      404.26019287109375,
      126.0080795288086,
      574.5091552734375,
      293.6662292480469
    ],
    "score": 0.9979367256164551
  },
  {
    "class_name": "dog",
    "bbox": [
      197.2144775390625,
      93.3067855834961,
      307.8505554199219,
      276.7560119628906
    ],
    "score": 0.993338406085968
  }
]





And you can use test_torchserver.py to compare result of torchserver and pytorch, and visualize them.

python tools/deployment/test_torchserver.py ${IMAGE_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} ${MODEL_NAME}
[--inference-addr ${INFERENCE_ADDR}] [--device ${DEVICE}] [--score-thr ${SCORE_THR}]





Example:

python tools/deployment/test_torchserver.py \
demo/demo.jpg \
configs/yolo/yolov3_d53_320_273e_coco.py \
checkpoint/yolov3_d53_320_273e_coco-421362b6.pth \
yolov3










Model Complexity

tools/analysis_tools/get_flops.py is a script adapted from flops-counter.pytorch [https://github.com/sovrasov/flops-counter.pytorch] to compute the FLOPs and params of a given model.

python tools/analysis_tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]





You will get the results like this.

==============================
Input shape: (3, 1280, 800)
Flops: 239.32 GFLOPs
Params: 37.74 M
==============================





Note: This tool is still experimental and we do not guarantee that the
number is absolutely correct. You may well use the result for simple
comparisons, but double check it before you adopt it in technical reports or papers.


	FLOPs are related to the input shape while parameters are not. The default
input shape is (1, 3, 1280, 800).


	Some operators are not counted into FLOPs like GN and custom operators. Refer to mmcv.cnn.get_model_complexity_info() [https://github.com/open-mmlab/mmcv/blob/master/mmcv/cnn/utils/flops_counter.py] for details.


	The FLOPs of two-stage detectors is dependent on the number of proposals.







Model conversion


MMDetection model to ONNX (experimental)

We provide a script to convert model to ONNX [https://github.com/onnx/onnx] format. We also support comparing the output results between Pytorch and ONNX model for verification.

python tools/deployment/pytorch2onnx.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --output-file ${ONNX_FILE} [--shape ${INPUT_SHAPE} --verify]





Note: This tool is still experimental. Some customized operators are not supported for now. For a detailed description of the usage and the list of supported models, please refer to pytorch2onnx.




MMDetection 1.x model to MMDetection 2.x

tools/model_converters/upgrade_model_version.py upgrades a previous MMDetection checkpoint
to the new version. Note that this script is not guaranteed to work as some
breaking changes are introduced in the new version. It is recommended to
directly use the new checkpoints.

python tools/model_converters/upgrade_model_version.py ${IN_FILE} ${OUT_FILE} [-h] [--num-classes NUM_CLASSES]








RegNet model to MMDetection

tools/model_converters/regnet2mmdet.py convert keys in pycls pretrained RegNet models to
MMDetection style.

python tools/model_converters/regnet2mmdet.py ${SRC} ${DST} [-h]








Detectron ResNet to Pytorch

tools/model_converters/detectron2pytorch.py converts keys in the original detectron pretrained
ResNet models to PyTorch style.

python tools/model_converters/detectron2pytorch.py ${SRC} ${DST} ${DEPTH} [-h]








Prepare a model for publishing

tools/model_converters/publish_model.py helps users to prepare their model for publishing.

Before you upload a model to AWS, you may want to


	convert model weights to CPU tensors


	delete the optimizer states and


	compute the hash of the checkpoint file and append the hash id to the
filename.




python tools/model_converters/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}





E.g.,

python tools/model_converters/publish_model.py work_dirs/faster_rcnn/latest.pth faster_rcnn_r50_fpn_1x_20190801.pth





The final output filename will be faster_rcnn_r50_fpn_1x_20190801-{hash id}.pth.






Dataset Conversion

tools/data_converters/ contains tools to convert the Cityscapes dataset
and Pascal VOC dataset to the COCO format.

python tools/dataset_converters/cityscapes.py ${CITYSCAPES_PATH} [-h] [--img-dir ${IMG_DIR}] [--gt-dir ${GT_DIR}] [-o ${OUT_DIR}] [--nproc ${NPROC}]
python tools/dataset_converters/pascal_voc.py ${DEVKIT_PATH} [-h] [-o ${OUT_DIR}]








Dataset Download

tools/misc/download_dataset.py supports downloading datasets such as COCO, VOC, and LVIS.

python tools/misc/download_dataset.py --dataset-name coco2017
python tools/misc/download_dataset.py --dataset-name voc2007
python tools/misc/download_dataset.py --dataset-name lvis








Benchmark


Robust Detection Benchmark

tools/analysis_tools/test_robustness.py andtools/analysis_tools/robustness_eval.py  helps users to evaluate model robustness. The core idea comes from Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming [https://arxiv.org/abs/1907.07484]. For more information how to evaluate models on corrupted images and results for a set of standard models please refer to robustness_benchmarking.md.




FPS Benchmark

tools/analysis_tools/benchmark.py helps users to calculate FPS. The FPS value includes model forward and post-processing. In order to get a more accurate value, currently only supports single GPU distributed startup mode.

python -m torch.distributed.launch --nproc_per_node=1 --master_port=${PORT} tools/analysis_tools/benchmark.py \
    ${CONFIG} \
    ${CHECKPOINT} \
    [--repeat-num ${REPEAT_NUM}] \
    [--max-iter ${MAX_ITER}] \
    [--log-interval ${LOG_INTERVAL}] \
    --launcher pytorch





Examples: Assuming that you have already downloaded the Faster R-CNN model checkpoint to the directory checkpoints/.

python -m torch.distributed.launch --nproc_per_node=1 --master_port=29500 tools/analysis_tools/benchmark.py \
       configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
       checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
       --launcher pytorch










Miscellaneous


Evaluating a metric

tools/analysis_tools/eval_metric.py evaluates certain metrics of a pkl result file
according to a config file.

python tools/analysis_tools/eval_metric.py ${CONFIG} ${PKL_RESULTS} [-h] [--format-only] [--eval ${EVAL[EVAL ...]}]
                      [--cfg-options ${CFG_OPTIONS [CFG_OPTIONS ...]}]
                      [--eval-options ${EVAL_OPTIONS [EVAL_OPTIONS ...]}]








Print the entire config

tools/misc/print_config.py prints the whole config verbatim, expanding all its
imports.

python tools/misc/print_config.py ${CONFIG} [-h] [--options ${OPTIONS [OPTIONS...]}]










Hyper-parameter Optimization


YOLO Anchor Optimization

tools/analysis_tools/optimize_anchors.py provides two method to optimize YOLO anchors.

One is k-means anchor cluster which refers from darknet [https://github.com/AlexeyAB/darknet/blob/master/src/detector.c#L1421].

python tools/analysis_tools/optimize_anchors.py ${CONFIG} --algorithm k-means --input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} --output-dir ${OUTPUT_DIR}





Another is using differential evolution to optimize anchors.

python tools/analysis_tools/optimize_anchors.py ${CONFIG} --algorithm differential_evolution --input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} --output-dir ${OUTPUT_DIR}





E.g.,

python tools/analysis_tools/optimize_anchors.py configs/yolo/yolov3_d53_320_273e_coco.py --algorithm differential_evolution --input-shape 608 608 --device cuda --output-dir work_dirs





You will get:

loading annotations into memory...
Done (t=9.70s)
creating index...
index created!
2021-07-19 19:37:20,951 - mmdet - INFO - Collecting bboxes from annotation...
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 117266/117266, 15874.5 task/s, elapsed: 7s, ETA:     0s

2021-07-19 19:37:28,753 - mmdet - INFO - Collected 849902 bboxes.
differential_evolution step 1: f(x)= 0.506055
differential_evolution step 2: f(x)= 0.506055
......

differential_evolution step 489: f(x)= 0.386625
2021-07-19 19:46:40,775 - mmdet - INFO Anchor evolution finish. Average IOU: 0.6133754253387451
2021-07-19 19:46:40,776 - mmdet - INFO Anchor differential evolution result:[[10, 12], [15, 30], [32, 22], [29, 59], [61, 46], [57, 116], [112, 89], [154, 198], [349, 336]]
2021-07-19 19:46:40,798 - mmdet - INFO Result saved in work_dirs/anchor_optimize_result.json










Confusion Matrix

A confusion matrix is a summary of prediction results.

tools/analysis_tools/confusion_matrix.py can analyze the prediction results and plot a confusion matrix table.

First, run tools/test.py to save the .pkl detection results.

Then, run

python tools/analysis_tools/confusion_matrix.py ${CONFIG}  ${DETECTION_RESULTS}  ${SAVE_DIR} --show





And you will get a confusion matrix like this:

[image: confusion_matrix_example]
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Conventions

Please check the following conventions if you would like to modify MMDetection as your own project.


Loss

In MMDetection, a dict containing losses and metrics will be returned by model(**data).

For example, in bbox head,

class BBoxHead(nn.Module):
    ...
    def loss(self, ...):
        losses = dict()
        # classification loss
        losses['loss_cls'] = self.loss_cls(...)
        # classification accuracy
        losses['acc'] = accuracy(...)
        # bbox regression loss
        losses['loss_bbox'] = self.loss_bbox(...)
        return losses





bbox_head.loss() will be called during model forward.
The returned dict contains 'loss_bbox', 'loss_cls', 'acc' .
Only 'loss_bbox', 'loss_cls' will be used during back propagation,
'acc' will only be used as a metric to monitor training process.

By default, only values whose keys contain 'loss' will be back propagated.
This behavior could be changed by modifying BaseDetector.train_step().




Empty Proposals

In MMDetection, We have added special handling and unit test for empty proposals of two-stage. We need to deal with the empty proposals of the entire batch and single image at the same time. For example, in CascadeRoIHead,

# simple_test method
...
# There is no proposal in the whole batch
if rois.shape[0] == 0:
    bbox_results = [[
        np.zeros((0, 5), dtype=np.float32)
        for _ in range(self.bbox_head[-1].num_classes)
    ]] * num_imgs
    if self.with_mask:
        mask_classes = self.mask_head[-1].num_classes
        segm_results = [[[] for _ in range(mask_classes)]
                        for _ in range(num_imgs)]
        results = list(zip(bbox_results, segm_results))
    else:
        results = bbox_results
    return results
...

# There is no proposal in the single image
for i in range(self.num_stages):
    ...
    if i < self.num_stages - 1:
          for j in range(num_imgs):
                   # Handle empty proposal
                   if rois[j].shape[0] > 0:
                       bbox_label = cls_score[j][:, :-1].argmax(dim=1)
                       refine_roi = self.bbox_head[i].regress_by_class(
                            rois[j], bbox_label, bbox_pred[j], img_metas[j])
                       refine_roi_list.append(refine_roi)





If you have customized RoIHead, you can refer to the above method to deal with empty proposals.




Coco Panoptic Dataset

In MMDetection, we have supported COCO Panoptic dataset. We clarify a few conventions about the implementation of CocoPanopticDataset here.


	For mmdet<=2.16.0, the range of foreground and background labels in semantic segmentation are different from the default setting of MMDetection. The label 0 stands for VOID label and the category labels start from 1.
Since mmdet=2.17.0, the category labels of semantic segmentation start from 0 and label 255 stands for VOID for consistency with labels of bounding boxes.
To achieve that, the Pad pipeline supports setting the padding value for seg.


	In the evaluation, the panoptic result is a map with the same shape as the original image. Each value in the result map has the format of instance_id * INSTANCE_OFFSET + category_id.
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Compatibility of MMDetection 2.x


MMDetection 2.25.0

In order to support Mask2Former for instance segmentation, the original config files of Mask2Former for panpotic segmentation need to be renamed PR #7571 [https://github.com/open-mmlab/mmdetection/pull/7571].


    
        
            	before v2.25.0
            	after v2.25.0
        

    
    
    	
'mask2former_xxx_coco.py' represents config files for **panoptic segmentation**.






    	
'mask2former_xxx_coco.py' represents config files for **instance segmentation**.
'mask2former_xxx_coco-panoptic.py' represents config files for **panoptic segmentation**.







  




MMDetection 2.21.0

In order to support CPU training, the logic of scatter in batch collating has been changed. We recommend to use
MMCV v1.4.4 or higher. For more details, please refer to MMCV PR #1621 [https://github.com/open-mmlab/mmcv/pull/1621].




MMDetection 2.18.1


MMCV compatibility

In order to fix the wrong weight reference bug in BaseTransformerLayer, the logic in batch first mode of MultiheadAttention has been changed.
We recommend to use MMCV v1.3.17 or higher. For more details, please refer to MMCV PR #1418 [https://github.com/open-mmlab/mmcv/pull/1418].






MMDetection 2.18.0


DIIHead compatibility

In order to support QueryInst, attn_feats is added into the returned tuple of DIIHead.






MMDetection 2.14.0


MMCV Version

In order to fix the problem that the priority of EvalHook is too low, all hook priorities have been re-adjusted in 1.3.8, so MMDetection 2.14.0 needs to rely on the latest MMCV 1.3.8 version. For related information, please refer to #1120 [https://github.com/open-mmlab/mmcv/pull/1120], for related issues, please refer to #5343 [https://github.com/open-mmlab/mmdetection/issues/5343].




SSD compatibility

In v2.14.0, to make SSD more flexible to use, PR5291 [https://github.com/open-mmlab/mmdetection/pull/5291] refactored its backbone, neck and head. The users can use the script tools/model_converters/upgrade_ssd_version.py to convert their models.

python tools/model_converters/upgrade_ssd_version.py ${OLD_MODEL_PATH} ${NEW_MODEL_PATH}






	OLD_MODEL_PATH: the path to load the old version SSD model.


	NEW_MODEL_PATH: the path to save the converted model weights.









MMDetection 2.12.0

MMDetection is going through big refactoring for more general and convenient usages during the releases from v2.12.0 to v2.18.0 (maybe longer).
In v2.12.0 MMDetection inevitably brings some BC-breakings, including the MMCV dependency, model initialization, model registry, and mask AP evaluation.


MMCV Version

MMDetection v2.12.0 relies on the newest features in MMCV 1.3.3, including BaseModule for unified parameter initialization, model registry, and the CUDA operator MultiScaleDeformableAttn for Deformable DETR [https://arxiv.org/abs/2010.04159]. Note that MMCV 1.3.2 already contains all the features used by MMDet but has known issues. Therefore, we recommend users to skip MMCV v1.3.2 and use v1.3.2, though v1.3.2 might work for most of the cases.




Unified model initialization

To unify the parameter initialization in OpenMMLab projects, MMCV supports BaseModule that accepts init_cfg to allow the modules’ parameters initialized in a flexible and unified manner. Now the users need to explicitly call model.init_weights() in the training script to initialize the model (as in here [https://github.com/open-mmlab/mmdetection/blob/master/tools/train.py#L162], previously this was handled by the detector. The downstream projects must update their model initialization accordingly to use MMDetection v2.12.0. Please refer to PR #4750 for details.




Unified model registry

To easily use backbones implemented in other OpenMMLab projects, MMDetection v2.12.0 inherits the model registry created in MMCV (#760). In this way, as long as the backbone is supported in an OpenMMLab project and that project also uses the registry in MMCV, users can use that backbone in MMDetection by simply modifying the config without copying the code of that backbone into MMDetection. Please refer to PR #5059 for more details.




Mask AP evaluation

Before PR 4898 [https://github.com/open-mmlab/mmdetection/pull/4898] and V2.12.0, the mask AP of small, medium, and large instances is calculated based on the bounding box area rather than the real mask area. This leads to higher APs and APm but lower APl but will not affect the overall mask AP. PR 4898 [https://github.com/open-mmlab/mmdetection/pull/4898] change it to use mask areas by deleting bbox in mask AP calculation.
The new calculation does not affect the overall mask AP evaluation and is consistent with Detectron2 [https://github.com/facebookresearch/detectron2/].






Compatibility with MMDetection 1.x

MMDetection 2.0 goes through a big refactoring and addresses many legacy issues. It is not compatible with the 1.x version, i.e., running inference with the same model weights in these two versions will produce different results. Thus, MMDetection 2.0 re-benchmarks all the models and provides their links and logs in the model zoo.

The major differences are in four folds: coordinate system, codebase conventions, training hyperparameters, and modular design.


Coordinate System

The new coordinate system is consistent with Detectron2 [https://github.com/facebookresearch/detectron2/] and treats the center of the most left-top pixel as (0, 0) rather than the left-top corner of that pixel.
Accordingly, the system interprets the coordinates in COCO bounding box and segmentation annotations as coordinates in range [0, width] or [0, height].
This modification affects all the computation related to the bbox and pixel selection,
which is more natural and accurate.


	The height and width of a box with corners (x1, y1) and (x2, y2) in the new coordinate system is computed as width = x2 - x1 and height = y2 - y1.
In MMDetection 1.x and previous version, a “+ 1” was added both height and width.
This modification are in three folds:


	Box transformation and encoding/decoding in regression.


	IoU calculation. This affects the matching process between ground truth and bounding box and the NMS process. The effect to compatibility is very negligible, though.


	The corners of bounding box is in float type and no longer quantized. This should provide more accurate bounding box results. This also makes the bounding box and RoIs not required to have minimum size of 1, whose effect is small, though.






	The anchors are center-aligned to feature grid points and in float type.
In MMDetection 1.x and previous version, the anchors are in int type and not center-aligned.
This affects the anchor generation in RPN and all the anchor-based methods.


	ROIAlign is better aligned with the image coordinate system. The new implementation is adopted from Detectron2 [https://github.com/facebookresearch/detectron2/tree/master/detectron2/layers/csrc/ROIAlign].
The RoIs are shifted by half a pixel by default when they are used to cropping RoI features, compared to MMDetection 1.x.
The old behavior is still available by setting aligned=False instead of aligned=True.


	Mask cropping and pasting are more accurate.


	We use the new RoIAlign to crop mask targets. In MMDetection 1.x, the bounding box is quantized before it is used to crop mask target, and the crop process is implemented by numpy. In new implementation, the bounding box for crop is not quantized and sent to RoIAlign. This implementation accelerates the training speed by a large margin (~0.1s per iter, ~2 hour when training Mask R50 for 1x schedule) and should be more accurate.


	In MMDetection 2.0, the “paste_mask()” function is different and should be more accurate than those in previous versions. This change follows the modification in Detectron2 [https://github.com/facebookresearch/detectron2/blob/master/detectron2/structures/masks.py] and can improve mask AP on COCO by ~0.5% absolute.











Codebase Conventions


	MMDetection 2.0 changes the order of class labels to reduce unused parameters in regression and mask branch more naturally (without +1 and -1).
This effect all the classification layers of the model to have a different ordering of class labels. The final layers of regression branch and mask head no longer keep K+1 channels for K categories, and their class orders are consistent with the classification branch.


	In MMDetection 2.0, label “K” means background, and labels [0, K-1] correspond to the K = num_categories object categories.


	In MMDetection 1.x and previous version, label “0” means background, and labels [1, K] correspond to the K categories.


	Note: The class order of softmax RPN is still the same as that in 1.x in versions<=2.4.0 while sigmoid RPN is not affected. The class orders in all heads are unified since MMDetection v2.5.0.






	Low quality matching in R-CNN is not used. In MMDetection 1.x and previous versions, the max_iou_assigner will match low quality boxes for each ground truth box in both RPN and R-CNN training. We observe this sometimes does not assign the most perfect GT box to some bounding boxes,
thus MMDetection 2.0 do not allow low quality matching by default in R-CNN training in the new system. This sometimes may slightly improve the box AP (~0.1% absolute).


	Separate scale factors for width and height. In MMDetection 1.x and previous versions, the scale factor is a single float in mode keep_ratio=True. This is slightly inaccurate because the scale factors for width and height have slight difference. MMDetection 2.0 adopts separate scale factors for width and height, the improvement on AP ~0.1% absolute.


	Configs name conventions are changed. MMDetection V2.0 adopts the new name convention to maintain the gradually growing model zoo as the following:

[model]_(model setting)_[backbone]_[neck]_(norm setting)_(misc)_(gpu x batch)_[schedule]_[dataset].py,





where the (misc) includes DCN and GCBlock, etc. More details are illustrated in the documentation for config



	MMDetection V2.0 uses new ResNet Caffe backbones to reduce warnings when loading pre-trained models. Most of the new backbones’ weights are the same as the former ones but do not have conv.bias, except that they use a different img_norm_cfg. Thus, the new backbone will not cause warning of unexpected keys.







Training Hyperparameters

The change in training hyperparameters does not affect
model-level compatibility but slightly improves the performance. The major ones are:


	The number of proposals after nms is changed from 2000 to 1000 by setting nms_post=1000 and max_num=1000.
This slightly improves both mask AP and bbox AP by ~0.2% absolute.


	The default box regression losses for Mask R-CNN, Faster R-CNN and RetinaNet are changed from smooth L1 Loss to L1 loss. This leads to an overall improvement in box AP (~0.6% absolute). However, using L1-loss for other methods such as Cascade R-CNN and HTC does not improve the performance, so we keep the original settings for these methods.


	The sample num of RoIAlign layer is set to be 0 for simplicity. This leads to slightly improvement on mask AP (~0.2% absolute).


	The default setting does not use gradient clipping anymore during training for faster training speed. This does not degrade performance of the most of models. For some models such as RepPoints we keep using gradient clipping to stabilize the training process and to obtain better performance.


	The default warmup ratio is changed from 1/3 to 0.001 for a more smooth warming up process since the gradient clipping is usually not used. The effect is found negligible during our re-benchmarking, though.







Upgrade Models from 1.x to 2.0

To convert the models trained by MMDetection V1.x to MMDetection V2.0, the users can use the script tools/model_converters/upgrade_model_version.py to convert
their models. The converted models can be run in MMDetection V2.0 with slightly dropped performance (less than 1% AP absolute).
Details can be found in configs/legacy.






pycocotools compatibility

mmpycocotools is the OpenMMlab’s fork of official pycocotools, which works for both MMDetection and Detectron2.
Before PR 4939 [https://github.com/open-mmlab/mmdetection/pull/4939], since pycocotools and mmpycocotool have the same package name, if users already installed pycocotools (installed Detectron2 first under the same environment), then the setup of MMDetection will skip installing mmpycocotool. Thus MMDetection fails due to the missing mmpycocotools.
If MMDetection is installed before Detectron2, they could work under the same environment.
PR 4939 [https://github.com/open-mmlab/mmdetection/pull/4939] deprecates mmpycocotools in favor of official pycocotools.
Users may install MMDetection and Detectron2 under the same environment after PR 4939 [https://github.com/open-mmlab/mmdetection/pull/4939], no matter what the installation order is.
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Projects based on MMDetection

There are many projects built upon MMDetection.
We list some of them as examples of how to extend MMDetection for your own projects.
As the page might not be completed, please feel free to create a PR to update this page.


Projects as an extension

Some projects extend the boundary of MMDetection for deployment or other research fields.
They reveal the potential of what MMDetection can do. We list several of them as below.


	OTEDetection [https://github.com/opencv/mmdetection]: OpenVINO training extensions for object detection.


	MMDetection3d [https://github.com/open-mmlab/mmdetection3d]: OpenMMLab’s next-generation platform for general 3D object detection.







Projects of papers

There are also projects released with papers.
Some of the papers are published in top-tier conferences (CVPR, ICCV, and ECCV), the others are also highly influential.
To make this list also a reference for the community to develop and compare new object detection algorithms, we list them following the time order of top-tier conferences.
Methods already supported and maintained by MMDetection are not listed.


	Anchor Pruning for Object Detection, CVIU 2022. [paper] [https://doi.org/10.1016/j.cviu.2022.103445][github] [https://github.com/Mxbonn/anchor_pruning]


	Involution: Inverting the Inherence of Convolution for Visual Recognition, CVPR21. [paper] [https://arxiv.org/abs/2103.06255][github] [https://github.com/d-li14/involution]


	Multiple Instance Active Learning for Object Detection, CVPR 2021. [paper] [https://openaccess.thecvf.com/content/CVPR2021/papers/Yuan_Multiple_Instance_Active_Learning_for_Object_Detection_CVPR_2021_paper.pdf][github] [https://github.com/yuantn/MI-AOD]


	Adaptive Class Suppression Loss for Long-Tail Object Detection, CVPR 2021. [paper] [https://arxiv.org/abs/2104.00885][github] [https://github.com/CASIA-IVA-Lab/ACSL]


	Generalizable Pedestrian Detection: The Elephant In The Room, CVPR2021. [paper] [https://arxiv.org/abs/2003.08799][github] [https://github.com/hasanirtiza/Pedestron]


	Group Fisher Pruning for Practical Network Compression, ICML2021. [paper] [https://github.com/jshilong/FisherPruning/blob/main/resources/paper.pdf][github] [https://github.com/jshilong/FisherPruning]


	Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax, CVPR2020. [paper] [http://openaccess.thecvf.com/content_CVPR_2020/papers/Li_Overcoming_Classifier_Imbalance_for_Long-Tail_Object_Detection_With_Balanced_Group_CVPR_2020_paper.pdf][github] [https://github.com/FishYuLi/BalancedGroupSoftmax]


	Coherent Reconstruction of Multiple Humans from a Single Image, CVPR2020. [paper] [https://jiangwenpl.github.io/multiperson/][github] [https://github.com/JiangWenPL/multiperson]


	Look-into-Object: Self-supervised Structure Modeling for Object Recognition, CVPR 2020. [paper] [http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhou_Look-Into-Object_Self-Supervised_Structure_Modeling_for_Object_Recognition_CVPR_2020_paper.pdf][github] [https://github.com/JDAI-CV/LIO]


	Video Panoptic Segmentation, CVPR2020. [paper] [https://arxiv.org/abs/2006.11339][github] [https://github.com/mcahny/vps]


	D2Det: Towards High Quality Object Detection and Instance Segmentation, CVPR2020. [paper] [http://openaccess.thecvf.com/content_CVPR_2020/html/Cao_D2Det_Towards_High_Quality_Object_Detection_and_Instance_Segmentation_CVPR_2020_paper.html][github] [https://github.com/JialeCao001/D2Det]


	CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection, CVPR2020. [paper] [https://arxiv.org/abs/2003.09119][github] [https://github.com/KiveeDong/CentripetalNet]


	Learning a Unified Sample Weighting Network for Object Detection, CVPR 2020. [paper] [http://openaccess.thecvf.com/content_CVPR_2020/html/Cai_Learning_a_Unified_Sample_Weighting_Network_for_Object_Detection_CVPR_2020_paper.html][github] [https://github.com/caiqi/sample-weighting-network]


	Scale-equalizing Pyramid Convolution for Object Detection, CVPR2020. [paper] [https://arxiv.org/abs/2005.03101] [github] [https://github.com/jshilong/SEPC]


	Revisiting the Sibling Head in Object Detector, CVPR2020. [paper] [https://arxiv.org/abs/2003.07540][github] [https://github.com/Sense-X/TSD]


	PolarMask: Single Shot Instance Segmentation with Polar Representation, CVPR2020. [paper] [https://arxiv.org/abs/1909.13226][github] [https://github.com/xieenze/PolarMask]


	Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection, CVPR2020. [paper] [https://arxiv.org/abs/2003.11818][github] [https://github.com/ggjy/HitDet.pytorch]


	ZeroQ: A Novel Zero Shot Quantization Framework, CVPR2020. [paper] [https://arxiv.org/abs/2001.00281][github] [https://github.com/amirgholami/ZeroQ]


	CBNet: A Novel Composite Backbone Network Architecture for Object Detection, AAAI2020. [paper] [https://aaai.org/Papers/AAAI/2020GB/AAAI-LiuY.1833.pdf][github] [https://github.com/VDIGPKU/CBNet]


	RDSNet: A New Deep Architecture for Reciprocal Object Detection and Instance Segmentation, AAAI2020. [paper] [https://arxiv.org/abs/1912.05070][github] [https://github.com/wangsr126/RDSNet]


	Training-Time-Friendly Network for Real-Time Object Detection, AAAI2020. [paper] [https://arxiv.org/abs/1909.00700][github] [https://github.com/ZJULearning/ttfnet]


	Cascade RPN: Delving into High-Quality Region Proposal Network with Adaptive Convolution, NeurIPS 2019. [paper] [https://arxiv.org/abs/1909.06720][github] [https://github.com/thangvubk/Cascade-RPN]


	Reasoning R-CNN: Unifying Adaptive Global Reasoning into Large-scale Object Detection, CVPR2019. [paper] [http://openaccess.thecvf.com/content_CVPR_2019/papers/Xu_Reasoning-RCNN_Unifying_Adaptive_Global_Reasoning_Into_Large-Scale_Object_Detection_CVPR_2019_paper.pdf][github] [https://github.com/chanyn/Reasoning-RCNN]


	Learning RoI Transformer for Oriented Object Detection in Aerial Images, CVPR2019. [paper] [https://arxiv.org/abs/1812.00155][github] [https://github.com/dingjiansw101/AerialDetection]


	SOLO: Segmenting Objects by Locations. [paper] [https://arxiv.org/abs/1912.04488][github] [https://github.com/WXinlong/SOLO]


	SOLOv2: Dynamic, Faster and Stronger. [paper] [https://arxiv.org/abs/2003.10152][github] [https://github.com/WXinlong/SOLO]


	Dense Peppoints: Representing Visual Objects with Dense Point Sets. [paper] [https://arxiv.org/abs/1912.11473][github] [https://github.com/justimyhxu/Dense-RepPoints]


	IterDet: Iterative Scheme for Object Detection in Crowded Environments. [paper] [https://arxiv.org/abs/2005.05708][github] [https://github.com/saic-vul/iterdet]


	Cross-Iteration Batch Normalization. [paper] [https://arxiv.org/abs/2002.05712][github] [https://github.com/Howal/Cross-iterationBatchNorm]


	A Ranking-based, Balanced Loss Function Unifying Classification and Localisation in Object Detection, NeurIPS2020 [paper] [https://arxiv.org/abs/2009.13592][github] [https://github.com/kemaloksuz/aLRPLoss]


	RelationNet++: Bridging Visual Representations for Object Detection via Transformer Decoder, NeurIPS2020 [paper] [https://arxiv.org/abs/2010.15831][github] [https://github.com/microsoft/RelationNet2]


	Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection, CVPR2021[paper] [https://arxiv.org/abs/2011.12885][github] [https://github.com/implus/GFocalV2]


	Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV2021[paper] [https://arxiv.org/abs/2103.14030][github] [https://github.com/SwinTransformer/]


	Focal Transformer: Focal Self-attention for Local-Global Interactions in Vision Transformers, NeurIPS2021[paper] [https://arxiv.org/abs/2107.00641][github] [https://github.com/microsoft/Focal-Transformer]


	End-to-End Semi-Supervised Object Detection with Soft Teacher, ICCV2021[paper] [https://arxiv.org/abs/2106.09018][github] [https://github.com/microsoft/SoftTeacher]


	CBNetV2: A Novel Composite Backbone Network Architecture for Object Detection [paper] [http://arxiv.org/abs/2107.00420][github] [https://github.com/VDIGPKU/CBNetV2]


	Instances as Queries, ICCV2021 [paper] [https://openaccess.thecvf.com/content/ICCV2021/papers/Fang_Instances_As_Queries_ICCV_2021_paper.pdf][github] [https://github.com/hustvl/QueryInst]
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Changelog


v2.27.0 (5/1/2023)


Highlights


	Support receptive field search of CNN models(TPAMI 2022: RF-Next [http://mftp.mmcheng.net/Papers/22TPAMI-ActionSeg.pdf]) (#8191)







Bug Fixes


	Fix deadlock issue related with MMDetWandbHook (#9476)







Improvements


	Add minimum GitHub token permissions for workflows (#8928)


	Delete compatible code for parrots in roi extractor (#9503)


	Deprecate np.bool Type Alias (#9498)


	Replace numpy transpose with torch permute to speed-up data pre-processing (#9533)







Documents


	Fix typo in docs/zh_cn/tutorials/config.md (#9416)


	Fix Faster RCNN FP16 config link in README (#9366)







Contributors

A total of 12 developers contributed to this release.
Thanks @Min-Sheng, @gasvn, @lzyhha, @jbwang1997, @zachcoleman, @chenyuwang814, @MilkClouds, @Fizzez, @boahc077, @apatsekin, @zytx121, @DonggeunYu






v2.26.0 (23/11/2022)


Highlights


	Support training on NPU (#9267)







Bug Fixes


	Fix RPN visualization (#9151)


	Fix readthedocs by freezing the dependency versions (#9154)


	Fix device argument error in MMDet_Tutorial.ipynb (#9112)


	Fix solov2 cannot dealing with empty gt image (#9185)


	Fix random flipping ratio comparison of mixup image (#9336)







Improvements


	Complement necessary argument of seg_suffix of cityscapes (#9330)


	Support copy paste based on bbox when there is no gt mask (#8905)


	Make scipy as a default dependency in runtime (#9186)







Documents


	Delete redundant Chinese characters in docs (#9175)


	Add MMEval in README (#9217)







Contributors

A total of 11 developers contributed to this release.
Thanks @wangjiangben-hw, @motokimura, @AdorableJiang, @BainOuO, @JarvisKevin, @wanghonglie, @zytx121, @BIGWangYuDong, @hhaAndroid, @RangiLyu, @ZwwWayne






v2.25.3 (25/10/2022)


Bug Fixes


	Skip remote sync when wandb is offline (#8755)


	Fix jpg to png bug when using seg maps (#9078)







Improvements


	Fix typo in warning (#8844)


	Fix CI for timm, pycocotools, onnx (#9034)


	Upgrade pre-commit hooks (#8964)







Documents


	Update BoundedIoULoss config in readme (#8808)


	Fix Faster R-CNN Readme (#8803)


	Update location of test_cfg and train_cfg (#8792)


	Fix issue template (#8966)


	Update random sampler docstring (#9033)


	Fix wrong image link (#9054)


	Fix FPG readme (#9041)







Contributors

A total of 13 developers contributed to this release.
Thanks @Zheng-LinXiao, @i-aki-y, @fbagci, @sudoAimer, @Czm369, @DrRyanHuang, @RangiLyu, @wanghonglie, @shinya7y, @Ryoo72, @akshaygulabrao, @gy-7, @Neesky






v2.25.2 (15/9/2022)


Bug Fixes


	Fix DyDCNv2 RuntimeError (#8485)


	Fix repeated import of CascadeRPNHead (#8578)


	Fix absolute positional embedding of swin backbone (#8127)


	Fix get train_pipeline method of val workflow (#8575)







Improvements


	Upgrade onnxsim to at least 0.4.0 (#8383)


	Support tuple format in analyze_results script (#8549)


	Fix floordiv warning (#8648)







Documents


	Fix typo in HTC link (#8487)


	Fix docstring of BboxOverlaps2D (#8512)


	Added missed Chinese tutorial link (#8564)


	Fix mistakes in gaussian radius formula (#8607)


	Update config documentation about how to Add WandB Hook (#8663)


	Add mmengine link in readme (#8799)


	Update issue template (#8802)







Contributors

A total of 16 developers contributed to this release.
Thanks @daquexian, @lyq10085, @ZwwWayne, @fbagci, @BubblyYi, @fathomson, @ShunchiZhang, @ceasona, @Happylkx, @normster, @chhluo, @Lehsuby, @JiayuXu0, @Nourollah, @hewanru-bit, @RangiLyu






v2.25.1 (29/7/2022)


Bug Fixes


	Fix single GPU distributed training of cuda device specifying (#8176)


	Fix PolygonMask bug in FilterAnnotations (#8136)


	Fix mdformat version to support python3.6 (#8195)


	Fix GPG key error in Dockerfile (#8215)


	Fix WandbLoggerHook error (#8273)


	Fix Pytorch 1.10 incompatibility issues (#8439)







Improvements


	Add mim to extras_require in setup.py (#8194)


	Support get image shape on macOS (#8434)


	Add test commands of mim in CI (#8230 & #8240)


	Update maskformer to be compatible when cfg is a dictionary (#8263)


	Clean Pillow version check in CI (#8229)







Documents


	Change example hook name in tutorials (#8118)


	Update projects (#8120)


	Update metafile and release new models (#8294)


	Add download link in tutorials (#8391)







Contributors

A total of 15 developers contributed to this release.
Thanks @ZwwWayne, @ayulockin, @Mxbonn, @p-mishra1, @Youth-Got, @MiXaiLL76, @chhluo, @jbwang1997, @atinfinity, @shinya7y, @duanzhihua, @STLAND-admin, @BIGWangYuDong, @grimoire, @xiaoyuan0203






v2.25.0 (31/5/2022)


Highlights


	Support dedicated WandbLogger hook


	Support ConvNeXt, DDOD, SOLOv2


	Support Mask2Former for instance segmentation


	Rename config files of Mask2Former







Backwards incompatible changes


	Rename config files of Mask2Former (#7571)


  
      
          	before v2.25.0
          	after v2.25.0
      

  
  
  	

	mask2former_xxx_coco.py represents config files for panoptic segmentation.





  	

	mask2former_xxx_coco.py represents config files for instance segmentation.


	mask2former_xxx_coco-panoptic.py represents config files for panoptic segmentation.















New Features


	Support ConvNeXt [https://arxiv.org/abs/2201.03545] (#7281)


	Support DDOD [https://arxiv.org/abs/2107.02963] (#7279)


	Support SOLOv2 [https://arxiv.org/abs/2003.10152] (#7441)


	Support Mask2Former [https://arxiv.org/abs/2112.01527] for instance segmentation (#7571, #8032)







Bug Fixes


	Enable YOLOX training on different devices (#7912)


	Fix the log plot error when evaluation with interval != 1 (#7784)


	Fix RuntimeError of HTC (#8083)







Improvements


	Support dedicated WandbLogger hook (#7459)

Users can set

cfg.log_config.hooks = [
  dict(type='MMDetWandbHook',
       init_kwargs={'project': 'MMDetection-tutorial'},
       interval=10,
       log_checkpoint=True,
       log_checkpoint_metadata=True,
       num_eval_images=10)]





in the config to use MMDetWandbHook. Example can be found in this colab tutorial [https://colab.research.google.com/drive/1RCSXHZwDZvakFh3eo9RuNrJbCGqD0dru?usp=sharing#scrollTo=WTEdPDRaBz2C]



	Add AvoidOOM to avoid OOM (#7434, #8091)

Try to use AvoidCUDAOOM to avoid GPU out of memory. It will first retry after calling torch.cuda.empty_cache(). If it still fails, it will then retry by converting the type of inputs to FP16 format. If it still fails, it will try to copy inputs from GPUs to CPUs to continue computing. Try AvoidOOM in code to make the code continue to run when GPU memory runs out:

from mmdet.utils import AvoidCUDAOOM

output = AvoidCUDAOOM.retry_if_cuda_oom(some_function)(input1, input2)





Users can also try AvoidCUDAOOM as a decorator to make the code continue to run when GPU memory runs out:

from mmdet.utils import AvoidCUDAOOM

@AvoidCUDAOOM.retry_if_cuda_oom
def function(*args, **kwargs):
    ...
    return xxx







	Support reading gpu_collect from cfg.evaluation.gpu_collect (#7672)


	Speedup the Video Inference by Accelerating data-loading Stage (#7832)


	Support replacing the ${key} with the value of cfg.key (#7492)


	Accelerate result analysis in analyze_result.py. The evaluation time is speedup by 10 ~ 15 times and only tasks 10 ~ 15 minutes now. (#7891)


	Support to set block_dilations in DilatedEncoder (#7812)


	Support panoptic segmentation result analysis (#7922)


	Release DyHead with Swin-Large backbone (#7733)


	Documentations updating and adding


	Fix wrong default type of act_cfg in SwinTransformer (#7794)


	Fix text errors in the tutorials (#7959)


	Rewrite the installation guide (#7897)


	Useful hooks (#7810)


	Fix heading anchor in documentation  (#8006)


	Replace markdownlint with mdformat for avoiding installing ruby (#8009)











Contributors

A total of 20 developers contributed to this release.

Thanks @ZwwWayne, @DarthThomas, @solyaH, @LutingWang, @chenxinfeng4, @Czm369, @Chenastron, @chhluo, @austinmw, @Shanyaliux @hellock, @Y-M-Y, @jbwang1997, @hhaAndroid, @Irvingao, @zhanggefan, @BIGWangYuDong, @Keiku, @PeterVennerstrom, @ayulockin






v2.24.0 (26/4/2022)


Highlights


	Support Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation [https://arxiv.org/abs/2012.07177]


	Support automatically scaling LR according to GPU number and samples per GPU


	Support Class Aware Sampler that improves performance on OpenImages Dataset







New Features


	Support Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation [https://arxiv.org/abs/2012.07177], see example configs (#7501)


	Support Class Aware Sampler, users can set

data=dict(train_dataloader=dict(class_aware_sampler=dict(num_sample_class=1))))





in the config to use ClassAwareSampler. Examples can be found in the configs of OpenImages Dataset [https://github.com/open-mmlab/mmdetection/tree/master/configs/openimages/faster_rcnn_r50_fpn_32x2_cas_1x_openimages.py].  (#7436)



	Support automatically scaling LR according to GPU number and samples per GPU. (#7482)
In each config, there is a corresponding config of auto-scaling LR as below,

auto_scale_lr = dict(enable=True, base_batch_size=N)





where N is the batch size used for the current learning rate in the config (also equals to samples_per_gpu * gpu number to train this config).
By default, we set enable=False so that the original usages will not be affected. Users can set enable=True in each config or add --auto-scale-lr after the command line to enable this feature and should check the correctness of base_batch_size in customized configs.



	Support setting dataloader arguments in config and add functions to handle config compatibility. (#7668)
The comparison between the old and new usages is as below.


  
      
          	v2.23.0
          	v2.24.0
      

  
  
  	
data = dict(
    samples_per_gpu=64, workers_per_gpu=4,
    train=dict(type='xxx', ...),
    val=dict(type='xxx', samples_per_gpu=4, ...),
    test=dict(type='xxx', ...),
)






  	
# A recommended config that is clear
data = dict(
    train=dict(type='xxx', ...),
    val=dict(type='xxx', ...),
    test=dict(type='xxx', ...),
    # Use different batch size during inference.
    train_dataloader=dict(samples_per_gpu=64, workers_per_gpu=4),
    val_dataloader=dict(samples_per_gpu=8, workers_per_gpu=2),
    test_dataloader=dict(samples_per_gpu=8, workers_per_gpu=2),
)

# Old style still works but allows to set more arguments about data loaders
data = dict(
    samples_per_gpu=64,  # only works for train_dataloader
    workers_per_gpu=4,  # only works for train_dataloader
    train=dict(type='xxx', ...),
    val=dict(type='xxx', ...),
    test=dict(type='xxx', ...),
    # Use different batch size during inference.
    val_dataloader=dict(samples_per_gpu=8, workers_per_gpu=2),
    test_dataloader=dict(samples_per_gpu=8, workers_per_gpu=2),
)











	Support memory profile hook. Users can use it to monitor the memory usages during training as below (#7560)

custom_hooks = [
    dict(type='MemoryProfilerHook', interval=50)
]







	Support to run on PyTorch with MLU chip (#7578)


	Support re-spliting data batch with tag (#7641)


	Support the DiceCost used by K-Net [https://arxiv.org/abs/2106.14855] in MaskHungarianAssigner (#7716)


	Support splitting COCO data for Semi-supervised object detection (#7431)


	Support Pathlib for Config.fromfile (#7685)


	Support to use file client in OpenImages dataset (#7433)


	Add a probability parameter to Mosaic transformation (#7371)


	Support specifying interpolation mode in Resize pipeline (#7585)







Bug Fixes


	Avoid invalid bbox after deform_sampling (#7567)


	Fix the issue that argument color_theme does not take effect when exporting confusion matrix (#7701)


	Fix the end_level in Necks, which should be the index of the end input backbone level (#7502)


	Fix the bug that mix_results may be None in MultiImageMixDataset (#7530)


	Fix the bug in ResNet plugin when two plugins are used (#7797)







Improvements


	Enhance load_json_logs of analyze_logs.py for resumed training logs (#7732)


	Add argument out_file in image_demo.py (#7676)


	Allow mixed precision training with SimOTAAssigner (#7516)


	Updated INF to 100000.0 to be the same as that in the official YOLOX (#7778)


	Add documentations of:


	how to get channels of a new backbone (#7642)


	how to unfreeze the backbone network (#7570)


	how to train fast_rcnn model (#7549)


	proposals in Deformable DETR (#7690)


	from-scratch install script in get_started.md (#7575)






	Release pre-trained models of


	Mask2Former (#7595, #7709)


	RetinaNet with ResNet-18 and release models (#7387)


	RetinaNet with EfficientNet backbone (#7646)











Contributors

A total of 27 developers contributed to this release.
Thanks @jovialio, @zhangsanfeng2022, @HarryZJ, @jamiechoi1995, @nestiank, @PeterH0323, @RangeKing, @Y-M-Y, @mattcasey02, @weiji14, @Yulv-git, @xiefeifeihu, @FANG-MING, @meng976537406, @nijkah, @sudz123, @CCODING04, @SheffieldCao, @Czm369, @BIGWangYuDong, @zytx121, @jbwang1997, @chhluo, @jshilong, @RangiLyu, @hhaAndroid, @ZwwWayne






v2.23.0 (28/3/2022)


Highlights


	Support Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation [https://arxiv.org/abs/2112.01527]


	Support EfficientNet: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks [https://arxiv.org/abs/1905.11946]


	Support setting data root through environment variable MMDET_DATASETS, users don’t have to modify the corresponding path in config files anymore.


	Find a good recipe for fine-tuning high precision ResNet backbone pre-trained by Torchvision.







New Features


	Support Mask2Former(#6938)(#7466)(#7471)


	Support EfficientNet (#7514)


	Support setting data root through environment variable MMDET_DATASETS, users don’t have to modify the corresponding path in config files anymore. (#7386)


	Support setting different seeds to different ranks (#7432)


	Update the dist_train.sh so that the script can be used to support launching multi-node training on machines without slurm (#7415)


	Find a good recipe for fine-tuning high precision ResNet backbone pre-trained by Torchvision (#7489)







Bug Fixes


	Fix bug in VOC unit test which removes the data directory (#7270)


	Adjust the order of get_classes and FileClient (#7276)


	Force the inputs of get_bboxes in yolox_head to float32 (#7324)


	Fix misplaced arguments in LoadPanopticAnnotations (#7388)


	Fix reduction=mean in CELoss. (#7449)


	Update unit test of CrossEntropyCost (#7537)


	Fix memory leaking in panpotic segmentation evaluation (#7538)


	Fix the bug of shape broadcast in YOLOv3 (#7551)







Improvements


	Add Chinese version of onnx2tensorrt.md (#7219)


	Update colab tutorials (#7310)


	Update information about Localization Distillation (#7350)


	Add Chinese version of finetune.md (#7178)


	Update YOLOX log for non square input (#7235)


	Add nproc in coco_panoptic.py for panoptic quality computing (#7315)


	Allow to set channel_order in LoadImageFromFile (#7258)


	Take point sample related functions out of mask_point_head (#7353)


	Add instance evaluation for coco_panoptic (#7313)


	Enhance the robustness of analyze_logs.py (#7407)


	Supplementary notes of sync_random_seed (#7440)


	Update docstring of cross entropy loss (#7472)


	Update pascal voc result (#7503)


	We create How-to documentation to record any questions about How to xxx. In this version, we added


	How to use Mosaic augmentation (#7507)


	How to use backbone in mmcls (#7438)


	How to produce and submit the prediction results of panoptic segmentation models on COCO test-dev set (#7430))











Contributors

A total of 27 developers contributed to this release.
Thanks @ZwwWayne, @haofanwang, @shinya7y, @chhluo, @yangrisheng, @triple-Mu, @jbwang1997, @HikariTJU, @imflash217, @274869388, @zytx121, @matrixgame2018, @jamiechoi1995, @BIGWangYuDong, @JingweiZhang12, @Xiangxu-0103, @hhaAndroid, @jshilong, @osbm, @ceroytres, @bunge-bedstraw-herb, @Youth-Got, @daavoo, @jiangyitong, @RangiLyu, @CCODING04, @yarkable






v2.22.0 (24/2/2022)


Highlights


	Support MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation [https://arxiv.org/abs/2107.06278] (#7212)


	Support DyHead: Dynamic Head: Unifying Object Detection Heads with Attentions [https://arxiv.org/abs/2106.08322] (#6823)


	Release a good recipe of using ResNet in object detectors pre-trained by ResNet Strikes Back [https://arxiv.org/abs/2110.00476], which consistently brings about 3~4 mAP improvements over RetinaNet, Faster/Mask/Cascade Mask R-CNN (#7001)


	Support Open Images Dataset [https://storage.googleapis.com/openimages/web/index.html] (#6331)


	Support TIMM backbone: PyTorch Image Models [https://github.com/rwightman/pytorch-image-models] (#7020)







New Features


	Support MaskFormer (#7212)


	Support DyHead (#6823)


	Support ResNet Strikes Back (#7001)


	Support OpenImages Dataset (#6331)


	Support TIMM backbone (#7020)


	Support visualization for Panoptic Segmentation (#7041)







Breaking Changes

In order to support the visualization for Panoptic Segmentation, the num_classes can not be None when using the get_palette function to determine whether to use the panoptic palette.




Bug Fixes


	Fix bug for the best checkpoints can not be saved when the key_score is None (#7101)


	Fix MixUp transform filter boxes failing case (#7080)


	Add missing properties in SABLHead (#7091)


	Fix bug when NaNs exist in confusion matrix (#7147)


	Fix PALETTE AttributeError in downstream task (#7230)







Improvements


	Speed up SimOTA matching (#7098)


	Add Chinese translation of docs_zh-CN/tutorials/init_cfg.md (#7188)







Contributors

A total of 20 developers contributed to this release.
Thanks @ZwwWayne, @hhaAndroid, @RangiLyu, @AronLin, @BIGWangYuDong, @jbwang1997, @zytx121, @chhluo, @shinya7y, @LuooChen, @dvansa, @siatwangmin, @del-zhenwu, @vikashranjan26, @haofanwang, @jamiechoi1995, @HJoonKwon, @yarkable, @zhijian-liu, @RangeKing






v2.21.0 (8/2/2022)




Breaking Changes

To standardize the contents in config READMEs and meta files of OpenMMLab projects, the READMEs and meta files in each config directory have been significantly changed. The template will be released in the future, for now, you can refer to the examples of README for algorithm [https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn/README.md], dataset [https://github.com/open-mmlab/mmdetection/blob/master/configs/deepfashion/README.md] and backbone [https://github.com/open-mmlab/mmdetection/blob/master/configs/regnet/README.md]. To align with the standard, the configs in dcn are put into to two directories named dcn and dcnv2.


New Features


	Allow to customize colors of different classes during visualization (#6716)


	Support CPU training (#7016)


	Add download script of COCO, LVIS, and VOC dataset (#7015)







Bug Fixes


	Fix weight conversion issue of RetinaNet with Swin-S (#6973)


	Update __repr__ of Compose (#6951)


	Fix BadZipFile Error when build docker (#6966)


	Fix bug in non-distributed multi-gpu training/testing (#7019)


	Fix bbox clamp in PyTorch 1.10 (#7074)


	Relax the requirement of PALETTE in dataset wrappers (#7085)


	Keep the same weights before reassign in the PAA head (#7032)


	Update code demo in doc (#7092)







Improvements


	Speed-up training by allow to set variables of multi-processing (#6974, #7036)


	Add links of Chinese tutorials in readme (#6897)


	Disable cv2 multiprocessing by default for acceleration (#6867)


	Deprecate the support for “python setup.py test” (#6998)


	Re-organize metafiles and config readmes (#7051)


	Fix None grad problem during training TOOD by adding SigmoidGeometricMean (#7090)







Contributors

A total of 26 developers contributed to this release.
Thanks @del-zhenwu, @zimoqingfeng, @srishilesh, @imyhxy, @jenhaoyang, @jliu-ac, @kimnamu, @ShengliLiu, @garvan2021, @ciusji, @DIYer22, @kimnamu, @q3394101, @zhouzaida, @gaotongxiao, @topsy404, @AntoAndGar, @jbwang1997, @nijkah, @ZwwWayne, @Czm369, @jshilong, @RangiLyu, @BIGWangYuDong, @hhaAndroid, @AronLin






v2.20.0 (27/12/2021)


New Features


	Support TOOD: Task-aligned One-stage Object Detection (ICCV 2021 Oral) (#6746)


	Support resuming from the latest checkpoint automatically (#6727)







Bug Fixes


	Fix wrong bbox loss_weight of the PAA head (#6744)


	Fix the padding value of gt_semantic_seg in batch collating (#6837)


	Fix test error of lvis when using classwise (#6845)


	Avoid BC-breaking of get_local_path  (#6719)


	Fix bug in sync_norm_hook when the BN layer does not exist (#6852)


	Use pycocotools directly no matter what platform it is (#6838)







Improvements


	Add unit test for SimOTA with no valid bbox (#6770)


	Use precommit to check readme (#6802)


	Support selecting GPU-ids in non-distributed testing time (#6781)







Contributors

A total of 16 developers contributed to this release.
Thanks @ZwwWayne, @Czm369, @jshilong, @RangiLyu, @BIGWangYuDong, @hhaAndroid, @jamiechoi1995, @AronLin, @Keiku, @gkagkos, @fcakyon, @www516717402, @vansin, @zactodd, @kimnamu, @jenhaoyang






v2.19.1 (14/12/2021)


New Features


	Release YOLOX COCO pretrained models (#6698)







Bug Fixes


	Fix DCN initialization in DenseHead (#6625)


	Fix initialization of ConvFCHead (#6624)


	Fix PseudoSampler in RCNN (#6622)


	Fix weight initialization in Swin and PVT (#6663)


	Fix dtype bug in BaseDenseHead (#6767)


	Fix SimOTA with no valid bbox (#6733)







Improvements


	Add an example of combining swin and one-stage models (#6621)


	Add get_ann_info to dataset_wrappers (#6526)


	Support keeping image ratio in the multi-scale training of YOLOX (#6732)


	Support bbox_clip_border for the augmentations of YOLOX (#6730)







Documents


	Update metafile (#6717)


	Add mmhuman3d in readme (#6699)


	Update FAQ docs (#6587)


	Add doc for detect_anomalous_params (#6697)







Contributors

A total of 11 developers contributed to this release.
Thanks @ZwwWayne, @LJoson, @Czm369, @jshilong, @ZCMax, @RangiLyu, @BIGWangYuDong, @hhaAndroid, @zhaoxin111, @GT9505, @shinya7y






v2.19.0 (29/11/2021)


Highlights


	Support Label Assignment Distillation [https://arxiv.org/abs/2108.10520]


	Support persistent_workers for Pytorch >= 1.7


	Align accuracy to the updated official YOLOX







New Features


	Support Label Assignment Distillation [https://arxiv.org/abs/2108.10520] (#6342)


	Support persistent_workers for Pytorch >= 1.7 (#6435)







Bug Fixes


	Fix repeatedly output warning message (#6584)


	Avoid infinite GPU waiting in dist training (#6501)


	Fix SSD512 config error (#6574)


	Fix MMDetection model to ONNX command (#6558)







Improvements


	Refactor configs of FP16 models (#6592)


	Align accuracy to the updated official YOLOX (#6443)


	Speed up training and reduce memory cost when using PhotoMetricDistortion. (#6442)


	Make OHEM work with seesaw loss (#6514)







Documents


	Update README.md (#6567)







Contributors

A total of 11 developers contributed to this release.
Thanks @FloydHsiu, @RangiLyu, @ZwwWayne, @AndreaPi, @st9007a, @hachreak, @BIGWangYuDong, @hhaAndroid, @AronLin, @chhluo, @vealocia, @HarborYuan, @st9007a, @jshilong






v2.18.1 (15/11/2021)


Highlights


	Release QueryInst [http://arxiv.org/abs/2105.01928] pre-trained weights (#6460)


	Support plot confusion matrix (#6344)







New Features


	Release QueryInst [http://arxiv.org/abs/2105.01928] pre-trained weights (#6460)


	Support plot confusion matrix (#6344)







Bug Fixes


	Fix aug test error when the number of prediction bboxes is 0 (#6398)


	Fix SpatialReductionAttention in PVT (#6488)


	Fix wrong use of trunc_normal_init in PVT and Swin-Transformer (#6432)







Improvements


	Save the printed AP information of COCO API to logger (#6505)


	Always map location to cpu when load checkpoint (#6405)


	Set a random seed when the user does not set a seed (#6457)







Documents


	Chinese version of Corruption Benchmarking (#6375)


	Fix config path in docs (#6396)


	Update GRoIE readme (#6401)







Contributors

A total of 11 developers contributed to this release.
Thanks @st9007a, @hachreak, @HarborYuan, @vealocia, @chhluo, @AndreaPi, @AronLin, @BIGWangYuDong, @hhaAndroid, @RangiLyu, @ZwwWayne






v2.18.0 (27/10/2021)


Highlights


	Support QueryInst [http://arxiv.org/abs/2105.01928] (#6050)


	Refactor dense heads to decouple onnx export logics from get_bboxes and speed up inference (#5317, #6003, #6369, #6268, #6315)







New Features


	Support QueryInst [http://arxiv.org/abs/2105.01928] (#6050)


	Support infinite sampler (#5996)







Bug Fixes


	Fix init_weight in fcn_mask_head (#6378)


	Fix type error in imshow_bboxes of RPN (#6386)


	Fix broken colab link in MMDetection Tutorial (#6382)


	Make sure the device and dtype of scale_factor are the same as bboxes (#6374)


	Remove sampling hardcode (#6317)


	Fix RandomAffine bbox coordinate recorrection (#6293)


	Fix init bug of final cls/reg layer in convfc head (#6279)


	Fix img_shape broken in auto_augment (#6259)


	Fix kwargs parameter missing error in two_stage (#6256)







Improvements


	Unify the interface of stuff head and panoptic head (#6308)


	Polish readme (#6243)


	Add code-spell pre-commit hook and fix a typo (#6306)


	Fix typo (#6245, #6190)


	Fix sampler unit test (#6284)


	Fix forward_dummy of YOLACT to enable get_flops (#6079)


	Fix link error in the config documentation (#6252)


	Adjust the order to beautify the document (#6195)







Refactors


	Refactor one-stage get_bboxes logic (#5317)


	Refactor ONNX export of One-Stage models (#6003, #6369)


	Refactor dense_head and speedup (#6268)


	Migrate to use prior_generator in training of dense heads (#6315)







Contributors

A total of 18 developers contributed to this release.
Thanks @Boyden, @onnkeat, @st9007a, @vealocia, @yhcao6, @DapangpangX, @yellowdolphin, @cclauss, @kennymckormick,
@pingguokiller, @collinzrj, @AndreaPi, @AronLin, @BIGWangYuDong, @hhaAndroid, @jshilong, @RangiLyu, @ZwwWayne






v2.17.0 (28/9/2021)


Highlights


	Support PVT [https://arxiv.org/abs/2102.12122] and PVTv2 [https://arxiv.org/abs/2106.13797]


	Support SOLO [https://arxiv.org/abs/1912.04488]


	Support large scale jittering and New Mask R-CNN baselines


	Speed up YOLOv3 inference







New Features


	Support PVT [https://arxiv.org/abs/2102.12122] and PVTv2 [https://arxiv.org/abs/2106.13797] (#5780)


	Support SOLO [https://arxiv.org/abs/1912.04488] (#5832)


	Support large scale jittering and New Mask R-CNN baselines (#6132)


	Add a general data structure for the results of models (#5508)


	Added a base class for one-stage instance segmentation (#5904)


	Speed up YOLOv3 inference (#5991)


	Release Swin Transformer pre-trained models (#6100)


	Support mixed precision training in YOLOX (#5983)


	Support val workflow in YOLACT (#5986)


	Add script to test torchserve (#5936)


	Support onnxsim with dynamic input shape (#6117)







Bug Fixes


	Fix the function naming errors in model_wrappers (#5975)


	Fix regression loss bug when the input is an empty tensor (#5976)


	Fix scores not contiguous error in centernet_head (#6016)


	Fix missing parameters bug in imshow_bboxes (#6034)


	Fix bug in aug_test of HTC when the length of det_bboxes is 0 (#6088)


	Fix empty proposal errors in the training of some two-stage models (#5941)


	Fix dynamic_axes parameter error in ONNX dynamic shape export (#6104)


	Fix dynamic_shape bug of SyncRandomSizeHook (#6144)


	Fix the Swin Transformer config link error in the configuration (#6172)







Improvements


	Add filter rules in Mosaic transform (#5897)


	Add size divisor in get flops to avoid some potential bugs (#6076)


	Add Chinese translation of docs_zh-CN/tutorials/customize_dataset.md (#5915)


	Add Chinese translation of conventions.md (#5825)


	Add description of the output of data pipeline (#5886)


	Add dataset information in the README file for PanopticFPN (#5996)


	Add extra_repr for DropBlock layer to get details in the model printing (#6140)


	Fix CI out of memory and add PyTorch1.9 Python3.9 unit tests (#5862)


	Fix download links error of some model (#6069)


	Improve the generalization of XML dataset (#5943)


	Polish assertion error messages (#6017)


	Remove opencv-python-headless dependency by albumentations (#5868)


	Check dtype in transform unit tests (#5969)


	Replace the default theme of documentation with PyTorch Sphinx Theme (#6146)


	Update the paper and code fields in the metafile (#6043)


	Support to customize padding value of segmentation map (#6152)


	Support to resize multiple segmentation maps (#5747)







Contributors

A total of 24 developers contributed to this release.
Thanks @morkovka1337, @HarborYuan, @guillaumefrd, @guigarfr, @www516717402, @gaotongxiao, @ypwhs, @MartaYang, @shinya7y, @justiceeem, @zhaojinjian0000, @VVsssssk, @aravind-anantha, @wangbo-zhao, @czczup, @whai362, @czczup, @marijnl, @AronLin, @BIGWangYuDong, @hhaAndroid, @jshilong, @RangiLyu, @ZwwWayne






v2.16.0 (30/8/2021)


Highlights


	Support Panoptic FPN [https://arxiv.org/abs/1901.02446] and Swin Transformer [https://arxiv.org/abs/2103.14030]







New Features


	Support Panoptic FPN [https://arxiv.org/abs/1901.02446] and release models (#5577, #5902)


	Support Swin Transformer backbone (#5748)


	Release RetinaNet models pre-trained with multi-scale 3x schedule (#5636)


	Add script to convert unlabeled image list to coco format (#5643)


	Add hook to check whether the loss value is valid (#5674)


	Add YOLO anchor optimizing tool (#5644)


	Support export onnx models without post process. (#5851)


	Support classwise evaluation in CocoPanopticDataset (#5896)


	Adapt browse_dataset for concatenated datasets. (#5935)


	Add PatchEmbed and PatchMerging with AdaptivePadding (#5952)







Bug Fixes


	Fix unit tests of YOLOX (#5859)


	Fix lose randomness in imshow_det_bboxes (#5845)


	Make output result of ImageToTensor contiguous (#5756)


	Fix inference bug when calling regress_by_class in RoIHead in some cases (#5884)


	Fix bug in CIoU loss where alpha should not have gradient. (#5835)


	Fix the bug that multiscale_output is defined but not used in HRNet (#5887)


	Set the priority of EvalHook to LOW. (#5882)


	Fix a YOLOX bug when applying bbox rescaling in test mode (#5899)


	Fix mosaic coordinate error (#5947)


	Fix dtype of bbox in RandomAffine. (#5930)







Improvements


	Add Chinese version of data_pipeline and  (#5662)


	Support to remove state dicts of EMA when publishing models. (#5858)


	Refactor the loss function in HTC and SCNet (#5881)


	Use warnings instead of logger.warning (#5540)


	Use legacy coordinate in metric of VOC (#5627)


	Add Chinese version of customize_losses (#5826)


	Add Chinese version of model_zoo (#5827)







Contributors

A total of 19 developers contributed to this release.
Thanks @ypwhs, @zywvvd, @collinzrj, @OceanPang, @ddonatien, @@haotian-liu, @viibridges, @Muyun99, @guigarfr, @zhaojinjian0000, @jbwang1997,@wangbo-zhao, @xvjiarui, @RangiLyu, @jshilong, @AronLin, @BIGWangYuDong, @hhaAndroid, @ZwwWayne






v2.15.1 (11/8/2021)


Highlights


	Support YOLOX [https://arxiv.org/abs/2107.08430]







New Features


	Support YOLOX [https://arxiv.org/abs/2107.08430](#5756, #5758, #5760, #5767, #5770, #5774, #5777, #5808, #5828, #5848)







Bug Fixes


	Update correct SSD models. (#5789)


	Fix casting error in mask structure (#5820)


	Fix MMCV deployment documentation links. (#5790)







Improvements


	Use dynamic MMCV download link in TorchServe dockerfile (#5779)


	Rename the function upsample_like to interpolate_as for more general usage (#5788)







Contributors

A total of 14 developers contributed to this release.
Thanks @HAOCHENYE, @xiaohu2015, @HsLOL, @zhiqwang, @Adamdad, @shinya7y, @Johnson-Wang, @RangiLyu, @jshilong, @mmeendez8, @AronLin, @BIGWangYuDong, @hhaAndroid, @ZwwWayne






v2.15.0 (02/8/2021)


Highlights


	Support adding MIM [https://github.com/open-mmlab/mim] dependencies during pip installation


	Support MobileNetV2 for SSD-Lite and YOLOv3


	Support Chinese Documentation







New Features


	Add function upsample_like (#5732)


	Support to output pdf and epub format documentation (#5738)


	Support and release Cascade Mask R-CNN 3x pre-trained models (#5645)


	Add ignore_index to CrossEntropyLoss (#5646)


	Support adding MIM [https://github.com/open-mmlab/mim] dependencies during pip installation (#5676)


	Add MobileNetV2 config and models for YOLOv3 (#5510)


	Support COCO Panoptic Dataset (#5231)


	Support ONNX export of cascade models (#5486)


	Support DropBlock with RetinaNet (#5544)


	Support MobileNetV2 SSD-Lite (#5526)







Bug Fixes


	Fix the device of label in multiclass_nms (#5673)


	Fix error of backbone initialization from pre-trained checkpoint in config file (#5603, #5550)


	Fix download links of RegNet pretrained weights (#5655)


	Fix two-stage runtime error given empty proposal (#5559)


	Fix flops count error in DETR (#5654)


	Fix unittest for NumClassCheckHook when it is not used. (#5626)


	Fix description bug of using custom dataset (#5546)


	Fix bug of multiclass_nms that returns the global indices (#5592)


	Fix valid_mask logic error in RPNHead (#5562)


	Fix unit test error of pretrained configs (#5561)


	Fix typo error in anchor_head.py (#5555)


	Fix bug when using dataset wrappers (#5552)


	Fix a typo error in demo/MMDet_Tutorial.ipynb (#5511)


	Fixing crash in get_root_logger when cfg.log_level is not None (#5521)


	Fix docker version (#5502)


	Fix optimizer parameter error when using IterBasedRunner (#5490)







Improvements


	Add unit tests for MMTracking (#5620)


	Add Chinese translation of documentation (#5718, #5618, #5558, #5423, #5593, #5421, #5408. #5369, #5419, #5530, #5531)


	Update resource limit (#5697)


	Update docstring for InstaBoost (#5640)


	Support key reduction_override in all loss functions (#5515)


	Use repeatdataset to accelerate CenterNet training (#5509)


	Remove unnecessary code in autoassign (#5519)


	Add documentation about init_cfg (#5273)







Contributors

A total of 18 developers contributed to this release.
Thanks @OceanPang, @AronLin, @hellock, @Outsider565, @RangiLyu, @ElectronicElephant, @likyoo, @BIGWangYuDong, @hhaAndroid, @noobying, @yyz561, @likyoo,
@zeakey, @ZwwWayne, @ChenyangLiu, @johnson-magic, @qingswu, @BuxianChen






v2.14.0 (29/6/2021)


Highlights


	Add simple_test to dense heads to improve the consistency of single-stage and two-stage detectors


	Revert the test_mixins to single image test to improve efficiency and readability


	Add Faster R-CNN and Mask R-CNN config using multi-scale training with 3x schedule







New Features


	Support pretrained models from MoCo v2 and SwAV (#5286)


	Add Faster R-CNN and Mask R-CNN config using multi-scale training with 3x schedule (#5179, #5233)


	Add reduction_override in MSELoss (#5437)


	Stable support of exporting DETR to ONNX with dynamic shapes and batch inference (#5168)


	Stable support of exporting PointRend to ONNX with dynamic shapes and batch inference (#5440)







Bug Fixes


	Fix size mismatch bug in multiclass_nms (#4980)


	Fix the import path of MultiScaleDeformableAttention (#5338)


	Fix errors in config of GCNet ResNext101 models (#5360)


	Fix Grid-RCNN error when there is no bbox result (#5357)


	Fix errors in onnx_export of bbox_head when setting reg_class_agnostic (#5468)


	Fix type error of AutoAssign in the document (#5478)


	Fix web links ending with .md (#5315)







Improvements


	Add simple_test to dense heads to improve the consistency of single-stage and two-stage detectors (#5264)


	Add support for mask diagonal flip in TTA (#5403)


	Revert the test_mixins to single image test to improve efficiency and readability (#5249)


	Make YOLOv3 Neck more flexible (#5218)


	Refactor SSD to make it more general (#5291)


	Refactor anchor_generator and point_generator (#5349)


	Allow to configure out the mask_head of the HTC algorithm (#5389)


	Delete deprecated warning in FPN (#5311)


	Move model.pretrained to model.backbone.init_cfg (#5370)


	Make deployment tools more friendly to use (#5280)


	Clarify installation documentation (#5316)


	Add ImageNet Pretrained Models docs (#5268)


	Add FAQ about training loss=nan solution and COCO AP or AR =-1 (# 5312, #5313)


	Change all weight links of http to https (#5328)









v2.13.0 (01/6/2021)


Highlights


	Support new methods: CenterNet [https://arxiv.org/abs/1904.07850], Seesaw Loss [https://arxiv.org/abs/2008.10032], MobileNetV2 [https://arxiv.org/abs/1801.04381]







New Features


	Support paper Objects as Points [https://arxiv.org/abs/1904.07850] (#4602)


	Support paper Seesaw Loss for Long-Tailed Instance Segmentation (CVPR 2021) [https://arxiv.org/abs/2008.10032] (#5128)


	Support MobileNetV2 [https://arxiv.org/abs/1801.04381] backbone and inverted residual block (#5122)


	Support MIM [https://github.com/open-mmlab/mim] (#5143)


	ONNX exportation with dynamic shapes of CornerNet (#5136)


	Add mask_soft config option to allow non-binary masks (#4615)


	Add PWC metafile (#5135)







Bug Fixes


	Fix YOLOv3 FP16 training error (#5172)


	Fix Cacscade R-CNN TTA test error when det_bboxes length is 0  (#5221)


	Fix iou_thr variable naming errors in VOC recall calculation function (#5195)


	Fix Faster R-CNN performance dropped in ONNX Runtime (#5197)


	Fix DETR dict changed error when using python 3.8 during iteration  (#5226)







Improvements


	Refactor ONNX export of two stage detector (#5205)


	Replace MMDetection’s EvalHook with MMCV’s EvalHook for consistency  (#4806)


	Update RoI extractor for ONNX (#5194)


	Use better parameter initialization in YOLOv3 head for higher performance (#5181)


	Release new DCN models of Mask R-CNN by mixed-precision training (#5201)


	Update YOLOv3 model weights (#5229)


	Add DetectoRS ResNet-101 model weights (#4960)


	Discard bboxes with sizes equals to min_bbox_size (#5011)


	Remove duplicated code in DETR head (#5129)


	Remove unnecessary object in class definition (#5180)


	Fix doc link (#5192)









v2.12.0 (01/5/2021)


Highlights


	Support new methods: AutoAssign [https://arxiv.org/abs/2007.03496], YOLOF [https://arxiv.org/abs/2103.09460], and Deformable DETR [https://arxiv.org/abs/2010.04159]


	Stable support of exporting models to ONNX with batched images and dynamic shape (#5039)







Backwards Incompatible Changes

MMDetection is going through big refactoring for more general and convenient usages during the releases from v2.12.0 to v2.15.0 (maybe longer).
In v2.12.0 MMDetection inevitably brings some BC-breakings, including the MMCV dependency, model initialization, model registry, and mask AP evaluation.


	MMCV version. MMDetection v2.12.0 relies on the newest features in MMCV 1.3.3, including BaseModule for unified parameter initialization, model registry, and the CUDA operator MultiScaleDeformableAttn for Deformable DETR [https://arxiv.org/abs/2010.04159]. Note that MMCV 1.3.2 already contains all the features used by MMDet but has known issues. Therefore, we recommend users skip MMCV v1.3.2 and use v1.3.3, though v1.3.2 might work for most cases.


	Unified model initialization (#4750). To unify the parameter initialization in OpenMMLab projects, MMCV supports BaseModule that accepts init_cfg to allow the modules’ parameters initialized in a flexible and unified manner. Now the users need to explicitly call model.init_weights() in the training script to initialize the model (as in here [https://github.com/open-mmlab/mmdetection/blob/master/tools/train.py#L162], previously this was handled by the detector. The models in MMDetection have been re-benchmarked to ensure accuracy based on PR #4750. The downstream projects should update their code accordingly to use MMDetection v2.12.0.


	Unified model registry (#5059). To easily use backbones implemented in other OpenMMLab projects, MMDetection migrates to inherit the model registry created in MMCV (#760). In this way, as long as the backbone is supported in an OpenMMLab project and that project also uses the registry in MMCV, users can use that backbone in MMDetection by simply modifying the config without copying the code of that backbone into MMDetection.


	Mask AP evaluation (#4898). Previous versions calculate the areas of masks through the bounding boxes when calculating the mask AP of small, medium, and large instances. To indeed use the areas of masks, we pop the key bbox during mask AP calculation. This change does not affect the overall mask AP evaluation and aligns the mask AP of similar models in other projects like Detectron2.







New Features


	Support paper AutoAssign: Differentiable Label Assignment for Dense Object Detection [https://arxiv.org/abs/2007.03496] (#4295)


	Support paper You Only Look One-level Feature [https://arxiv.org/abs/2103.09460] (#4295)


	Support paper Deformable DETR: Deformable Transformers for End-to-End Object Detection [https://arxiv.org/abs/2010.04159] (#4778)


	Support calculating IoU with FP16 tensor in bbox_overlaps to save memory and keep speed (#4889)


	Add __repr__ in custom dataset to count the number of instances (#4756)


	Add windows support by updating requirements.txt (#5052)


	Stable support of exporting models to ONNX with batched images and dynamic shape, including SSD, FSAF,FCOS, YOLOv3, RetinaNet, Faster R-CNN, and Mask R-CNN (#5039)







Improvements


	Use MMCV MODEL_REGISTRY (#5059)


	Unified parameter initialization for more flexible usage (#4750)


	Rename variable names and fix docstring in anchor head (#4883)


	Support training with empty GT in Cascade RPN (#4928)


	Add more details of usage of test_robustness in documentation (#4917)


	Changing to use pycocotools instead of mmpycocotools to fully support Detectron2 and MMDetection in one environment (#4939)


	Update torch serve dockerfile to support dockers of more versions (#4954)


	Add check for training with single class dataset (#4973)


	Refactor transformer and DETR Head (#4763)


	Update FPG model zoo (#5079)


	More accurate mask AP of small/medium/large instances (#4898)







Bug Fixes


	Fix bug in mean_ap.py when calculating mAP by 11 points (#4875)


	Fix error when key meta is not in old checkpoints (#4936)


	Fix hanging bug when training with empty GT in VFNet, GFL, and FCOS by changing the place of reduce_mean (#4923, #4978, #5058)


	Fix asyncronized inference error and provide related demo (#4941)


	Fix IoU losses dimensionality unmatch error (#4982)


	Fix torch.randperm whtn using PyTorch 1.8 (#5014)


	Fix empty bbox error in mask_head when using CARAFE (#5062)


	Fix supplement_mask bug when there are zero-size RoIs (#5065)


	Fix testing with empty rois in RoI Heads (#5081)









v2.11.0 (01/4/2021)

Highlights


	Support new method: Localization Distillation for Object Detection [https://arxiv.org/pdf/2102.12252.pdf]


	Support Pytorch2ONNX with batch inference and dynamic shape




New Features


	Support Localization Distillation for Object Detection [https://arxiv.org/pdf/2102.12252.pdf] (#4758)


	Support Pytorch2ONNX with batch inference and dynamic shape for Faster-RCNN and mainstream one-stage detectors (#4796)




Improvements


	Support batch inference in head of RetinaNet (#4699)


	Add batch dimension in second stage of Faster-RCNN (#4785)


	Support batch inference in bbox coder (#4721)


	Add check for ann_ids in COCODataset to ensure it is unique (#4789)


	support for showing the FPN results (#4716)


	support dynamic shape for grid_anchor (#4684)


	Move pycocotools version check to when it is used (#4880)




Bug Fixes


	Fix a bug of TridentNet when doing the batch inference (#4717)


	Fix a bug of Pytorch2ONNX in FASF (#4735)


	Fix a bug when show the image with float type (#4732)







v2.10.0 (01/03/2021)


Highlights


	Support new methods: FPG [https://arxiv.org/abs/2004.03580]


	Support ONNX2TensorRT for SSD, FSAF, FCOS, YOLOv3, and Faster R-CNN.







New Features


	Support ONNX2TensorRT for SSD, FSAF, FCOS, YOLOv3, and Faster R-CNN (#4569)


	Support Feature Pyramid Grids (FPG) [https://arxiv.org/abs/2004.03580] (#4645)


	Support video demo (#4420)


	Add seed option for sampler (#4665)


	Support to customize type of runner (#4570, #4669)


	Support synchronizing BN buffer in EvalHook (#4582)


	Add script for GIF demo (#4573)







Bug Fixes


	Fix ConfigDict AttributeError and add Colab link (#4643)


	Avoid crash in empty gt training of GFL head (#4631)


	Fix iou_thrs bug in RPN evaluation (#4581)


	Fix syntax error of config when upgrading model version (#4584)







Improvements


	Refactor unit test file structures (#4600)


	Refactor nms config (#4636)


	Get loading pipeline by checking the class directly rather than through config strings (#4619)


	Add doctests for mask target generation and mask structures (#4614)


	Use deep copy when copying pipeline arguments (#4621)


	Update documentations (#4642, #4650, #4620, #4630)


	Remove redundant code calling import_modules_from_strings (#4601)


	Clean deprecated FP16 API (#4571)


	Check whether CLASSES is correctly initialized in the initialization of XMLDataset (#4555)


	Support batch inference in the inference API (#4462, #4526)


	Clean deprecated warning and fix ‘meta’ error (#4695)









v2.9.0 (01/02/2021)


Highlights


	Support new methods: SCNet [https://arxiv.org/abs/2012.10150], Sparse R-CNN [https://arxiv.org/abs/2011.12450]


	Move train_cfg and test_cfg into model in configs


	Support to visualize results based on prediction quality







New Features


	Support SCNet [https://arxiv.org/abs/2012.10150] (#4356)


	Support Sparse R-CNN [https://arxiv.org/abs/2011.12450] (#4219)


	Support evaluate mAP by multiple IoUs (#4398)


	Support concatenate dataset for testing (#4452)


	Support to visualize results based on prediction quality (#4441)


	Add ONNX simplify option to Pytorch2ONNX script (#4468)


	Add hook for checking compatibility of class numbers in heads and datasets (#4508)







Bug Fixes


	Fix CPU inference bug of Cascade RPN (#4410)


	Fix NMS error of CornerNet when there is no prediction box (#4409)


	Fix TypeError in CornerNet inference (#4411)


	Fix bug of PAA when training with background images (#4391)


	Fix the error that the window data is not destroyed when out_file is not None and show==False (#4442)


	Fix order of NMS score_factor that will decrease the performance of YOLOv3 (#4473)


	Fix bug in HTC TTA when the number of detection boxes is 0 (#4516)


	Fix resize error in mask data structures (#4520)







Improvements


	Allow to customize classes in LVIS dataset (#4382)


	Add tutorials for building new models with existing datasets (#4396)


	Add CPU compatibility information in documentation (#4405)


	Add documentation of deprecated ImageToTensor for batch inference (#4408)


	Add more details in documentation for customizing dataset (#4430)


	Switch imshow_det_bboxes visualization backend from OpenCV to Matplotlib (#4389)


	Deprecate ImageToTensor in image_demo.py (#4400)


	Move train_cfg/test_cfg into model (#4347, #4489)


	Update docstring for reg_decoded_bbox option in bbox heads (#4467)


	Update dataset information in documentation (#4525)


	Release pre-trained R50 and R101 PAA detectors with multi-scale 3x training schedules (#4495)


	Add guidance for speed benchmark (#4537)









v2.8.0 (04/01/2021)


Highlights


	Support new methods: Cascade RPN [https://arxiv.org/abs/1909.06720], TridentNet [https://arxiv.org/abs/1901.01892]







New Features


	Support Cascade RPN [https://arxiv.org/abs/1909.06720] (#1900)


	Support TridentNet [https://arxiv.org/abs/1901.01892] (#3313)







Bug Fixes


	Fix bug of show result in async_benchmark (#4367)


	Fix scale factor in MaskTestMixin (#4366)


	Fix but when returning indices in multiclass_nms (#4362)


	Fix bug of empirical attention in resnext backbone error (#4300)


	Fix bug of img_norm_cfg in FCOS-HRNet models with updated performance and models (#4250)


	Fix invalid checkpoint and log in Mask R-CNN models on Cityscapes dataset (#4287)


	Fix bug in distributed sampler when dataset is too small (#4257)


	Fix bug of ‘PAFPN has no attribute extra_convs_on_inputs’ (#4235)







Improvements


	Update model url from aws to aliyun (#4349)


	Update ATSS for PyTorch 1.6+ (#4359)


	Update script to install ruby in pre-commit installation (#4360)


	Delete deprecated mmdet.ops (#4325)


	Refactor hungarian assigner for more general usage in Sparse R-CNN (#4259)


	Handle scipy import in DETR to reduce package dependencies (#4339)


	Update documentation of usages for config options after MMCV (1.2.3) supports overriding list in config (#4326)


	Update pre-train models of faster rcnn trained on COCO subsets (#4307)


	Avoid zero or too small value for beta in Dynamic R-CNN (#4303)


	Add doccumentation for Pytorch2ONNX (#4271)


	Add deprecated warning FPN arguments (#4264)


	Support returning indices of kept bboxes when using nms (#4251)


	Update type and device requirements when creating tensors GFLHead (#4210)


	Update device requirements when creating tensors in CrossEntropyLoss (#4224)









v2.7.0 (30/11/2020)


	Support new method: DETR [https://arxiv.org/abs/2005.12872], ResNest [https://arxiv.org/abs/2004.08955], Faster R-CNN DC5.


	Support YOLO, Mask R-CNN, and Cascade R-CNN models exportable to ONNX.





New Features


	Support DETR [https://arxiv.org/abs/2005.12872] (#4201, #4206)


	Support to link the best checkpoint in training (#3773)


	Support to override config through options in inference.py (#4175)


	Support YOLO, Mask R-CNN, and Cascade R-CNN models exportable to ONNX (#4087, #4083)


	Support ResNeSt [https://arxiv.org/abs/2004.08955] backbone (#2959)


	Support unclip border bbox regression (#4076)


	Add tpfp func in evaluating AP (#4069)


	Support mixed precision training of SSD detector with other backbones (#4081)


	Add Faster R-CNN DC5 models (#4043)







Bug Fixes


	Fix bug of gpu_id in distributed training mode (#4163)


	Support Albumentations with version higher than 0.5 (#4032)


	Fix num_classes bug in faster rcnn config (#4088)


	Update code in docs/2_new_data_model.md (#4041)







Improvements


	Ensure DCN offset to have similar type as features in VFNet (#4198)


	Add config links in README files of models (#4190)


	Add tutorials for loss conventions (#3818)


	Add solution to installation issues in 30-series GPUs (#4176)


	Update docker version in get_started.md (#4145)


	Add model statistics and polish some titles in configs README (#4140)


	Clamp neg probability in FreeAnchor (#4082)


	Speed up expanding large images (#4089)


	Fix Pytorch 1.7 incompatibility issues (#4103)


	Update trouble shooting page to resolve segmentation fault (#4055)


	Update aLRP-Loss in project page (#4078)


	Clean duplicated reduce_mean function (#4056)


	Refactor Q&A (#4045)









v2.6.0 (1/11/2020)


	Support new method: VarifocalNet [https://arxiv.org/abs/2008.13367].


	Refactored documentation with more tutorials.





New Features


	Support GIoU calculation in BboxOverlaps2D, and re-implement giou_loss using bbox_overlaps (#3936)


	Support random sampling in CPU mode (#3948)


	Support VarifocalNet (#3666, #4024)







Bug Fixes


	Fix SABL validating bug in Cascade R-CNN (#3913)


	Avoid division by zero in PAA head when num_pos=0 (#3938)


	Fix temporary directory bug of multi-node testing error (#4034, #4017)


	Fix --show-dir option in test script (#4025)


	Fix GA-RetinaNet r50 model url (#3983)


	Update code in docs and fix broken urls (#3947)







Improvements


	Refactor pytorch2onnx API into mmdet.core.export and use generate_inputs_and_wrap_model for pytorch2onnx (#3857, #3912)


	Update RPN upgrade scripts for v2.5.0 compatibility (#3986)


	Use mmcv tensor2imgs (#4010)


	Update test robustness (#4000)


	Update trouble shooting page (#3994)


	Accelerate PAA training speed (#3985)


	Support batch_size > 1 in validation (#3966)


	Use RoIAlign implemented in MMCV for inference in CPU mode (#3930)


	Documentation refactoring (#4031)









v2.5.0 (5/10/2020)


Highlights


	Support new methods: YOLACT [https://arxiv.org/abs/1904.02689], CentripetalNet [https://arxiv.org/abs/2003.09119].


	Add more documentations for easier and more clear usage.







Backwards Incompatible Changes

FP16 related methods are imported from mmcv instead of mmdet. (#3766, #3822)
Mixed precision training utils in mmdet.core.fp16 are moved to mmcv.runner, including force_fp32, auto_fp16, wrap_fp16_model, and Fp16OptimizerHook. A deprecation warning will be raised if users attempt to import those methods from mmdet.core.fp16, and will be finally removed in V2.10.0.

[0, N-1] represents foreground classes and N indicates background classes for all models. (#3221)
Before v2.5.0, the background label for RPN is 0, and N for other heads. Now the behavior is consistent for all models. Thus self.background_labels in dense_heads is removed and all heads use self.num_classes to indicate the class index of background labels.
This change has no effect on the pre-trained models in the v2.x model zoo, but will affect the training of all models with RPN heads. Two-stage detectors whose RPN head uses softmax will be affected because the order of categories is changed.

Only call get_subset_by_classes when test_mode=True and self.filter_empty_gt=True (#3695)
Function get_subset_by_classes in dataset is refactored and only filters out images when test_mode=True and self.filter_empty_gt=True.
In the original implementation, get_subset_by_classes is not related to the flag self.filter_empty_gt and will only be called when the classes is set during initialization no matter test_mode is True or False. This brings ambiguous behavior and potential bugs in many cases. After v2.5.0, if filter_empty_gt=False, no matter whether the classes are specified in a dataset, the dataset will use all the images in the annotations. If filter_empty_gt=True and test_mode=True, no matter whether the classes are specified, the dataset will call ``get_subset_by_classes` to check the images and filter out images containing no GT boxes. Therefore, the users should be responsible for the data filtering/cleaning process for the test dataset.




New Features


	Test time augmentation for single stage detectors (#3844, #3638)


	Support to show the name of experiments during training (#3764)


	Add Shear, Rotate, Translate Augmentation (#3656, #3619, #3687)


	Add image-only transformations including Constrast, Equalize, Color, and Brightness. (#3643)


	Support YOLACT [https://arxiv.org/abs/1904.02689] (#3456)


	Support CentripetalNet [https://arxiv.org/abs/2003.09119] (#3390)


	Support PyTorch 1.6 in docker (#3905)







Bug Fixes


	Fix the bug of training ATSS when there is no ground truth boxes (#3702)


	Fix the bug of using Focal Loss when there is num_pos is 0 (#3702)


	Fix the label index mapping in dataset browser (#3708)


	Fix Mask R-CNN training stuck problem when their is no positive rois (#3713)


	Fix the bug of self.rpn_head.test_cfg in RPNTestMixin by using self.rpn_head in rpn head (#3808)


	Fix deprecated Conv2d from mmcv.ops (#3791)


	Fix device bug in RepPoints (#3836)


	Fix SABL validating bug (#3849)


	Use https://download.openmmlab.com/mmcv/dist/index.html for installing MMCV (#3840)


	Fix nonzero in NMS for PyTorch 1.6.0 (#3867)


	Fix the API change bug of PAA (#3883)


	Fix typo in bbox_flip (#3886)


	Fix cv2 import error of ligGL.so.1 in Dockerfile (#3891)







Improvements


	Change to use mmcv.utils.collect_env for collecting environment information to avoid duplicate codes (#3779)


	Update checkpoint file names to v2.0 models in documentation (#3795)


	Update tutorials for changing runtime settings (#3778), modifying loss (#3777)


	Improve the function of simple_test_bboxes in SABL (#3853)


	Convert mask to bool before using it as img’s index for robustness and speedup (#3870)


	Improve documentation of modules and dataset customization (#3821)









v2.4.0 (5/9/2020)

Highlights


	Fix lots of issues/bugs and reorganize the trouble shooting page


	Support new methods SABL [https://arxiv.org/abs/1912.04260], YOLOv3 [https://arxiv.org/abs/1804.02767], and PAA Assign [https://arxiv.org/abs/2007.08103]


	Support Batch Inference


	Start to publish mmdet package to PyPI since v2.3.0


	Switch model zoo to download.openmmlab.com




Backwards Incompatible Changes


	Support Batch Inference (#3564, #3686, #3705): Since v2.4.0, MMDetection could inference model with multiple images in a single GPU.
This change influences all the test APIs in MMDetection and downstream codebases. To help the users migrate their code, we use replace_ImageToTensor (#3686) to convert legacy test data pipelines during dataset initialization.


	Support RandomFlip with horizontal/vertical/diagonal direction (#3608): Since v2.4.0, MMDetection supports horizontal/vertical/diagonal flip in the data augmentation. This influences bounding box, mask, and image transformations in data augmentation process and the process that will map those data back to the original format.


	Migrate to use mmlvis and mmpycocotools for COCO and LVIS dataset (#3727). The APIs are fully compatible with the original lvis and pycocotools. Users need to uninstall the existing pycocotools and lvis packages in their environment first and install mmlvis & mmpycocotools.




Bug Fixes


	Fix default mean/std for onnx (#3491)


	Fix coco evaluation and add metric items (#3497)


	Fix typo for install.md (#3516)


	Fix atss when sampler per gpu is 1 (#3528)


	Fix import of fuse_conv_bn (#3529)


	Fix bug of gaussian_target, update unittest of heatmap (#3543)


	Fixed VOC2012 evaluate (#3553)


	Fix scale factor bug of rescale (#3566)


	Fix with_xxx_attributes in base detector (#3567)


	Fix boxes scaling when number is 0 (#3575)


	Fix rfp check when neck config is a list (#3591)


	Fix import of fuse conv bn in benchmark.py (#3606)


	Fix webcam demo (#3634)


	Fix typo and itemize issues in tutorial (#3658)


	Fix error in distributed training when some levels of FPN are not assigned with bounding boxes (#3670)


	Fix the width and height orders of stride in valid flag generation (#3685)


	Fix weight initialization bug in Res2Net DCN (#3714)


	Fix bug in OHEMSampler (#3677)




New Features


	Support Cutout augmentation (#3521)


	Support evaluation on multiple datasets through ConcatDataset (#3522)


	Support PAA assign [https://arxiv.org/abs/2007.08103] #(3547)


	Support eval metric with pickle results (#3607)


	Support YOLOv3 [https://arxiv.org/abs/1804.02767] (#3083)


	Support SABL [https://arxiv.org/abs/1912.04260] (#3603)


	Support to publish to Pypi in github-action (#3510)


	Support custom imports (#3641)




Improvements


	Refactor common issues in documentation (#3530)


	Add pytorch 1.6 to CI config (#3532)


	Add config to runner meta (#3534)


	Add eval-option flag for testing (#3537)


	Add init_eval to evaluation hook (#3550)


	Add include_bkg in ClassBalancedDataset (#3577)


	Using config’s loading in inference_detector (#3611)


	Add ATSS ResNet-101 models in model zoo (#3639)


	Update urls to download.openmmlab.com (#3665)


	Support non-mask training for CocoDataset (#3711)







v2.3.0 (5/8/2020)

Highlights


	The CUDA/C++ operators have been moved to mmcv.ops. For backward compatibility mmdet.ops is kept as warppers of mmcv.ops.


	Support new methods CornerNet [https://arxiv.org/abs/1808.01244], DIOU [https://arxiv.org/abs/1911.08287]/CIOU [https://arxiv.org/abs/2005.03572] loss, and new dataset: LVIS V1 [https://arxiv.org/abs/1908.03195]


	Provide more detailed colab training tutorials and more complete documentation.


	Support to convert RetinaNet from Pytorch to ONNX.




Bug Fixes


	Fix the model initialization bug of DetectoRS (#3187)


	Fix the bug of module names in NASFCOSHead (#3205)


	Fix the filename bug in publish_model.py (#3237)


	Fix the dimensionality bug when inside_flags.any() is False in dense heads (#3242)


	Fix the bug of forgetting to pass flip directions in MultiScaleFlipAug (#3262)


	Fixed the bug caused by default value of stem_channels (#3333)


	Fix the bug of model checkpoint loading for CPU inference (#3318, #3316)


	Fix topk bug when box number is smaller than the expected topk number in ATSSAssigner (#3361)


	Fix the gt priority bug in center_region_assigner.py (#3208)


	Fix NaN issue of iou calculation in iou_loss.py (#3394)


	Fix the bug that iou_thrs is not actually used during evaluation in coco.py (#3407)


	Fix test-time augmentation of RepPoints (#3435)


	Fix runtimeError caused by incontiguous tensor in Res2Net+DCN (#3412)




New Features


	Support CornerNet [https://arxiv.org/abs/1808.01244] (#3036)


	Support DIOU [https://arxiv.org/abs/1911.08287]/CIOU [https://arxiv.org/abs/2005.03572] loss (#3151)


	Support LVIS V1 [https://arxiv.org/abs/1908.03195] dataset (#)


	Support customized hooks in training (#3395)


	Support fp16 training of generalized focal loss (#3410)


	Support to convert RetinaNet from Pytorch to ONNX (#3075)




Improvements


	Support to process ignore boxes in ATSS assigner (#3082)


	Allow to crop images without ground truth in RandomCrop (#3153)


	Enable the the Accuracy module to set threshold (#3155)


	Refactoring unit tests (#3206)


	Unify the training settings of to_float32 and norm_cfg in RegNets configs (#3210)


	Add colab training tutorials for beginners (#3213, #3273)


	Move CUDA/C++ operators into mmcv.ops and keep mmdet.ops as warppers for backward compatibility (#3232)(#3457)


	Update installation scripts in documentation (#3290) and dockerfile (#3320)


	Support to set image resize backend (#3392)


	Remove git hash in version file (#3466)


	Check mmcv version to force version compatibility (#3460)







v2.2.0 (1/7/2020)

Highlights


	Support new methods: DetectoRS [https://arxiv.org/abs/2006.02334], PointRend [https://arxiv.org/abs/1912.08193], Generalized Focal Loss [https://arxiv.org/abs/2006.04388], Dynamic R-CNN [https://arxiv.org/abs/2004.06002]




Bug Fixes


	Fix FreeAnchor when no gt in image (#3176)


	Clean up deprecated usage of register_module() (#3092, #3161)


	Fix pretrain bug in NAS FCOS (#3145)


	Fix num_classes in SSD (#3142)


	Fix FCOS warmup (#3119)


	Fix rstrip in tools/publish_model.py


	Fix flip_ratio default value in RandomFLip pipeline (#3106)


	Fix cityscapes eval with ms_rcnn (#3112)


	Fix RPN softmax (#3056)


	Fix filename of LVIS@v0.5 (#2998)


	Fix nan loss by filtering out-of-frame gt_bboxes in COCO (#2999)


	Fix bug in FSAF (#3018)


	Add FocalLoss num_classes check (#2964)


	Fix PISA Loss when there are no gts (#2992)


	Avoid nan in iou_calculator (#2975)


	Prevent possible bugs in loading and transforms caused by shallow copy (#2967)




New Features


	Add DetectoRS (#3064)


	Support Generalize Focal Loss (#3097)


	Support PointRend (#2752)


	Support Dynamic R-CNN (#3040)


	Add DeepFashion dataset (#2968)


	Implement FCOS training tricks (#2935)


	Use BaseDenseHead as base class for anchor-base heads (#2963)


	Add with_cp for BasicBlock (#2891)


	Add stem_channels argument for ResNet (#2954)




Improvements


	Add anchor free base head (#2867)


	Migrate to github action (#3137)


	Add docstring for datasets, pipelines, core modules and methods (#3130, #3125, #3120)


	Add VOC benchmark (#3060)


	Add concat mode in GRoI (#3098)


	Remove cmd arg autorescale-lr (#3080)


	Use len(data['img_metas']) to indicate num_samples (#3073, #3053)


	Switch to EpochBasedRunner (#2976)







v2.1.0 (8/6/2020)

Highlights


	Support new backbones: RegNetX [https://arxiv.org/abs/2003.13678], Res2Net [https://arxiv.org/abs/1904.01169]


	Support new methods: NASFCOS [https://arxiv.org/abs/1906.04423], PISA [https://arxiv.org/abs/1904.04821], GRoIE [https://arxiv.org/abs/2004.13665]


	Support new dataset: LVIS [https://arxiv.org/abs/1908.03195]




Bug Fixes


	Change the CLI argument --validate to --no-validate to enable validation after training epochs by default. (#2651)


	Add missing cython to docker file (#2713)


	Fix bug in nms cpu implementation (#2754)


	Fix bug when showing mask results (#2763)


	Fix gcc requirement (#2806)


	Fix bug in async test (#2820)


	Fix mask encoding-decoding bugs in test API (#2824)


	Fix bug in test time augmentation (#2858, #2921, #2944)


	Fix a typo in comment of apis/train (#2877)


	Fix the bug of returning None when no gt bboxes are in the original image in RandomCrop. Fix the bug that misses to handle gt_bboxes_ignore, gt_label_ignore, and gt_masks_ignore in RandomCrop, MinIoURandomCrop and Expand modules. (#2810)


	Fix bug of base_channels of regnet (#2917)


	Fix the bug of logger when loading pre-trained weights in base detector (#2936)




New Features


	Add IoU models (#2666)


	Add colab demo for inference


	Support class agnostic nms (#2553)


	Add benchmark gathering scripts for development only (#2676)


	Add mmdet-based project links (#2736, #2767, #2895)


	Add config dump in training (#2779)


	Add ClassBalancedDataset (#2721)


	Add res2net backbone (#2237)


	Support RegNetX models (#2710)


	Use mmcv.FileClient to support different storage backends (#2712)


	Add ClassBalancedDataset (#2721)


	Code Release: Prime Sample Attention in Object Detection (CVPR 2020) (#2626)


	Implement NASFCOS (#2682)


	Add class weight in CrossEntropyLoss (#2797)


	Support LVIS dataset (#2088)


	Support GRoIE (#2584)




Improvements


	Allow different x and y strides in anchor heads. (#2629)


	Make FSAF loss more robust to no gt (#2680)


	Compute pure inference time instead (#2657) and update inference speed (#2730)


	Avoided the possibility that a patch with 0 area is cropped. (#2704)


	Add warnings when deprecated imgs_per_gpu is used. (#2700)


	Add a mask rcnn example for config (#2645)


	Update model zoo (#2762, #2866, #2876, #2879, #2831)


	Add ori_filename to img_metas and use it in test show-dir (#2612)


	Use img_fields to handle multiple images during image transform (#2800)


	Add upsample_cfg support in FPN (#2787)


	Add ['img'] as default img_fields for back compatibility (#2809)


	Rename the pretrained model from open-mmlab://resnet50_caffe and open-mmlab://resnet50_caffe_bgr to open-mmlab://detectron/resnet50_caffe and open-mmlab://detectron2/resnet50_caffe. (#2832)


	Added sleep(2) in test.py to reduce hanging problem (#2847)


	Support c10::half in CARAFE (#2890)


	Improve documentations (#2918, #2714)


	Use optimizer constructor in mmcv and clean the original implementation in mmdet.core.optimizer (#2947)







v2.0.0 (6/5/2020)

In this release, we made lots of major refactoring and modifications.


	Faster speed. We optimize the training and inference speed for common models, achieving up to 30% speedup for training and 25% for inference. Please refer to model zoo for details.


	Higher performance. We change some default hyperparameters with no additional cost, which leads to a gain of performance for most models. Please refer to compatibility for details.


	More documentation and tutorials. We add a bunch of documentation and tutorials to help users get started more smoothly. Read it here [https://mmdetection.readthedocs.io/en/latest/].


	Support PyTorch 1.5. The support for 1.1 and 1.2 is dropped, and we switch to some new APIs.


	Better configuration system. Inheritance is supported to reduce the redundancy of configs.


	Better modular design. Towards the goal of simplicity and flexibility, we simplify some encapsulation while add more other configurable modules like BBoxCoder, IoUCalculator, OptimizerConstructor, RoIHead. Target computation is also included in heads and the call hierarchy is simpler.


	Support new methods: FSAF [https://arxiv.org/abs/1903.00621] and PAFPN (part of PAFPN [https://arxiv.org/abs/1803.01534]).




Breaking Changes
Models training with MMDetection 1.x are not fully compatible with 2.0, please refer to the compatibility doc for the details and how to migrate to the new version.

Improvements


	Unify cuda and cpp API for custom ops. (#2277)


	New config files with inheritance. (#2216)


	Encapsulate the second stage into RoI heads. (#1999)


	Refactor GCNet/EmpericalAttention into plugins. (#2345)


	Set low quality match as an option in IoU-based bbox assigners. (#2375)


	Change the codebase’s coordinate system. (#2380)


	Refactor the category order in heads. 0 means the first positive class instead of background now. (#2374)


	Add bbox sampler and assigner registry. (#2419)


	Speed up the inference of RPN. (#2420)


	Add train_cfg and test_cfg as class members in all anchor heads. (#2422)


	Merge target computation methods into heads. (#2429)


	Add bbox coder to support different bbox encoding and losses. (#2480)


	Unify the API for regression loss. (#2156)


	Refactor Anchor Generator. (#2474)


	Make lr an optional argument for optimizers. (#2509)


	Migrate to modules and methods in MMCV. (#2502, #2511, #2569, #2572)


	Support PyTorch 1.5. (#2524)


	Drop the support for Python 3.5 and use F-string in the codebase. (#2531)




Bug Fixes


	Fix the scale factors for resized images without keep the aspect ratio. (#2039)


	Check if max_num > 0 before slicing in NMS. (#2486)


	Fix Deformable RoIPool when there is no instance. (#2490)


	Fix the default value of assigned labels. (#2536)


	Fix the evaluation of Cityscapes. (#2578)




New Features


	Add deep_stem and avg_down option to ResNet, i.e., support ResNetV1d. (#2252)


	Add L1 loss. (#2376)


	Support both polygon and bitmap for instance masks. (#2353, #2540)


	Support CPU mode for inference. (#2385)


	Add optimizer constructor for complicated configuration of optimizers. (#2397, #2488)


	Implement PAFPN. (#2392)


	Support empty tensor input for some modules. (#2280)


	Support for custom dataset classes without overriding it. (#2408, #2443)


	Support to train subsets of coco dataset. (#2340)


	Add iou_calculator to potentially support more IoU calculation methods. (2405)


	Support class wise mean AP (was removed in the last version). (#2459)


	Add option to save the testing result images. (#2414)


	Support MomentumUpdaterHook. (#2571)


	Add a demo to inference a single image. (#2605)







v1.1.0 (24/2/2020)

Highlights


	Dataset evaluation is rewritten with a unified api, which is used by both evaluation hooks and test scripts.


	Support new methods: CARAFE [https://arxiv.org/abs/1905.02188].




Breaking Changes


	The new MMDDP inherits from the official DDP, thus the __init__ api is changed to be the same as official DDP.


	The mask_head field in HTC config files is modified.


	The evaluation and testing script is updated.


	In all transforms, instance masks are stored as a numpy array shaped (n, h, w) instead of a list of (h, w) arrays, where n is the number of instances.




Bug Fixes


	Fix IOU assigners when ignore_iof_thr > 0 and there is no pred boxes. (#2135)


	Fix mAP evaluation when there are no ignored boxes. (#2116)


	Fix the empty RoI input for Deformable RoI Pooling. (#2099)


	Fix the dataset settings for multiple workflows. (#2103)


	Fix the warning related to torch.uint8 in PyTorch 1.4. (#2105)


	Fix the inference demo on devices other than gpu:0. (#2098)


	Fix Dockerfile. (#2097)


	Fix the bug that pad_val is unused in Pad transform. (#2093)


	Fix the albumentation transform when there is no ground truth bbox. (#2032)




Improvements


	Use torch instead of numpy for random sampling. (#2094)


	Migrate to the new MMDDP implementation in MMCV v0.3. (#2090)


	Add meta information in logs. (#2086)


	Rewrite Soft NMS with pytorch extension and remove cython as a dependency. (#2056)


	Rewrite dataset evaluation. (#2042, #2087, #2114, #2128)


	Use numpy array for masks in transforms. (#2030)




New Features


	Implement “CARAFE: Content-Aware ReAssembly of FEatures”. (#1583)


	Add worker_init_fn() in data_loader when seed is set. (#2066, #2111)


	Add logging utils. (#2035)







v1.0.0 (30/1/2020)

This release mainly improves the code quality and add more docstrings.

Highlights


	Documentation is online now: https://mmdetection.readthedocs.io.


	Support new models: ATSS [https://arxiv.org/abs/1912.02424].


	DCN is now available with the api build_conv_layer and ConvModule like the normal conv layer.


	A tool to collect environment information is available for trouble shooting.




Bug Fixes


	Fix the incompatibility of the latest numpy and pycocotools. (#2024)


	Fix the case when distributed package is unavailable, e.g., on Windows. (#1985)


	Fix the dimension issue for refine_bboxes(). (#1962)


	Fix the typo when seg_prefix is a list. (#1906)


	Add segmentation map cropping to RandomCrop. (#1880)


	Fix the return value of ga_shape_target_single(). (#1853)


	Fix the loaded shape of empty proposals. (#1819)


	Fix the mask data type when using albumentation. (#1818)




Improvements


	Enhance AssignResult and SamplingResult. (#1995)


	Add ability to overwrite existing module in Registry. (#1982)


	Reorganize requirements and make albumentations and imagecorruptions optional. (#1969)


	Check NaN in SSDHead. (#1935)


	Encapsulate the DCN in ResNe(X)t into a ConvModule & Conv_layers. (#1894)


	Refactoring for mAP evaluation and support multiprocessing and logging. (#1889)


	Init the root logger before constructing Runner to log more information. (#1865)


	Split SegResizeFlipPadRescale into different existing transforms. (#1852)


	Move init_dist() to MMCV. (#1851)


	Documentation and docstring improvements. (#1971, #1938, #1869, #1838)


	Fix the color of the same class for mask visualization. (#1834)


	Remove the option keep_all_stages in HTC and Cascade R-CNN. (#1806)




New Features


	Add two test-time options crop_mask and rle_mask_encode for mask heads. (#2013)


	Support loading grayscale images as single channel. (#1975)


	Implement “Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection”. (#1872)


	Add sphinx generated docs. (#1859, #1864)


	Add GN support for flops computation. (#1850)


	Collect env info for trouble shooting. (#1812)







v1.0rc1 (13/12/2019)

The RC1 release mainly focuses on improving the user experience, and fixing bugs.

Highlights


	Support new models: FoveaBox [https://arxiv.org/abs/1904.03797], RepPoints [https://arxiv.org/abs/1904.11490] and FreeAnchor [https://arxiv.org/abs/1909.02466].


	Add a Dockerfile.


	Add a jupyter notebook demo and a webcam demo.


	Setup the code style and CI.


	Add lots of docstrings and unit tests.


	Fix lots of bugs.




Breaking Changes


	There was a bug for computing COCO-style mAP w.r.t different scales (AP_s, AP_m, AP_l), introduced by #621. (#1679)




Bug Fixes


	Fix a sampling interval bug in Libra R-CNN. (#1800)


	Fix the learning rate in SSD300 WIDER FACE. (#1781)


	Fix the scaling issue when keep_ratio=False. (#1730)


	Fix typos. (#1721, #1492, #1242, #1108, #1107)


	Fix the shuffle argument in build_dataloader. (#1693)


	Clip the proposal when computing mask targets. (#1688)


	Fix the “index out of range” bug for samplers in some corner cases. (#1610, #1404)


	Fix the NMS issue on devices other than GPU:0. (#1603)


	Fix SSD Head and GHM Loss on CPU. (#1578)


	Fix the OOM error when there are too many gt bboxes. (#1575)


	Fix the wrong keyword argument nms_cfg in HTC. (#1573)


	Process masks and semantic segmentation in Expand and MinIoUCrop transforms. (#1550, #1361)


	Fix a scale bug in the Non Local op. (#1528)


	Fix a bug in transforms when gt_bboxes_ignore is None. (#1498)


	Fix a bug when img_prefix is None. (#1497)


	Pass the device argument to grid_anchors and valid_flags. (#1478)


	Fix the data pipeline for test_robustness. (#1476)


	Fix the argument type of deformable pooling. (#1390)


	Fix the coco_eval when there are only two classes. (#1376)


	Fix a bug in Modulated DeformableConv when deformable_group>1. (#1359)


	Fix the mask cropping in RandomCrop. (#1333)


	Fix zero outputs in DeformConv when not running on cuda:0. (#1326)


	Fix the type issue in Expand. (#1288)


	Fix the inference API. (#1255)


	Fix the inplace operation in Expand. (#1249)


	Fix the from-scratch training config. (#1196)


	Fix inplace add in RoIExtractor which cause an error in PyTorch 1.2. (#1160)


	Fix FCOS when input images has no positive sample. (#1136)


	Fix recursive imports. (#1099)




Improvements


	Print the config file and mmdet version in the log. (#1721)


	Lint the code before compiling in travis CI. (#1715)


	Add a probability argument for the Expand transform. (#1651)


	Update the PyTorch and CUDA version in the docker file. (#1615)


	Raise a warning when specifying --validate in non-distributed training. (#1624, #1651)


	Beautify the mAP printing. (#1614)


	Add pre-commit hook. (#1536)


	Add the argument in_channels to backbones. (#1475)


	Add lots of docstrings and unit tests, thanks to @Erotemic [https://github.com/Erotemic]. (#1603, #1517, #1506, #1505, #1491, #1479, #1477, #1475, #1474)


	Add support for multi-node distributed test when there is no shared storage. (#1399)


	Optimize Dockerfile to reduce the image size. (#1306)


	Update new results of HRNet. (#1284, #1182)


	Add an argument no_norm_on_lateral in FPN. (#1240)


	Test the compiling in CI. (#1235)


	Move docs to a separate folder. (#1233)


	Add a jupyter notebook demo. (#1158)


	Support different type of dataset for training. (#1133)


	Use int64_t instead of long in cuda kernels. (#1131)


	Support unsquare RoIs for bbox and mask heads. (#1128)


	Manually add type promotion to make compatible to PyTorch 1.2. (#1114)


	Allowing validation dataset for computing validation loss. (#1093)


	Use .scalar_type() instead of .type() to suppress some warnings. (#1070)




New Features


	Add an option --with_ap to compute the AP for each class. (#1549)


	Implement “FreeAnchor: Learning to Match Anchors for Visual Object Detection”. (#1391)


	Support Albumentations [https://github.com/albumentations-team/albumentations] for augmentations in the data pipeline. (#1354)


	Implement “FoveaBox: Beyond Anchor-based Object Detector”. (#1339)


	Support horizontal and vertical flipping. (#1273, #1115)


	Implement “RepPoints: Point Set Representation for Object Detection”. (#1265)


	Add test-time augmentation to HTC and Cascade R-CNN. (#1251)


	Add a COCO result analysis tool. (#1228)


	Add Dockerfile. (#1168)


	Add a webcam demo. (#1155, #1150)


	Add FLOPs counter. (#1127)


	Allow arbitrary layer order for ConvModule. (#1078)







v1.0rc0 (27/07/2019)


	Implement lots of new methods and components (Mixed Precision Training, HTC, Libra R-CNN, Guided Anchoring, Empirical Attention, Mask Scoring R-CNN, Grid R-CNN (Plus), GHM, GCNet, FCOS, HRNet, Weight Standardization, etc.). Thank all collaborators!


	Support two additional datasets: WIDER FACE and Cityscapes.


	Refactoring for loss APIs and make it more flexible to adopt different losses and related hyper-parameters.


	Speed up multi-gpu testing.


	Integrate all compiling and installing in a single script.







v0.6.0 (14/04/2019)


	Up to 30% speedup compared to the model zoo.


	Support both PyTorch stable and nightly version.


	Replace NMS and SigmoidFocalLoss with Pytorch CUDA extensions.







v0.6rc0(06/02/2019)


	Migrate to PyTorch 1.0.







v0.5.7 (06/02/2019)


	Add support for Deformable ConvNet v2. (Many thanks to the authors and @chengdazhi [https://github.com/chengdazhi])


	This is the last release based on PyTorch 0.4.1.







v0.5.6 (17/01/2019)


	Add support for Group Normalization.


	Unify RPNHead and single stage heads (RetinaHead, SSDHead) with AnchorHead.







v0.5.5 (22/12/2018)


	Add SSD for COCO and PASCAL VOC.


	Add ResNeXt backbones and detection models.


	Refactoring for Samplers/Assigners and add OHEM.


	Add VOC dataset and evaluation scripts.







v0.5.4 (27/11/2018)


	Add SingleStageDetector and RetinaNet.







v0.5.3 (26/11/2018)


	Add Cascade R-CNN and Cascade Mask R-CNN.


	Add support for Soft-NMS in config files.







v0.5.2 (21/10/2018)


	Add support for custom datasets.


	Add a script to convert PASCAL VOC annotations to the expected format.







v0.5.1 (20/10/2018)


	Add BBoxAssigner and BBoxSampler, the train_cfg field in config files are restructured.


	ConvFCRoIHead / SharedFCRoIHead are renamed to ConvFCBBoxHead / SharedFCBBoxHead for consistency.
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Frequently Asked Questions

We list some common troubles faced by many users and their corresponding solutions here. Feel free to enrich the list if you find any frequent issues and have ways to help others to solve them. If the contents here do not cover your issue, please create an issue using the provided templates [https://github.com/open-mmlab/mmdetection/blob/master/.github/ISSUE_TEMPLATE/error-report.md/] and make sure you fill in all required information in the template.


Installation


	Compatibility issue between MMCV and MMDetection; “ConvWS is already registered in conv layer”; “AssertionError: MMCV==xxx is used but incompatible. Please install mmcv>=xxx, <=xxx.”

Compatible MMDetection and MMCV versions are shown as below. Please choose the correct version of MMCV to avoid installation issues.








	MMDetection version
	MMCV version





	master
	mmcv-full>=1.3.17, \<1.8.0



	2.27.0
	mmcv-full>=1.3.17, \<1.8.0



	2.26.0
	mmcv-full>=1.3.17, \<1.8.0



	2.25.3
	mmcv-full>=1.3.17, \<1.7.0



	2.25.2
	mmcv-full>=1.3.17, \<1.7.0



	2.25.1
	mmcv-full>=1.3.17, \<1.6.0



	2.25.0
	mmcv-full>=1.3.17, \<1.6.0



	2.24.1
	mmcv-full>=1.3.17, \<1.6.0



	2.24.0
	mmcv-full>=1.3.17, \<1.6.0



	2.23.0
	mmcv-full>=1.3.17, \<1.5.0



	2.22.0
	mmcv-full>=1.3.17, \<1.5.0



	2.21.0
	mmcv-full>=1.3.17, \<1.5.0



	2.20.0
	mmcv-full>=1.3.17, \<1.5.0



	2.19.1
	mmcv-full>=1.3.17, \<1.5.0



	2.19.0
	mmcv-full>=1.3.17, \<1.5.0



	2.18.0
	mmcv-full>=1.3.17, \<1.4.0



	2.17.0
	mmcv-full>=1.3.14, \<1.4.0



	2.16.0
	mmcv-full>=1.3.8, \<1.4.0



	2.15.1
	mmcv-full>=1.3.8, \<1.4.0



	2.15.0
	mmcv-full>=1.3.8, \<1.4.0



	2.14.0
	mmcv-full>=1.3.8, \<1.4.0



	2.13.0
	mmcv-full>=1.3.3, \<1.4.0



	2.12.0
	mmcv-full>=1.3.3, \<1.4.0



	2.11.0
	mmcv-full>=1.2.4, \<1.4.0



	2.10.0
	mmcv-full>=1.2.4, \<1.4.0



	2.9.0
	mmcv-full>=1.2.4, \<1.4.0



	2.8.0
	mmcv-full>=1.2.4, \<1.4.0



	2.7.0
	mmcv-full>=1.1.5, \<1.4.0



	2.6.0
	mmcv-full>=1.1.5, \<1.4.0



	2.5.0
	mmcv-full>=1.1.5, \<1.4.0



	2.4.0
	mmcv-full>=1.1.1, \<1.4.0



	2.3.0
	mmcv-full==1.0.5



	2.3.0rc0
	mmcv-full>=1.0.2



	2.2.1
	mmcv==0.6.2



	2.2.0
	mmcv==0.6.2



	2.1.0
	mmcv>=0.5.9, \<=0.6.1



	2.0.0
	mmcv>=0.5.1, \<=0.5.8






	“No module named ‘mmcv.ops’”; “No module named ‘mmcv._ext’”.


	Uninstall existing mmcv in the environment using pip uninstall mmcv.


	Install mmcv-full following the installation instruction.






	Using albumentations

If you would like to use albumentations, we suggest using pip install -r requirements/albu.txt or
pip install -U albumentations --no-binary qudida,albumentations.
If you simply use pip install albumentations>=0.3.2, it will install opencv-python-headless simultaneously (even though you have already installed opencv-python).
Please refer to the official documentation [https://albumentations.ai/docs/getting_started/installation/#note-on-opencv-dependencies] for details.



	ModuleNotFoundError is raised when using some algorithms

Some extra dependencies are required for Instaboost, Panoptic Segmentation, LVIS dataset, etc. Please note the error message and install corresponding packages, e.g.,

# for instaboost
pip install instaboostfast
# for panoptic segmentation
pip install git+https://github.com/cocodataset/panopticapi.git
# for LVIS dataset
pip install git+https://github.com/lvis-dataset/lvis-api.git












Coding


	Do I need to reinstall mmdet after some code modifications

If you follow the best practice and install mmdet with pip install -e ., any local modifications made to the code will take effect without reinstallation.



	How to develop with multiple MMDetection versions

You can have multiple folders like mmdet-2.21, mmdet-2.22.
When you run the train or test script, it will adopt the mmdet package in the current folder.

To use the default MMDetection installed in the environment rather than the one you are working with, you can remove the following line in those scripts:

PYTHONPATH="$(dirname $0)/..":$PYTHONPATH












PyTorch/CUDA Environment


	“RTX 30 series card fails when building MMCV or MMDet”


	Temporary work-around: do MMCV_WITH_OPS=1 MMCV_CUDA_ARGS='-gencode=arch=compute_80,code=sm_80' pip install -e ..
The common issue is nvcc fatal : Unsupported gpu architecture 'compute_86'. This means that the compiler should optimize for sm_86, i.e., nvidia 30 series card, but such optimizations have not been supported by CUDA toolkit 11.0.
This work-around modifies the compile flag by adding MMCV_CUDA_ARGS='-gencode=arch=compute_80,code=sm_80', which tells nvcc to optimize for sm_80, i.e., Nvidia A100. Although A100 is different from the 30 series card, they use similar ampere architecture. This may hurt the performance but it works.


	PyTorch developers have updated that the default compiler flags should be fixed by pytorch/pytorch#47585 [https://github.com/pytorch/pytorch/pull/47585]. So using PyTorch-nightly may also be able to solve the problem, though we have not tested it yet.






	“invalid device function” or “no kernel image is available for execution”.


	Check if your cuda runtime version (under /usr/local/), nvcc --version and conda list cudatoolkit version match.


	Run python mmdet/utils/collect_env.py to check whether PyTorch, torchvision, and MMCV are built for the correct GPU architecture.
You may need to set TORCH_CUDA_ARCH_LIST to reinstall MMCV.
The GPU arch table could be found here [https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#gpu-feature-list],
i.e. run TORCH_CUDA_ARCH_LIST=7.0 pip install mmcv-full to build MMCV for Volta GPUs.
The compatibility issue could happen when using old GPUS, e.g., Tesla K80 (3.7) on colab.


	Check whether the running environment is the same as that when mmcv/mmdet has compiled.
For example, you may compile mmcv using CUDA 10.0 but run it on CUDA 9.0 environments.






	“undefined symbol” or “cannot open xxx.so”.


	If those symbols are CUDA/C++ symbols (e.g., libcudart.so or GLIBCXX), check whether the CUDA/GCC runtimes are the same as those used for compiling mmcv,
i.e. run python mmdet/utils/collect_env.py to see if "MMCV Compiler"/"MMCV CUDA Compiler" is the same as "GCC"/"CUDA_HOME".


	If those symbols are PyTorch symbols (e.g., symbols containing caffe, aten, and TH), check whether the PyTorch version is the same as that used for compiling mmcv.


	Run python mmdet/utils/collect_env.py to check whether PyTorch, torchvision, and MMCV are built by and running on the same environment.






	setuptools.sandbox.UnpickleableException: DistutilsSetupError(“each element of ‘ext_modules’ option must be an Extension instance or 2-tuple”)


	If you are using miniconda rather than anaconda, check whether Cython is installed as indicated in #3379 [https://github.com/open-mmlab/mmdetection/issues/3379].
You need to manually install Cython first and then run command pip install -r requirements.txt.


	You may also need to check the compatibility between the setuptools, Cython, and PyTorch in your environment.






	“Segmentation fault”.


	Check you GCC version and use GCC 5.4. This usually caused by the incompatibility between PyTorch and the environment (e.g., GCC < 4.9 for PyTorch). We also recommend the users to avoid using GCC 5.5 because many feedbacks report that GCC 5.5 will cause “segmentation fault” and simply changing it to GCC 5.4 could solve the problem.


	Check whether PyTorch is correctly installed and could use CUDA op, e.g. type the following command in your terminal.

python -c 'import torch; print(torch.cuda.is_available())'





And see whether they could correctly output results.



	If Pytorch is correctly installed, check whether MMCV is correctly installed.

python -c 'import mmcv; import mmcv.ops'





If MMCV is correctly installed, then there will be no issue of the above two commands.



	If MMCV and Pytorch is correctly installed, you man use ipdb, pdb to set breakpoints or directly add ‘print’ in mmdetection code and see which part leads the segmentation fault.











Training


	“Loss goes Nan”


	Check if the dataset annotations are valid: zero-size bounding boxes will cause the regression loss to be Nan due to the commonly used transformation for box regression. Some small size (width or height are smaller than 1) boxes will also cause this problem after data augmentation (e.g., instaboost). So check the data and try to filter out those zero-size boxes and skip some risky augmentations on the small-size boxes when you face the problem.


	Reduce the learning rate: the learning rate might be too large due to some reasons, e.g., change of batch size. You can rescale them to the value that could stably train the model.


	Extend the warmup iterations: some models are sensitive to the learning rate at the start of the training. You can extend the warmup iterations, e.g., change the warmup_iters from 500 to 1000 or 2000.


	Add gradient clipping: some models requires gradient clipping to stabilize the training process. The default of grad_clip is None, you can add gradient clippint to avoid gradients that are too large, i.e., set optimizer_config=dict(_delete_=True, grad_clip=dict(max_norm=35, norm_type=2)) in your config file. If your config does not inherits from any basic config that contains optimizer_config=dict(grad_clip=None), you can simply add optimizer_config=dict(grad_clip=dict(max_norm=35, norm_type=2)).






	“GPU out of memory”


	There are some scenarios when there are large amount of ground truth boxes, which may cause OOM during target assignment. You can set gpu_assign_thr=N in the config of assigner thus the assigner will calculate box overlaps through CPU when there are more than N GT boxes.


	Set with_cp=True in the backbone. This uses the sublinear strategy in PyTorch to reduce GPU memory cost in the backbone.


	Try mixed precision training using following the examples in config/fp16. The loss_scale might need further tuning for different models.


	Try to use AvoidCUDAOOM to avoid GPU out of memory. It will first retry after calling torch.cuda.empty_cache(). If it still fails, it will then retry by converting the type of inputs to FP16 format. If it still fails, it will try to copy inputs from GPUs to CPUs to continue computing. Try AvoidOOM in you code to make the code continue to run when GPU memory runs out:

from mmdet.utils import AvoidCUDAOOM

output = AvoidCUDAOOM.retry_if_cuda_oom(some_function)(input1, input2)





You can also try AvoidCUDAOOM as a decorator to make the code continue to run when GPU memory runs out:

from mmdet.utils import AvoidCUDAOOM

@AvoidCUDAOOM.retry_if_cuda_oom
def function(*args, **kwargs):
    ...
    return xxx











	“RuntimeError: Expected to have finished reduction in the prior iteration before starting a new one”


	This error indicates that your module has parameters that were not used in producing loss. This phenomenon may be caused by running different branches in your code in DDP mode.


	You can set find_unused_parameters = True in the config to solve the above problems(but this will slow down the training speed.


	If the version of your MMCV >= 1.4.1, you can get the name of those unused parameters with detect_anomalous_params=True in optimizer_config of config.






	Save the best model

It can be turned on by configuring evaluation = dict(save_best=‘auto’). In the case of the auto parameter, the first key in the returned evaluation result will be used as the basis for selecting the best model. You can also directly set the key in the evaluation result to manually set it, for example, evaluation = dict(save_best='mAP' ).



	Resume training with ExpMomentumEMAHook

If you use ExpMomentumEMAHook in training, you can’t just use command line parameters  --resume-from nor --cfg-options resume_from to restore model parameters during resume, i.e., the command python tools/train.py configs/yolox/yolox_s_8x8_300e_coco.py --resume-from ./work_dir/yolox_s_8x8_300e_coco/epoch_x.pth will not work. Since ExpMomentumEMAHook needs to reload the weights, taking the yolox_s algorithm as an example, you should modify the values of resume_from in two places of the config as below:

# Open configs/yolox/yolox_s_8x8_300e_coco.py directly and modify all resume_from fields
resume_from=./work_dir/yolox_s_8x8_300e_coco/epoch_x.pth
custom_hooks=[...
    dict(
        type='ExpMomentumEMAHook',
        resume_from=./work_dir/yolox_s_8x8_300e_coco/epoch_x.pth,
        momentum=0.0001,
        priority=49)
    ]












Evaluation


	COCO Dataset, AP or AR = -1


	According to the definition of COCO dataset, the small and medium areas in an image are less than 1024 (32*32), 9216 (96*96), respectively.


	If the corresponding area has no object, the result of AP and AR will set to -1.











Model


	style in ResNet

The style parameter in ResNet allows either pytorch or caffe style. It indicates the difference in the Bottleneck module. Bottleneck is a stacking structure of 1x1-3x3-1x1 convolutional layers. In the case of caffe mode, the convolution layer with stride=2 is the first 1x1 convolution, while in pyorch mode, it is the second 3x3 convolution has stride=2. A sample code is as below:

if self.style == 'pytorch':
      self.conv1_stride = 1
      self.conv2_stride = stride
else:
      self.conv1_stride = stride
      self.conv2_stride = 1







	ResNeXt parameter description

ResNeXt comes from the paper Aggregated Residual Transformations for Deep Neural Networks [https://arxiv.org/abs/1611.05431]. It introduces  group and uses “cardinality” to control the number of groups to achieve a balance between accuracy and complexity. It controls the basic width and grouping parameters of the internal Bottleneck module through two hyperparameters baseWidth and cardinality. An example configuration name in MMDetection is mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco.py, where mask_rcnn represents the algorithm using Mask R-CNN, x101 represents the backbone network using ResNeXt-101, and 64x4d represents that the bottleneck block has 64 group and each group has basic width of 4.



	norm_eval in backbone

Since the detection model is usually large and the input image resolution is high, this will result in a small batch of the detection model, which will make the variance of the statistics calculated by BatchNorm during the training process very large and not as stable as the statistics obtained during the pre-training of the backbone network . Therefore, the norm_eval=True mode is generally used in training, and the BatchNorm statistics in the pre-trained backbone network are directly used. The few algorithms that use large batches are the norm_eval=False mode, such as NASFPN. For the backbone network without ImageNet pre-training and the batch is relatively small, you can consider using SyncBN.
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mmdet.core


anchor


	
class mmdet.core.anchor.AnchorGenerator(strides, ratios, scales=None, base_sizes=None, scale_major=True, octave_base_scale=None, scales_per_octave=None, centers=None, center_offset=0.0)

	Standard anchor generator for 2D anchor-based detectors.


	Parameters

	
	strides (list[int] | list[tuple[int, int]]) – Strides of anchors
in multiple feature levels in order (w, h).


	ratios (list[float]) – The list of ratios between the height and width
of anchors in a single level.


	scales (list[int] | None) – Anchor scales for anchors in a single level.
It cannot be set at the same time if octave_base_scale and
scales_per_octave are set.


	base_sizes (list[int] | None) – The basic sizes
of anchors in multiple levels.
If None is given, strides will be used as base_sizes.
(If strides are non square, the shortest stride is taken.)


	scale_major (bool) – Whether to multiply scales first when generating
base anchors. If true, the anchors in the same row will have the
same scales. By default it is True in V2.0


	octave_base_scale (int) – The base scale of octave.


	scales_per_octave (int) – Number of scales for each octave.
octave_base_scale and scales_per_octave are usually used in
retinanet and the scales should be None when they are set.


	centers (list[tuple[float, float]] | None) – The centers of the anchor
relative to the feature grid center in multiple feature levels.
By default it is set to be None and not used. If a list of tuple of
float is given, they will be used to shift the centers of anchors.


	center_offset (float) – The offset of center in proportion to anchors’
width and height. By default it is 0 in V2.0.








Examples

>>> from mmdet.core import AnchorGenerator
>>> self = AnchorGenerator([16], [1.], [1.], [9])
>>> all_anchors = self.grid_priors([(2, 2)], device='cpu')
>>> print(all_anchors)
[tensor([[-4.5000, -4.5000,  4.5000,  4.5000],
        [11.5000, -4.5000, 20.5000,  4.5000],
        [-4.5000, 11.5000,  4.5000, 20.5000],
        [11.5000, 11.5000, 20.5000, 20.5000]])]
>>> self = AnchorGenerator([16, 32], [1.], [1.], [9, 18])
>>> all_anchors = self.grid_priors([(2, 2), (1, 1)], device='cpu')
>>> print(all_anchors)
[tensor([[-4.5000, -4.5000,  4.5000,  4.5000],
        [11.5000, -4.5000, 20.5000,  4.5000],
        [-4.5000, 11.5000,  4.5000, 20.5000],
        [11.5000, 11.5000, 20.5000, 20.5000]]),         tensor([[-9., -9., 9., 9.]])]






	
gen_base_anchors()

	Generate base anchors.


	Returns

	Base anchors of a feature grid in multiple                 feature levels.



	Return type

	list(torch.Tensor)










	
gen_single_level_base_anchors(base_size, scales, ratios, center=None)

	Generate base anchors of a single level.


	Parameters

	
	base_size (int | float) – Basic size of an anchor.


	scales (torch.Tensor) – Scales of the anchor.


	ratios (torch.Tensor) – The ratio between between the height
and width of anchors in a single level.


	center (tuple[float], optional) – The center of the base anchor
related to a single feature grid. Defaults to None.






	Returns

	Anchors in a single-level feature maps.



	Return type

	torch.Tensor










	
grid_anchors(featmap_sizes, device='cuda')

	Generate grid anchors in multiple feature levels.


	Parameters

	
	featmap_sizes (list[tuple]) – List of feature map sizes in
multiple feature levels.


	device (str) – Device where the anchors will be put on.






	Returns

	Anchors in multiple feature levels.                 The sizes of each tensor should be [N, 4], where                 N = width * height * num_base_anchors, width and height                 are the sizes of the corresponding feature level,                 num_base_anchors is the number of anchors for that level.



	Return type

	list[torch.Tensor]










	
grid_priors(featmap_sizes, dtype=torch.float32, device='cuda')

	Generate grid anchors in multiple feature levels.


	Parameters

	
	featmap_sizes (list[tuple]) – List of feature map sizes in
multiple feature levels.


	dtype (torch.dtype) – Dtype of priors.
Default: torch.float32.


	device (str) – The device where the anchors will be put on.






	Returns

	Anchors in multiple feature levels.                 The sizes of each tensor should be [N, 4], where                 N = width * height * num_base_anchors, width and height                 are the sizes of the corresponding feature level,                 num_base_anchors is the number of anchors for that level.



	Return type

	list[torch.Tensor]










	
property num_base_anchors

	total number of base anchors in a feature grid


	Type

	list[int]










	
property num_base_priors

	The number of priors (anchors) at a point
on the feature grid


	Type

	list[int]










	
property num_levels

	number of feature levels that the generator will be applied


	Type

	int










	
single_level_grid_anchors(base_anchors, featmap_size, stride=(16, 16), device='cuda')

	Generate grid anchors of a single level.


Note

This function is usually called by method self.grid_anchors.




	Parameters

	
	base_anchors (torch.Tensor) – The base anchors of a feature grid.


	featmap_size (tuple[int]) – Size of the feature maps.


	stride (tuple[int], optional) – Stride of the feature map in order
(w, h). Defaults to (16, 16).


	device (str, optional) – Device the tensor will be put on.
Defaults to ‘cuda’.






	Returns

	Anchors in the overall feature maps.



	Return type

	torch.Tensor










	
single_level_grid_priors(featmap_size, level_idx, dtype=torch.float32, device='cuda')

	Generate grid anchors of a single level.


Note

This function is usually called by method self.grid_priors.




	Parameters

	
	featmap_size (tuple[int]) – Size of the feature maps.


	level_idx (int) – The index of corresponding feature map level.


	(obj (dtype) – torch.dtype): Date type of points.Defaults to
torch.float32.


	device (str, optional) – The device the tensor will be put on.
Defaults to ‘cuda’.






	Returns

	Anchors in the overall feature maps.



	Return type

	torch.Tensor










	
single_level_valid_flags(featmap_size, valid_size, num_base_anchors, device='cuda')

	Generate the valid flags of anchor in a single feature map.


	Parameters

	
	featmap_size (tuple[int]) – The size of feature maps, arrange
as (h, w).


	valid_size (tuple[int]) – The valid size of the feature maps.


	num_base_anchors (int) – The number of base anchors.


	device (str, optional) – Device where the flags will be put on.
Defaults to ‘cuda’.






	Returns

	The valid flags of each anchor in a single level                 feature map.



	Return type

	torch.Tensor










	
sparse_priors(prior_idxs, featmap_size, level_idx, dtype=torch.float32, device='cuda')

	Generate sparse anchors according to the prior_idxs.


	Parameters

	
	prior_idxs (Tensor) – The index of corresponding anchors
in the feature map.


	featmap_size (tuple[int]) – feature map size arrange as (h, w).


	level_idx (int) – The level index of corresponding feature
map.


	(obj (device) – torch.dtype): Date type of points.Defaults to
torch.float32.


	(obj – torch.device): The device where the points is
located.






	Returns

	
	Anchor with shape (N, 4), N should be equal to
	the length of prior_idxs.









	Return type

	Tensor










	
valid_flags(featmap_sizes, pad_shape, device='cuda')

	Generate valid flags of anchors in multiple feature levels.


	Parameters

	
	featmap_sizes (list(tuple)) – List of feature map sizes in
multiple feature levels.


	pad_shape (tuple) – The padded shape of the image.


	device (str) – Device where the anchors will be put on.






	Returns

	Valid flags of anchors in multiple levels.



	Return type

	list(torch.Tensor)














	
class mmdet.core.anchor.LegacyAnchorGenerator(strides, ratios, scales=None, base_sizes=None, scale_major=True, octave_base_scale=None, scales_per_octave=None, centers=None, center_offset=0.0)

	Legacy anchor generator used in MMDetection V1.x.


Note

Difference to the V2.0 anchor generator:


	The center offset of V1.x anchors are set to be 0.5 rather than 0.


	The width/height are minused by 1 when calculating the anchors’             centers and corners to meet the V1.x coordinate system.


	The anchors’ corners are quantized.







	Parameters

	
	strides (list[int] | list[tuple[int]]) – Strides of anchors
in multiple feature levels.


	ratios (list[float]) – The list of ratios between the height and width
of anchors in a single level.


	scales (list[int] | None) – Anchor scales for anchors in a single level.
It cannot be set at the same time if octave_base_scale and
scales_per_octave are set.


	base_sizes (list[int]) – The basic sizes of anchors in multiple levels.
If None is given, strides will be used to generate base_sizes.


	scale_major (bool) – Whether to multiply scales first when generating
base anchors. If true, the anchors in the same row will have the
same scales. By default it is True in V2.0


	octave_base_scale (int) – The base scale of octave.


	scales_per_octave (int) – Number of scales for each octave.
octave_base_scale and scales_per_octave are usually used in
retinanet and the scales should be None when they are set.


	centers (list[tuple[float, float]] | None) – The centers of the anchor
relative to the feature grid center in multiple feature levels.
By default it is set to be None and not used. It a list of float
is given, this list will be used to shift the centers of anchors.


	center_offset (float) – The offset of center in proportion to anchors’
width and height. By default it is 0.5 in V2.0 but it should be 0.5
in v1.x models.








Examples

>>> from mmdet.core import LegacyAnchorGenerator
>>> self = LegacyAnchorGenerator(
>>>     [16], [1.], [1.], [9], center_offset=0.5)
>>> all_anchors = self.grid_anchors(((2, 2),), device='cpu')
>>> print(all_anchors)
[tensor([[ 0.,  0.,  8.,  8.],
        [16.,  0., 24.,  8.],
        [ 0., 16.,  8., 24.],
        [16., 16., 24., 24.]])]






	
gen_single_level_base_anchors(base_size, scales, ratios, center=None)

	Generate base anchors of a single level.


Note

The width/height of anchors are minused by 1 when calculating                 the centers and corners to meet the V1.x coordinate system.




	Parameters

	
	base_size (int | float) – Basic size of an anchor.


	scales (torch.Tensor) – Scales of the anchor.


	ratios (torch.Tensor) – The ratio between between the height.
and width of anchors in a single level.


	center (tuple[float], optional) – The center of the base anchor
related to a single feature grid. Defaults to None.






	Returns

	Anchors in a single-level feature map.



	Return type

	torch.Tensor














	
class mmdet.core.anchor.MlvlPointGenerator(strides, offset=0.5)

	Standard points generator for multi-level (Mlvl) feature maps in 2D
points-based detectors.


	Parameters

	
	strides (list[int] | list[tuple[int, int]]) – Strides of anchors
in multiple feature levels in order (w, h).


	offset (float) – The offset of points, the value is normalized with
corresponding stride. Defaults to 0.5.









	
grid_priors(featmap_sizes, dtype=torch.float32, device='cuda', with_stride=False)

	Generate grid points of multiple feature levels.


	Parameters

	
	featmap_sizes (list[tuple]) – List of feature map sizes in
multiple feature levels, each size arrange as
as (h, w).


	dtype (dtype) – Dtype of priors. Default: torch.float32.


	device (str) – The device where the anchors will be put on.


	with_stride (bool) – Whether to concatenate the stride to
the last dimension of points.






	Returns

	Points of  multiple feature levels.
The sizes of each tensor should be (N, 2) when with stride is
False, where N = width * height, width and height
are the sizes of the corresponding feature level,
and the last dimension 2 represent (coord_x, coord_y),
otherwise the shape should be (N, 4),
and the last dimension 4 represent
(coord_x, coord_y, stride_w, stride_h).



	Return type

	list[torch.Tensor]










	
property num_base_priors

	The number of priors (points) at a point
on the feature grid


	Type

	list[int]










	
property num_levels

	number of feature levels that the generator will be applied


	Type

	int










	
single_level_grid_priors(featmap_size, level_idx, dtype=torch.float32, device='cuda', with_stride=False)

	Generate grid Points of a single level.


Note

This function is usually called by method self.grid_priors.




	Parameters

	
	featmap_size (tuple[int]) – Size of the feature maps, arrange as
(h, w).


	level_idx (int) – The index of corresponding feature map level.


	dtype (dtype) – Dtype of priors. Default: torch.float32.


	device (str, optional) – The device the tensor will be put on.
Defaults to ‘cuda’.


	with_stride (bool) – Concatenate the stride to the last dimension
of points.






	Returns

	Points of single feature levels.
The shape of tensor should be (N, 2) when with stride is
False, where N = width * height, width and height
are the sizes of the corresponding feature level,
and the last dimension 2 represent (coord_x, coord_y),
otherwise the shape should be (N, 4),
and the last dimension 4 represent
(coord_x, coord_y, stride_w, stride_h).



	Return type

	Tensor










	
single_level_valid_flags(featmap_size, valid_size, device='cuda')

	Generate the valid flags of points of a single feature map.


	Parameters

	
	featmap_size (tuple[int]) – The size of feature maps, arrange as
as (h, w).


	valid_size (tuple[int]) – The valid size of the feature maps.
The size arrange as as (h, w).


	device (str, optional) – The device where the flags will be put on.
Defaults to ‘cuda’.






	Returns

	The valid flags of each points in a single level                 feature map.



	Return type

	torch.Tensor










	
sparse_priors(prior_idxs, featmap_size, level_idx, dtype=torch.float32, device='cuda')

	Generate sparse points according to the prior_idxs.


	Parameters

	
	prior_idxs (Tensor) – The index of corresponding anchors
in the feature map.


	featmap_size (tuple[int]) – feature map size arrange as (w, h).


	level_idx (int) – The level index of corresponding feature
map.


	(obj (device) – torch.dtype): Date type of points. Defaults to
torch.float32.


	(obj – torch.device): The device where the points is
located.






	Returns

	Anchor with shape (N, 2), N should be equal to
the length of prior_idxs. And last dimension
2 represent (coord_x, coord_y).



	Return type

	Tensor










	
valid_flags(featmap_sizes, pad_shape, device='cuda')

	Generate valid flags of points of multiple feature levels.


	Parameters

	
	featmap_sizes (list(tuple)) – List of feature map sizes in
multiple feature levels, each size arrange as
as (h, w).


	pad_shape (tuple(int)) – The padded shape of the image,
arrange as (h, w).


	device (str) – The device where the anchors will be put on.






	Returns

	Valid flags of points of multiple levels.



	Return type

	list(torch.Tensor)














	
class mmdet.core.anchor.YOLOAnchorGenerator(strides, base_sizes)

	Anchor generator for YOLO.


	Parameters

	
	strides (list[int] | list[tuple[int, int]]) – Strides of anchors
in multiple feature levels.


	base_sizes (list[list[tuple[int, int]]]) – The basic sizes
of anchors in multiple levels.









	
gen_base_anchors()

	Generate base anchors.


	Returns

	Base anchors of a feature grid in multiple                 feature levels.



	Return type

	list(torch.Tensor)










	
gen_single_level_base_anchors(base_sizes_per_level, center=None)

	Generate base anchors of a single level.


	Parameters

	
	base_sizes_per_level (list[tuple[int, int]]) – Basic sizes of
anchors.


	center (tuple[float], optional) – The center of the base anchor
related to a single feature grid. Defaults to None.






	Returns

	Anchors in a single-level feature maps.



	Return type

	torch.Tensor










	
property num_levels

	number of feature levels that the generator will be applied


	Type

	int










	
responsible_flags(featmap_sizes, gt_bboxes, device='cuda')

	Generate responsible anchor flags of grid cells in multiple scales.


	Parameters

	
	featmap_sizes (list(tuple)) – List of feature map sizes in multiple
feature levels.


	gt_bboxes (Tensor) – Ground truth boxes, shape (n, 4).


	device (str) – Device where the anchors will be put on.






	Returns

	responsible flags of anchors in multiple level



	Return type

	list(torch.Tensor)










	
single_level_responsible_flags(featmap_size, gt_bboxes, stride, num_base_anchors, device='cuda')

	Generate the responsible flags of anchor in a single feature map.


	Parameters

	
	featmap_size (tuple[int]) – The size of feature maps.


	gt_bboxes (Tensor) – Ground truth boxes, shape (n, 4).


	stride (tuple(int)) – stride of current level


	num_base_anchors (int) – The number of base anchors.


	device (str, optional) – Device where the flags will be put on.
Defaults to ‘cuda’.






	Returns

	The valid flags of each anchor in a single level                 feature map.



	Return type

	torch.Tensor














	
mmdet.core.anchor.anchor_inside_flags(flat_anchors, valid_flags, img_shape, allowed_border=0)

	Check whether the anchors are inside the border.


	Parameters

	
	flat_anchors (torch.Tensor) – Flatten anchors, shape (n, 4).


	valid_flags (torch.Tensor) – An existing valid flags of anchors.


	img_shape (tuple(int)) – Shape of current image.


	allowed_border (int, optional) – The border to allow the valid anchor.
Defaults to 0.






	Returns

	Flags indicating whether the anchors are inside a             valid range.



	Return type

	torch.Tensor










	
mmdet.core.anchor.calc_region(bbox, ratio, featmap_size=None)

	Calculate a proportional bbox region.

The bbox center are fixed and the new h’ and w’ is h * ratio and w * ratio.


	Parameters

	
	bbox (Tensor) – Bboxes to calculate regions, shape (n, 4).


	ratio (float) – Ratio of the output region.


	featmap_size (tuple) – Feature map size used for clipping the boundary.






	Returns

	x1, y1, x2, y2



	Return type

	tuple










	
mmdet.core.anchor.images_to_levels(target, num_levels)

	Convert targets by image to targets by feature level.

[target_img0, target_img1] -> [target_level0, target_level1, …]
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class mmdet.models.backbones.CSPDarknet(arch='P5', deepen_factor=1.0, widen_factor=1.0, out_indices=(2, 3, 4), frozen_stages=-1, use_depthwise=False, arch_ovewrite=None, spp_kernal_sizes=(5, 9, 13), conv_cfg=None, norm_cfg={'eps': 0.001, 'momentum': 0.03, 'type': 'BN'}, act_cfg={'type': 'Swish'}, norm_eval=False, init_cfg={'a': 2.23606797749979, 'distribution': 'uniform', 'layer': 'Conv2d', 'mode': 'fan_in', 'nonlinearity': 'leaky_relu', 'type': 'Kaiming'})

	CSP-Darknet backbone used in YOLOv5 and YOLOX.


	Parameters

	
	arch (str) – Architecture of CSP-Darknet, from {P5, P6}.
Default: P5.


	deepen_factor (float) – Depth multiplier, multiply number of
blocks in CSP layer by this amount. Default: 1.0.


	widen_factor (float) – Width multiplier, multiply number of
channels in each layer by this amount. Default: 1.0.


	out_indices (Sequence[int]) – Output from which stages.
Default: (2, 3, 4).


	frozen_stages (int) – Stages to be frozen (stop grad and set eval
mode). -1 means not freezing any parameters. Default: -1.


	use_depthwise (bool) – Whether to use depthwise separable convolution.
Default: False.


	arch_ovewrite (list) – Overwrite default arch settings. Default: None.


	spp_kernal_sizes – (tuple[int]): Sequential of kernel sizes of SPP
layers. Default: (5, 9, 13).


	conv_cfg (dict) – Config dict for convolution layer. Default: None.


	norm_cfg (dict) – Dictionary to construct and config norm layer.
Default: dict(type=’BN’, requires_grad=True).


	act_cfg (dict) – Config dict for activation layer.
Default: dict(type=’LeakyReLU’, negative_slope=0.1).


	norm_eval (bool) – Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None.








Example

>>> from mmdet.models import CSPDarknet
>>> import torch
>>> self = CSPDarknet(depth=53)
>>> self.eval()
>>> inputs = torch.rand(1, 3, 416, 416)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
...     print(tuple(level_out.shape))
...
(1, 256, 52, 52)
(1, 512, 26, 26)
(1, 1024, 13, 13)






	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.








	
train(mode=True)

	Sets the module in training mode.

This has any effect only on certain modules. See documentations of
particular modules for details of their behaviors in training/evaluation
mode, if they are affected, e.g. Dropout, BatchNorm,
etc.


	Parameters

	mode (bool) – whether to set training mode (True) or evaluation
mode (False). Default: True.



	Returns

	self



	Return type

	Module














	
class mmdet.models.backbones.Darknet(depth=53, out_indices=(3, 4, 5), frozen_stages=-1, conv_cfg=None, norm_cfg={'requires_grad': True, 'type': 'BN'}, act_cfg={'negative_slope': 0.1, 'type': 'LeakyReLU'}, norm_eval=True, pretrained=None, init_cfg=None)

	Darknet backbone.


	Parameters

	
	depth (int) – Depth of Darknet. Currently only support 53.


	out_indices (Sequence[int]) – Output from which stages.


	frozen_stages (int) – Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters. Default: -1.


	conv_cfg (dict) – Config dict for convolution layer. Default: None.


	norm_cfg (dict) – Dictionary to construct and config norm layer.
Default: dict(type=’BN’, requires_grad=True)


	act_cfg (dict) – Config dict for activation layer.
Default: dict(type=’LeakyReLU’, negative_slope=0.1).


	norm_eval (bool) – Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.


	pretrained (str, optional) – model pretrained path. Default: None


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None








Example

>>> from mmdet.models import Darknet
>>> import torch
>>> self = Darknet(depth=53)
>>> self.eval()
>>> inputs = torch.rand(1, 3, 416, 416)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
...     print(tuple(level_out.shape))
...
(1, 256, 52, 52)
(1, 512, 26, 26)
(1, 1024, 13, 13)






	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.








	
static make_conv_res_block(in_channels, out_channels, res_repeat, conv_cfg=None, norm_cfg={'requires_grad': True, 'type': 'BN'}, act_cfg={'negative_slope': 0.1, 'type': 'LeakyReLU'})

	In Darknet backbone, ConvLayer is usually followed by ResBlock. This
function will make that. The Conv layers always have 3x3 filters with
stride=2. The number of the filters in Conv layer is the same as the
out channels of the ResBlock.


	Parameters

	
	in_channels (int) – The number of input channels.


	out_channels (int) – The number of output channels.


	res_repeat (int) – The number of ResBlocks.


	conv_cfg (dict) – Config dict for convolution layer. Default: None.


	norm_cfg (dict) – Dictionary to construct and config norm layer.
Default: dict(type=’BN’, requires_grad=True)


	act_cfg (dict) – Config dict for activation layer.
Default: dict(type=’LeakyReLU’, negative_slope=0.1).













	
train(mode=True)

	Sets the module in training mode.

This has any effect only on certain modules. See documentations of
particular modules for details of their behaviors in training/evaluation
mode, if they are affected, e.g. Dropout, BatchNorm,
etc.


	Parameters

	mode (bool) – whether to set training mode (True) or evaluation
mode (False). Default: True.



	Returns

	self



	Return type

	Module














	
class mmdet.models.backbones.DetectoRS_ResNeXt(groups=1, base_width=4, **kwargs)

	ResNeXt backbone for DetectoRS.


	Parameters

	
	groups (int) – The number of groups in ResNeXt.


	base_width (int) – The base width of ResNeXt.









	
make_res_layer(**kwargs)

	Pack all blocks in a stage into a ResLayer for DetectoRS.










	
class mmdet.models.backbones.DetectoRS_ResNet(sac=None, stage_with_sac=(False, False, False, False), rfp_inplanes=None, output_img=False, pretrained=None, init_cfg=None, **kwargs)

	ResNet backbone for DetectoRS.


	Parameters

	
	sac (dict, optional) – Dictionary to construct SAC (Switchable Atrous
Convolution). Default: None.


	stage_with_sac (list) – Which stage to use sac. Default: (False, False,
False, False).


	rfp_inplanes (int, optional) – The number of channels from RFP.
Default: None. If specified, an additional conv layer will be
added for rfp_feat. Otherwise, the structure is the same as
base class.


	output_img (bool) – If True, the input image will be inserted into
the starting position of output. Default: False.









	
forward(x)

	Forward function.






	
init_weights()

	Initialize the weights.






	
make_res_layer(**kwargs)

	Pack all blocks in a stage into a ResLayer for DetectoRS.






	
rfp_forward(x, rfp_feats)

	Forward function for RFP.










	
class mmdet.models.backbones.EfficientNet(arch='b0', drop_path_rate=0.0, out_indices=(6,), frozen_stages=0, conv_cfg={'type': 'Conv2dAdaptivePadding'}, norm_cfg={'eps': 0.001, 'type': 'BN'}, act_cfg={'type': 'Swish'}, norm_eval=False, with_cp=False, init_cfg=[{'type': 'Kaiming', 'layer': 'Conv2d'}, {'type': 'Constant', 'layer': ['_BatchNorm', 'GroupNorm'], 'val': 1}])

	EfficientNet backbone.


	Parameters

	
	arch (str) – Architecture of efficientnet. Defaults to b0.


	out_indices (Sequence[int]) – Output from which stages.
Defaults to (6, ).


	frozen_stages (int) – Stages to be frozen (all param fixed).
Defaults to 0, which means not freezing any parameters.


	conv_cfg (dict) – Config dict for convolution layer.
Defaults to None, which means using conv2d.


	norm_cfg (dict) – Config dict for normalization layer.
Defaults to dict(type=’BN’).


	act_cfg (dict) – Config dict for activation layer.
Defaults to dict(type=’Swish’).


	norm_eval (bool) – Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Defaults to False.


	with_cp (bool) – Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.









	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.








	
train(mode=True)

	Sets the module in training mode.

This has any effect only on certain modules. See documentations of
particular modules for details of their behaviors in training/evaluation
mode, if they are affected, e.g. Dropout, BatchNorm,
etc.


	Parameters

	mode (bool) – whether to set training mode (True) or evaluation
mode (False). Default: True.



	Returns

	self



	Return type

	Module














	
class mmdet.models.backbones.HRNet(extra, in_channels=3, conv_cfg=None, norm_cfg={'type': 'BN'}, norm_eval=True, with_cp=False, zero_init_residual=False, multiscale_output=True, pretrained=None, init_cfg=None)

	HRNet backbone.

High-Resolution Representations for Labeling Pixels and Regions
arXiv: [https://arxiv.org/abs/1904.04514].


	Parameters

	
	extra (dict) – Detailed configuration for each stage of HRNet.
There must be 4 stages, the configuration for each stage must have
5 keys:



	num_modules(int): The number of HRModule in this stage.


	num_branches(int): The number of branches in the HRModule.


	block(str): The type of convolution block.


	
	num_blocks(tuple): The number of blocks in each branch.
	The length must be equal to num_branches.







	
	num_channels(tuple): The number of channels in each branch.
	The length must be equal to num_branches.















	in_channels (int) – Number of input image channels. Default: 3.


	conv_cfg (dict) – Dictionary to construct and config conv layer.


	norm_cfg (dict) – Dictionary to construct and config norm layer.


	norm_eval (bool) – Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: True.


	with_cp (bool) – Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.


	zero_init_residual (bool) – Whether to use zero init for last norm layer
in resblocks to let them behave as identity. Default: False.


	multiscale_output (bool) – Whether to output multi-level features
produced by multiple branches. If False, only the first level
feature will be output. Default: True.


	pretrained (str, optional) – Model pretrained path. Default: None.


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None.








Example

>>> from mmdet.models import HRNet
>>> import torch
>>> extra = dict(
>>>     stage1=dict(
>>>         num_modules=1,
>>>         num_branches=1,
>>>         block='BOTTLENECK',
>>>         num_blocks=(4, ),
>>>         num_channels=(64, )),
>>>     stage2=dict(
>>>         num_modules=1,
>>>         num_branches=2,
>>>         block='BASIC',
>>>         num_blocks=(4, 4),
>>>         num_channels=(32, 64)),
>>>     stage3=dict(
>>>         num_modules=4,
>>>         num_branches=3,
>>>         block='BASIC',
>>>         num_blocks=(4, 4, 4),
>>>         num_channels=(32, 64, 128)),
>>>     stage4=dict(
>>>         num_modules=3,
>>>         num_branches=4,
>>>         block='BASIC',
>>>         num_blocks=(4, 4, 4, 4),
>>>         num_channels=(32, 64, 128, 256)))
>>> self = HRNet(extra, in_channels=1)
>>> self.eval()
>>> inputs = torch.rand(1, 1, 32, 32)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
...     print(tuple(level_out.shape))
(1, 32, 8, 8)
(1, 64, 4, 4)
(1, 128, 2, 2)
(1, 256, 1, 1)






	
forward(x)

	Forward function.






	
property norm1

	the normalization layer named “norm1”


	Type

	nn.Module










	
property norm2

	the normalization layer named “norm2”


	Type

	nn.Module










	
train(mode=True)

	Convert the model into training mode will keeping the normalization
layer freezed.










	
class mmdet.models.backbones.HourglassNet(downsample_times=5, num_stacks=2, stage_channels=(256, 256, 384, 384, 384, 512), stage_blocks=(2, 2, 2, 2, 2, 4), feat_channel=256, norm_cfg={'requires_grad': True, 'type': 'BN'}, pretrained=None, init_cfg=None)

	HourglassNet backbone.

Stacked Hourglass Networks for Human Pose Estimation.
More details can be found in the paper [https://arxiv.org/abs/1603.06937] .


	Parameters

	
	downsample_times (int) – Downsample times in a HourglassModule.


	num_stacks (int) – Number of HourglassModule modules stacked,
1 for Hourglass-52, 2 for Hourglass-104.


	stage_channels (list[int]) – Feature channel of each sub-module in a
HourglassModule.


	stage_blocks (list[int]) – Number of sub-modules stacked in a
HourglassModule.


	feat_channel (int) – Feature channel of conv after a HourglassModule.


	norm_cfg (dict) – Dictionary to construct and config norm layer.


	pretrained (str, optional) – model pretrained path. Default: None


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None








Example

>>> from mmdet.models import HourglassNet
>>> import torch
>>> self = HourglassNet()
>>> self.eval()
>>> inputs = torch.rand(1, 3, 511, 511)
>>> level_outputs = self.forward(inputs)
>>> for level_output in level_outputs:
...     print(tuple(level_output.shape))
(1, 256, 128, 128)
(1, 256, 128, 128)






	
forward(x)

	Forward function.






	
init_weights()

	Init module weights.










	
class mmdet.models.backbones.MobileNetV2(widen_factor=1.0, out_indices=(1, 2, 4, 7), frozen_stages=-1, conv_cfg=None, norm_cfg={'type': 'BN'}, act_cfg={'type': 'ReLU6'}, norm_eval=False, with_cp=False, pretrained=None, init_cfg=None)

	MobileNetV2 backbone.


	Parameters

	
	widen_factor (float) – Width multiplier, multiply number of
channels in each layer by this amount. Default: 1.0.


	out_indices (Sequence[int], optional) – Output from which stages.
Default: (1, 2, 4, 7).


	frozen_stages (int) – Stages to be frozen (all param fixed).
Default: -1, which means not freezing any parameters.


	conv_cfg (dict, optional) – Config dict for convolution layer.
Default: None, which means using conv2d.


	norm_cfg (dict) – Config dict for normalization layer.
Default: dict(type=’BN’).


	act_cfg (dict) – Config dict for activation layer.
Default: dict(type=’ReLU6’).


	norm_eval (bool) – Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.


	with_cp (bool) – Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.


	pretrained (str, optional) – model pretrained path. Default: None


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None









	
forward(x)

	Forward function.






	
make_layer(out_channels, num_blocks, stride, expand_ratio)

	Stack InvertedResidual blocks to build a layer for MobileNetV2.


	Parameters

	
	out_channels (int) – out_channels of block.


	num_blocks (int) – number of blocks.


	stride (int) – stride of the first block. Default: 1


	expand_ratio (int) – Expand the number of channels of the
hidden layer in InvertedResidual by this ratio. Default: 6.













	
train(mode=True)

	Convert the model into training mode while keep normalization layer
frozen.










	
class mmdet.models.backbones.PyramidVisionTransformer(pretrain_img_size=224, in_channels=3, embed_dims=64, num_stages=4, num_layers=[3, 4, 6, 3], num_heads=[1, 2, 5, 8], patch_sizes=[4, 2, 2, 2], strides=[4, 2, 2, 2], paddings=[0, 0, 0, 0], sr_ratios=[8, 4, 2, 1], out_indices=(0, 1, 2, 3), mlp_ratios=[8, 8, 4, 4], qkv_bias=True, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.1, use_abs_pos_embed=True, norm_after_stage=False, use_conv_ffn=False, act_cfg={'type': 'GELU'}, norm_cfg={'eps': 1e-06, 'type': 'LN'}, pretrained=None, convert_weights=True, init_cfg=None)

	Pyramid Vision Transformer (PVT)

Implementation of Pyramid Vision Transformer: A Versatile Backbone for
Dense Prediction without Convolutions [https://arxiv.org/pdf/2102.12122.pdf].


	Parameters

	
	pretrain_img_size (int | tuple[int]) – The size of input image when
pretrain. Defaults: 224.


	in_channels (int) – Number of input channels. Default: 3.


	embed_dims (int) – Embedding dimension. Default: 64.


	num_stags (int) – The num of stages. Default: 4.


	num_layers (Sequence[int]) – The layer number of each transformer encode
layer. Default: [3, 4, 6, 3].


	num_heads (Sequence[int]) – The attention heads of each transformer
encode layer. Default: [1, 2, 5, 8].


	patch_sizes (Sequence[int]) – The patch_size of each patch embedding.
Default: [4, 2, 2, 2].


	strides (Sequence[int]) – The stride of each patch embedding.
Default: [4, 2, 2, 2].


	paddings (Sequence[int]) – The padding of each patch embedding.
Default: [0, 0, 0, 0].


	sr_ratios (Sequence[int]) – The spatial reduction rate of each
transformer encode layer. Default: [8, 4, 2, 1].


	out_indices (Sequence[int] | int) – Output from which stages.
Default: (0, 1, 2, 3).


	mlp_ratios (Sequence[int]) – The ratio of the mlp hidden dim to the
embedding dim of each transformer encode layer.
Default: [8, 8, 4, 4].


	qkv_bias (bool) – Enable bias for qkv if True. Default: True.


	drop_rate (float) – Probability of an element to be zeroed.
Default 0.0.


	attn_drop_rate (float) – The drop out rate for attention layer.
Default 0.0.


	drop_path_rate (float) – stochastic depth rate. Default 0.1.


	use_abs_pos_embed (bool) – If True, add absolute position embedding to
the patch embedding. Defaults: True.


	use_conv_ffn (bool) – If True, use Convolutional FFN to replace FFN.
Default: False.


	act_cfg (dict) – The activation config for FFNs.
Default: dict(type=’GELU’).


	norm_cfg (dict) – Config dict for normalization layer.
Default: dict(type=’LN’).


	pretrained (str, optional) – model pretrained path. Default: None.


	convert_weights (bool) – The flag indicates whether the
pre-trained model is from the original repo. We may need
to convert some keys to make it compatible.
Default: True.


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None.









	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.








	
init_weights()

	Initialize the weights.










	
class mmdet.models.backbones.PyramidVisionTransformerV2(**kwargs)

	Implementation of PVTv2: Improved Baselines with Pyramid Vision
Transformer [https://arxiv.org/pdf/2106.13797.pdf].






	
class mmdet.models.backbones.RegNet(arch, in_channels=3, stem_channels=32, base_channels=32, strides=(2, 2, 2, 2), dilations=(1, 1, 1, 1), out_indices=(0, 1, 2, 3), style='pytorch', deep_stem=False, avg_down=False, frozen_stages=-1, conv_cfg=None, norm_cfg={'requires_grad': True, 'type': 'BN'}, norm_eval=True, dcn=None, stage_with_dcn=(False, False, False, False), plugins=None, with_cp=False, zero_init_residual=True, pretrained=None, init_cfg=None)

	RegNet backbone.

More details can be found in paper [https://arxiv.org/abs/2003.13678] .


	Parameters

	
	arch (dict) – The parameter of RegNets.


	w0 (int): initial width


	wa (float): slope of width


	wm (float): quantization parameter to quantize the width


	depth (int): depth of the backbone


	group_w (int): width of group


	bot_mul (float): bottleneck ratio, i.e. expansion of bottleneck.







	strides (Sequence[int]) – Strides of the first block of each stage.


	base_channels (int) – Base channels after stem layer.


	in_channels (int) – Number of input image channels. Default: 3.


	dilations (Sequence[int]) – Dilation of each stage.


	out_indices (Sequence[int]) – Output from which stages.


	style (str) – pytorch or caffe. If set to “pytorch”, the stride-two
layer is the 3x3 conv layer, otherwise the stride-two layer is
the first 1x1 conv layer.


	frozen_stages (int) – Stages to be frozen (all param fixed). -1 means
not freezing any parameters.


	norm_cfg (dict) – dictionary to construct and config norm layer.


	norm_eval (bool) – Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.


	with_cp (bool) – Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed.


	zero_init_residual (bool) – whether to use zero init for last norm layer
in resblocks to let them behave as identity.


	pretrained (str, optional) – model pretrained path. Default: None


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None








Example

>>> from mmdet.models import RegNet
>>> import torch
>>> self = RegNet(
        arch=dict(
            w0=88,
            wa=26.31,
            wm=2.25,
            group_w=48,
            depth=25,
            bot_mul=1.0))
>>> self.eval()
>>> inputs = torch.rand(1, 3, 32, 32)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
...     print(tuple(level_out.shape))
(1, 96, 8, 8)
(1, 192, 4, 4)
(1, 432, 2, 2)
(1, 1008, 1, 1)






	
adjust_width_group(widths, bottleneck_ratio, groups)

	Adjusts the compatibility of widths and groups.


	Parameters

	
	widths (list[int]) – Width of each stage.


	bottleneck_ratio (float) – Bottleneck ratio.


	groups (int) – number of groups in each stage






	Returns

	The adjusted widths and groups of each stage.



	Return type

	tuple(list)










	
forward(x)

	Forward function.






	
generate_regnet(initial_width, width_slope, width_parameter, depth, divisor=8)

	Generates per block width from RegNet parameters.


	Parameters

	
	initial_width ([int]) – Initial width of the backbone


	width_slope ([float]) – Slope of the quantized linear function


	width_parameter ([int]) – Parameter used to quantize the width.


	depth ([int]) – Depth of the backbone.


	divisor (int, optional) – The divisor of channels. Defaults to 8.






	Returns

	return a list of widths of each stage and the number                 of stages



	Return type

	list, int










	
get_stages_from_blocks(widths)

	Gets widths/stage_blocks of network at each stage.


	Parameters

	widths (list[int]) – Width in each stage.



	Returns

	width and depth of each stage



	Return type

	tuple(list)










	
static quantize_float(number, divisor)

	Converts a float to closest non-zero int divisible by divisor.


	Parameters

	
	number (int) – Original number to be quantized.


	divisor (int) – Divisor used to quantize the number.






	Returns

	quantized number that is divisible by devisor.



	Return type

	int














	
class mmdet.models.backbones.Res2Net(scales=4, base_width=26, style='pytorch', deep_stem=True, avg_down=True, pretrained=None, init_cfg=None, **kwargs)

	Res2Net backbone.


	Parameters

	
	scales (int) – Scales used in Res2Net. Default: 4


	base_width (int) – Basic width of each scale. Default: 26


	depth (int) – Depth of res2net, from {50, 101, 152}.


	in_channels (int) – Number of input image channels. Default: 3.


	num_stages (int) – Res2net stages. Default: 4.


	strides (Sequence[int]) – Strides of the first block of each stage.


	dilations (Sequence[int]) – Dilation of each stage.


	out_indices (Sequence[int]) – Output from which stages.


	style (str) – pytorch or caffe. If set to “pytorch”, the stride-two
layer is the 3x3 conv layer, otherwise the stride-two layer is
the first 1x1 conv layer.


	deep_stem (bool) – Replace 7x7 conv in input stem with 3 3x3 conv


	avg_down (bool) – Use AvgPool instead of stride conv when
downsampling in the bottle2neck.


	frozen_stages (int) – Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters.


	norm_cfg (dict) – Dictionary to construct and config norm layer.


	norm_eval (bool) – Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.


	plugins (list[dict]) – List of plugins for stages, each dict contains:


	cfg (dict, required): Cfg dict to build plugin.


	position (str, required): Position inside block to insert
plugin, options are ‘after_conv1’, ‘after_conv2’, ‘after_conv3’.


	stages (tuple[bool], optional): Stages to apply plugin, length
should be same as ‘num_stages’.







	with_cp (bool) – Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed.


	zero_init_residual (bool) – Whether to use zero init for last norm layer
in resblocks to let them behave as identity.


	pretrained (str, optional) – model pretrained path. Default: None


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None








Example

>>> from mmdet.models import Res2Net
>>> import torch
>>> self = Res2Net(depth=50, scales=4, base_width=26)
>>> self.eval()
>>> inputs = torch.rand(1, 3, 32, 32)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
...     print(tuple(level_out.shape))
(1, 256, 8, 8)
(1, 512, 4, 4)
(1, 1024, 2, 2)
(1, 2048, 1, 1)






	
make_res_layer(**kwargs)

	Pack all blocks in a stage into a ResLayer.










	
class mmdet.models.backbones.ResNeSt(groups=1, base_width=4, radix=2, reduction_factor=4, avg_down_stride=True, **kwargs)

	ResNeSt backbone.


	Parameters

	
	groups (int) – Number of groups of Bottleneck. Default: 1


	base_width (int) – Base width of Bottleneck. Default: 4


	radix (int) – Radix of SplitAttentionConv2d. Default: 2


	reduction_factor (int) – Reduction factor of inter_channels in
SplitAttentionConv2d. Default: 4.


	avg_down_stride (bool) – Whether to use average pool for stride in
Bottleneck. Default: True.


	kwargs (dict) – Keyword arguments for ResNet.









	
make_res_layer(**kwargs)

	Pack all blocks in a stage into a ResLayer.










	
class mmdet.models.backbones.ResNeXt(groups=1, base_width=4, **kwargs)

	ResNeXt backbone.


	Parameters

	
	depth (int) – Depth of resnet, from {18, 34, 50, 101, 152}.


	in_channels (int) – Number of input image channels. Default: 3.


	num_stages (int) – Resnet stages. Default: 4.


	groups (int) – Group of resnext.


	base_width (int) – Base width of resnext.


	strides (Sequence[int]) – Strides of the first block of each stage.


	dilations (Sequence[int]) – Dilation of each stage.


	out_indices (Sequence[int]) – Output from which stages.


	style (str) – pytorch or caffe. If set to “pytorch”, the stride-two
layer is the 3x3 conv layer, otherwise the stride-two layer is
the first 1x1 conv layer.


	frozen_stages (int) – Stages to be frozen (all param fixed). -1 means
not freezing any parameters.


	norm_cfg (dict) – dictionary to construct and config norm layer.


	norm_eval (bool) – Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.


	with_cp (bool) – Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed.


	zero_init_residual (bool) – whether to use zero init for last norm layer
in resblocks to let them behave as identity.









	
make_res_layer(**kwargs)

	Pack all blocks in a stage into a ResLayer










	
class mmdet.models.backbones.ResNet(depth, in_channels=3, stem_channels=None, base_channels=64, num_stages=4, strides=(1, 2, 2, 2), dilations=(1, 1, 1, 1), out_indices=(0, 1, 2, 3), style='pytorch', deep_stem=False, avg_down=False, frozen_stages=-1, conv_cfg=None, norm_cfg={'requires_grad': True, 'type': 'BN'}, norm_eval=True, dcn=None, stage_with_dcn=(False, False, False, False), plugins=None, with_cp=False, zero_init_residual=True, pretrained=None, init_cfg=None)

	ResNet backbone.


	Parameters

	
	depth (int) – Depth of resnet, from {18, 34, 50, 101, 152}.


	stem_channels (int | None) – Number of stem channels. If not specified,
it will be the same as base_channels. Default: None.


	base_channels (int) – Number of base channels of res layer. Default: 64.


	in_channels (int) – Number of input image channels. Default: 3.


	num_stages (int) – Resnet stages. Default: 4.


	strides (Sequence[int]) – Strides of the first block of each stage.


	dilations (Sequence[int]) – Dilation of each stage.


	out_indices (Sequence[int]) – Output from which stages.


	style (str) – pytorch or caffe. If set to “pytorch”, the stride-two
layer is the 3x3 conv layer, otherwise the stride-two layer is
the first 1x1 conv layer.


	deep_stem (bool) – Replace 7x7 conv in input stem with 3 3x3 conv


	avg_down (bool) – Use AvgPool instead of stride conv when
downsampling in the bottleneck.


	frozen_stages (int) – Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters.


	norm_cfg (dict) – Dictionary to construct and config norm layer.


	norm_eval (bool) – Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.


	plugins (list[dict]) – List of plugins for stages, each dict contains:


	cfg (dict, required): Cfg dict to build plugin.


	position (str, required): Position inside block to insert
plugin, options are ‘after_conv1’, ‘after_conv2’, ‘after_conv3’.


	stages (tuple[bool], optional): Stages to apply plugin, length
should be same as ‘num_stages’.







	with_cp (bool) – Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed.


	zero_init_residual (bool) – Whether to use zero init for last norm layer
in resblocks to let them behave as identity.


	pretrained (str, optional) – model pretrained path. Default: None


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None








Example

>>> from mmdet.models import ResNet
>>> import torch
>>> self = ResNet(depth=18)
>>> self.eval()
>>> inputs = torch.rand(1, 3, 32, 32)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
...     print(tuple(level_out.shape))
(1, 64, 8, 8)
(1, 128, 4, 4)
(1, 256, 2, 2)
(1, 512, 1, 1)






	
forward(x)

	Forward function.






	
make_res_layer(**kwargs)

	Pack all blocks in a stage into a ResLayer.






	
make_stage_plugins(plugins, stage_idx)

	Make plugins for ResNet stage_idx th stage.

Currently we support to insert context_block,
empirical_attention_block, nonlocal_block into the backbone
like ResNet/ResNeXt. They could be inserted after conv1/conv2/conv3 of
Bottleneck.

An example of plugins format could be:

Examples

>>> plugins=[
...     dict(cfg=dict(type='xxx', arg1='xxx'),
...          stages=(False, True, True, True),
...          position='after_conv2'),
...     dict(cfg=dict(type='yyy'),
...          stages=(True, True, True, True),
...          position='after_conv3'),
...     dict(cfg=dict(type='zzz', postfix='1'),
...          stages=(True, True, True, True),
...          position='after_conv3'),
...     dict(cfg=dict(type='zzz', postfix='2'),
...          stages=(True, True, True, True),
...          position='after_conv3')
... ]
>>> self = ResNet(depth=18)
>>> stage_plugins = self.make_stage_plugins(plugins, 0)
>>> assert len(stage_plugins) == 3





Suppose stage_idx=0, the structure of blocks in the stage would be:

conv1-> conv2->conv3->yyy->zzz1->zzz2





Suppose ‘stage_idx=1’, the structure of blocks in the stage would be:

conv1-> conv2->xxx->conv3->yyy->zzz1->zzz2





If stages is missing, the plugin would be applied to all stages.


	Parameters

	
	plugins (list[dict]) – List of plugins cfg to build. The postfix is
required if multiple same type plugins are inserted.


	stage_idx (int) – Index of stage to build






	Returns

	Plugins for current stage



	Return type

	list[dict]










	
property norm1

	the normalization layer named “norm1”


	Type

	nn.Module










	
train(mode=True)

	Convert the model into training mode while keep normalization layer
freezed.










	
class mmdet.models.backbones.ResNetV1d(**kwargs)

	ResNetV1d variant described in Bag of Tricks [https://arxiv.org/pdf/1812.01187.pdf].

Compared with default ResNet(ResNetV1b), ResNetV1d replaces the 7x7 conv in
the input stem with three 3x3 convs. And in the downsampling block, a 2x2
avg_pool with stride 2 is added before conv, whose stride is changed to 1.






	
class mmdet.models.backbones.SSDVGG(depth, with_last_pool=False, ceil_mode=True, out_indices=(3, 4), out_feature_indices=(22, 34), pretrained=None, init_cfg=None, input_size=None, l2_norm_scale=None)

	VGG Backbone network for single-shot-detection.


	Parameters

	
	depth (int) – Depth of vgg, from {11, 13, 16, 19}.


	with_last_pool (bool) – Whether to add a pooling layer at the last
of the model


	ceil_mode (bool) – When True, will use ceil instead of floor
to compute the output shape.


	out_indices (Sequence[int]) – Output from which stages.


	out_feature_indices (Sequence[int]) – Output from which feature map.


	pretrained (str, optional) – model pretrained path. Default: None


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None


	input_size (int, optional) – Deprecated argumment.
Width and height of input, from {300, 512}.


	l2_norm_scale (float, optional) – Deprecated argumment.
L2 normalization layer init scale.








Example

>>> self = SSDVGG(input_size=300, depth=11)
>>> self.eval()
>>> inputs = torch.rand(1, 3, 300, 300)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
...     print(tuple(level_out.shape))
(1, 1024, 19, 19)
(1, 512, 10, 10)
(1, 256, 5, 5)
(1, 256, 3, 3)
(1, 256, 1, 1)






	
forward(x)

	Forward function.






	
init_weights(pretrained=None)

	Initialize the weights.










	
class mmdet.models.backbones.SwinTransformer(pretrain_img_size=224, in_channels=3, embed_dims=96, patch_size=4, window_size=7, mlp_ratio=4, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24), strides=(4, 2, 2, 2), out_indices=(0, 1, 2, 3), qkv_bias=True, qk_scale=None, patch_norm=True, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.1, use_abs_pos_embed=False, act_cfg={'type': 'GELU'}, norm_cfg={'type': 'LN'}, with_cp=False, pretrained=None, convert_weights=False, frozen_stages=-1, init_cfg=None)

	Swin Transformer
A PyTorch implement of : Swin Transformer:
Hierarchical Vision Transformer using Shifted Windows  -


https://arxiv.org/abs/2103.14030




Inspiration from
https://github.com/microsoft/Swin-Transformer


	Parameters

	
	pretrain_img_size (int | tuple[int]) – The size of input image when
pretrain. Defaults: 224.


	in_channels (int) – The num of input channels.
Defaults: 3.


	embed_dims (int) – The feature dimension. Default: 96.


	patch_size (int | tuple[int]) – Patch size. Default: 4.


	window_size (int) – Window size. Default: 7.


	mlp_ratio (int) – Ratio of mlp hidden dim to embedding dim.
Default: 4.


	depths (tuple[int]) – Depths of each Swin Transformer stage.
Default: (2, 2, 6, 2).


	num_heads (tuple[int]) – Parallel attention heads of each Swin
Transformer stage. Default: (3, 6, 12, 24).


	strides (tuple[int]) – The patch merging or patch embedding stride of
each Swin Transformer stage. (In swin, we set kernel size equal to
stride.) Default: (4, 2, 2, 2).


	out_indices (tuple[int]) – Output from which stages.
Default: (0, 1, 2, 3).


	qkv_bias (bool, optional) – If True, add a learnable bias to query, key,
value. Default: True


	qk_scale (float | None, optional) – Override default qk scale of
head_dim ** -0.5 if set. Default: None.


	patch_norm (bool) – If add a norm layer for patch embed and patch
merging. Default: True.


	drop_rate (float) – Dropout rate. Defaults: 0.


	attn_drop_rate (float) – Attention dropout rate. Default: 0.


	drop_path_rate (float) – Stochastic depth rate. Defaults: 0.1.


	use_abs_pos_embed (bool) – If True, add absolute position embedding to
the patch embedding. Defaults: False.


	act_cfg (dict) – Config dict for activation layer.
Default: dict(type=’GELU’).


	norm_cfg (dict) – Config dict for normalization layer at
output of backone. Defaults: dict(type=’LN’).


	with_cp (bool, optional) – Use checkpoint or not. Using checkpoint
will save some memory while slowing down the training speed.
Default: False.


	pretrained (str, optional) – model pretrained path. Default: None.


	convert_weights (bool) – The flag indicates whether the
pre-trained model is from the original repo. We may need
to convert some keys to make it compatible.
Default: False.


	frozen_stages (int) – Stages to be frozen (stop grad and set eval mode).
Default: -1 (-1 means not freezing any parameters).


	init_cfg (dict, optional) – The Config for initialization.
Defaults to None.









	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.








	
init_weights()

	Initialize the weights.






	
train(mode=True)

	Convert the model into training mode while keep layers freezed.










	
class mmdet.models.backbones.TridentResNet(depth, num_branch, test_branch_idx, trident_dilations, **kwargs)

	The stem layer, stage 1 and stage 2 in Trident ResNet are identical to
ResNet, while in stage 3, Trident BottleBlock is utilized to replace the
normal BottleBlock to yield trident output. Different branch shares the
convolution weight but uses different dilations to achieve multi-scale
output.


/ stage3(b0)     x - stem - stage1 - stage2 - stage3(b1) - output
stage3(b2) /





	Parameters

	
	depth (int) – Depth of resnet, from {50, 101, 152}.


	num_branch (int) – Number of branches in TridentNet.


	test_branch_idx (int) – In inference, all 3 branches will be used
if test_branch_idx==-1, otherwise only branch with index
test_branch_idx will be used.


	trident_dilations (tuple[int]) – Dilations of different trident branch.
len(trident_dilations) should be equal to num_branch.















necks


	
class mmdet.models.necks.BFP(Balanced Feature Pyramids)

	BFP takes multi-level features as inputs and gather them into a single one,
then refine the gathered feature and scatter the refined results to
multi-level features. This module is used in Libra R-CNN (CVPR 2019), see
the paper Libra R-CNN: Towards Balanced Learning for Object Detection [https://arxiv.org/abs/1904.02701] for details.


	Parameters

	
	in_channels (int) – Number of input channels (feature maps of all levels
should have the same channels).


	num_levels (int) – Number of input feature levels.


	conv_cfg (dict) – The config dict for convolution layers.


	norm_cfg (dict) – The config dict for normalization layers.


	refine_level (int) – Index of integration and refine level of BSF in
multi-level features from bottom to top.


	refine_type (str) – Type of the refine op, currently support
[None, ‘conv’, ‘non_local’].


	init_cfg (dict or list[dict], optional) – Initialization config dict.









	
forward(inputs)

	Forward function.










	
class mmdet.models.necks.CTResNetNeck(in_channel, num_deconv_filters, num_deconv_kernels, use_dcn=True, init_cfg=None)

	The neck used in CenterNet [https://arxiv.org/abs/1904.07850] for
object classification and box regression.


	Parameters

	
	in_channel (int) – Number of input channels.


	num_deconv_filters (tuple[int]) – Number of filters per stage.


	num_deconv_kernels (tuple[int]) – Number of kernels per stage.


	use_dcn (bool) – If True, use DCNv2. Default: True.


	init_cfg (dict or list[dict], optional) – Initialization config dict.









	
forward(inputs)

	Defines the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.








	
init_weights()

	Initialize the weights.










	
class mmdet.models.necks.ChannelMapper(in_channels, out_channels, kernel_size=3, conv_cfg=None, norm_cfg=None, act_cfg={'type': 'ReLU'}, num_outs=None, init_cfg={'distribution': 'uniform', 'layer': 'Conv2d', 'type': 'Xavier'})

	Channel Mapper to reduce/increase channels of backbone features.

This is used to reduce/increase channels of backbone features.


	Parameters

	
	in_channels (List[int]) – Number of input channels per scale.


	out_channels (int) – Number of output channels (used at each scale).


	kernel_size (int, optional) – kernel_size for reducing channels (used
at each scale). Default: 3.


	conv_cfg (dict, optional) – Config dict for convolution layer.
Default: None.


	norm_cfg (dict, optional) – Config dict for normalization layer.
Default: None.


	act_cfg (dict, optional) – Config dict for activation layer in
ConvModule. Default: dict(type=’ReLU’).


	num_outs (int, optional) – Number of output feature maps. There
would be extra_convs when num_outs larger than the length
of in_channels.


	init_cfg (dict or list[dict], optional) – Initialization config dict.








Example

>>> import torch
>>> in_channels = [2, 3, 5, 7]
>>> scales = [340, 170, 84, 43]
>>> inputs = [torch.rand(1, c, s, s)
...           for c, s in zip(in_channels, scales)]
>>> self = ChannelMapper(in_channels, 11, 3).eval()
>>> outputs = self.forward(inputs)
>>> for i in range(len(outputs)):
...     print(f'outputs[{i}].shape = {outputs[i].shape}')
outputs[0].shape = torch.Size([1, 11, 340, 340])
outputs[1].shape = torch.Size([1, 11, 170, 170])
outputs[2].shape = torch.Size([1, 11, 84, 84])
outputs[3].shape = torch.Size([1, 11, 43, 43])






	
forward(inputs)

	Forward function.










	
class mmdet.models.necks.DilatedEncoder(in_channels, out_channels, block_mid_channels, num_residual_blocks, block_dilations)

	Dilated Encoder for YOLOF <https://arxiv.org/abs/2103.09460>`.


	This module contains two types of components:
	
	
	the original FPN lateral convolution layer and fpn convolution layer,
	which are 1x1 conv + 3x3 conv







	the dilated residual block









	Parameters

	
	in_channels (int) – The number of input channels.


	out_channels (int) – The number of output channels.


	block_mid_channels (int) – The number of middle block output channels


	num_residual_blocks (int) – The number of residual blocks.


	block_dilations (list) – The list of residual blocks dilation.









	
forward(feature)

	Defines the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.












	
class mmdet.models.necks.DyHead(in_channels, out_channels, num_blocks=6, zero_init_offset=True, init_cfg=None)

	DyHead neck consisting of multiple DyHead Blocks.

See Dynamic Head: Unifying Object Detection Heads with Attentions [https://arxiv.org/abs/2106.08322] for details.


	Parameters

	
	in_channels (int) – Number of input channels.


	out_channels (int) – Number of output channels.


	num_blocks (int, optional) – Number of DyHead Blocks. Default: 6.


	zero_init_offset (bool, optional) – Whether to use zero init for
spatial_conv_offset. Default: True.


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None.









	
forward(inputs)

	Forward function.










	
class mmdet.models.necks.FPG(in_channels, out_channels, num_outs, stack_times, paths, inter_channels=None, same_down_trans=None, same_up_trans={'kernel_size': 3, 'padding': 1, 'stride': 2, 'type': 'conv'}, across_lateral_trans={'kernel_size': 1, 'type': 'conv'}, across_down_trans={'kernel_size': 3, 'type': 'conv'}, across_up_trans=None, across_skip_trans={'type': 'identity'}, output_trans={'kernel_size': 3, 'type': 'last_conv'}, start_level=0, end_level=-1, add_extra_convs=False, norm_cfg=None, skip_inds=None, init_cfg=[{'type': 'Caffe2Xavier', 'layer': 'Conv2d'}, {'type': 'Constant', 'layer': ['_BatchNorm', '_InstanceNorm', 'GroupNorm', 'LayerNorm'], 'val': 1.0}])

	FPG.

Implementation of Feature Pyramid Grids (FPG) [https://arxiv.org/abs/2004.03580].
This implementation only gives the basic structure stated in the paper.
But users can implement different type of transitions to fully explore the
the potential power of the structure of FPG.


	Parameters

	
	in_channels (int) – Number of input channels (feature maps of all levels
should have the same channels).


	out_channels (int) – Number of output channels (used at each scale)


	num_outs (int) – Number of output scales.


	stack_times (int) – The number of times the pyramid architecture will
be stacked.


	paths (list[str]) – Specify the path order of each stack level.
Each element in the list should be either ‘bu’ (bottom-up) or
‘td’ (top-down).


	inter_channels (int) – Number of inter channels.


	same_up_trans (dict) – Transition that goes down at the same stage.


	same_down_trans (dict) – Transition that goes up at the same stage.


	across_lateral_trans (dict) – Across-pathway same-stage


	across_down_trans (dict) – Across-pathway bottom-up connection.


	across_up_trans (dict) – Across-pathway top-down connection.


	across_skip_trans (dict) – Across-pathway skip connection.


	output_trans (dict) – Transition that trans the output of the
last stage.


	start_level (int) – Index of the start input backbone level used to
build the feature pyramid. Default: 0.


	end_level (int) – Index of the end input backbone level (exclusive) to
build the feature pyramid. Default: -1, which means the last level.


	add_extra_convs (bool) – It decides whether to add conv
layers on top of the original feature maps. Default to False.
If True, its actual mode is specified by extra_convs_on_inputs.


	norm_cfg (dict) – Config dict for normalization layer. Default: None.


	init_cfg (dict or list[dict], optional) – Initialization config dict.









	
forward(inputs)

	Defines the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.












	
class mmdet.models.necks.FPN(in_channels, out_channels, num_outs, start_level=0, end_level=-1, add_extra_convs=False, relu_before_extra_convs=False, no_norm_on_lateral=False, conv_cfg=None, norm_cfg=None, act_cfg=None, upsample_cfg={'mode': 'nearest'}, init_cfg={'distribution': 'uniform', 'layer': 'Conv2d', 'type': 'Xavier'})

	Feature Pyramid Network.

This is an implementation of paper Feature Pyramid Networks for Object
Detection [https://arxiv.org/abs/1612.03144].


	Parameters

	
	in_channels (list[int]) – Number of input channels per scale.


	out_channels (int) – Number of output channels (used at each scale).


	num_outs (int) – Number of output scales.


	start_level (int) – Index of the start input backbone level used to
build the feature pyramid. Default: 0.


	end_level (int) – Index of the end input backbone level (exclusive) to
build the feature pyramid. Default: -1, which means the last level.


	add_extra_convs (bool | str) – If bool, it decides whether to add conv
layers on top of the original feature maps. Default to False.
If True, it is equivalent to add_extra_convs=’on_input’.
If str, it specifies the source feature map of the extra convs.
Only the following options are allowed


	’on_input’: Last feat map of neck inputs (i.e. backbone feature).


	’on_lateral’: Last feature map after lateral convs.


	’on_output’: The last output feature map after fpn convs.







	relu_before_extra_convs (bool) – Whether to apply relu before the extra
conv. Default: False.


	no_norm_on_lateral (bool) – Whether to apply norm on lateral.
Default: False.


	conv_cfg (dict) – Config dict for convolution layer. Default: None.


	norm_cfg (dict) – Config dict for normalization layer. Default: None.


	act_cfg (dict) – Config dict for activation layer in ConvModule.
Default: None.


	upsample_cfg (dict) – Config dict for interpolate layer.
Default: dict(mode=’nearest’).


	init_cfg (dict or list[dict], optional) – Initialization config dict.








Example

>>> import torch
>>> in_channels = [2, 3, 5, 7]
>>> scales = [340, 170, 84, 43]
>>> inputs = [torch.rand(1, c, s, s)
...           for c, s in zip(in_channels, scales)]
>>> self = FPN(in_channels, 11, len(in_channels)).eval()
>>> outputs = self.forward(inputs)
>>> for i in range(len(outputs)):
...     print(f'outputs[{i}].shape = {outputs[i].shape}')
outputs[0].shape = torch.Size([1, 11, 340, 340])
outputs[1].shape = torch.Size([1, 11, 170, 170])
outputs[2].shape = torch.Size([1, 11, 84, 84])
outputs[3].shape = torch.Size([1, 11, 43, 43])






	
forward(inputs)

	Forward function.










	
class mmdet.models.necks.FPN_CARAFE(in_channels, out_channels, num_outs, start_level=0, end_level=-1, norm_cfg=None, act_cfg=None, order=('conv', 'norm', 'act'), upsample_cfg={'encoder_dilation': 1, 'encoder_kernel': 3, 'type': 'carafe', 'up_group': 1, 'up_kernel': 5}, init_cfg=None)

	FPN_CARAFE is a more flexible implementation of FPN. It allows more
choice for upsample methods during the top-down pathway.

It can reproduce the performance of ICCV 2019 paper
CARAFE: Content-Aware ReAssembly of FEatures
Please refer to https://arxiv.org/abs/1905.02188 for more details.


	Parameters

	
	in_channels (list[int]) – Number of channels for each input feature map.


	out_channels (int) – Output channels of feature pyramids.


	num_outs (int) – Number of output stages.


	start_level (int) – Start level of feature pyramids.
(Default: 0)


	end_level (int) – End level of feature pyramids.
(Default: -1 indicates the last level).


	norm_cfg (dict) – Dictionary to construct and config norm layer.


	activate (str) – Type of activation function in ConvModule
(Default: None indicates w/o activation).


	order (dict) – Order of components in ConvModule.


	upsample (str) – Type of upsample layer.


	upsample_cfg (dict) – Dictionary to construct and config upsample layer.


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None









	
forward(inputs)

	Forward function.






	
init_weights()

	Initialize the weights of module.






	
slice_as(src, dst)

	Slice src as dst


Note

src should have the same or larger size than dst.




	Parameters

	
	src (torch.Tensor) – Tensors to be sliced.


	dst (torch.Tensor) – src will be sliced to have the same
size as dst.






	Returns

	Sliced tensor.



	Return type

	torch.Tensor










	
tensor_add(a, b)

	Add tensors a and b that might have different sizes.










	
class mmdet.models.necks.HRFPN(High Resolution Feature Pyramids)

	paper: High-Resolution Representations for Labeling Pixels and Regions [https://arxiv.org/abs/1904.04514].


	Parameters

	
	in_channels (list) – number of channels for each branch.


	out_channels (int) – output channels of feature pyramids.


	num_outs (int) – number of output stages.


	pooling_type (str) – pooling for generating feature pyramids
from {MAX, AVG}.


	conv_cfg (dict) – dictionary to construct and config conv layer.


	norm_cfg (dict) – dictionary to construct and config norm layer.


	with_cp (bool) – Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed.


	stride (int) – stride of 3x3 convolutional layers


	init_cfg (dict or list[dict], optional) – Initialization config dict.









	
forward(inputs)

	Forward function.










	
class mmdet.models.necks.NASFCOS_FPN(in_channels, out_channels, num_outs, start_level=1, end_level=-1, add_extra_convs=False, conv_cfg=None, norm_cfg=None, init_cfg=None)

	FPN structure in NASFPN.

Implementation of paper NAS-FCOS: Fast Neural Architecture Search for
Object Detection [https://arxiv.org/abs/1906.04423]


	Parameters

	
	in_channels (List[int]) – Number of input channels per scale.


	out_channels (int) – Number of output channels (used at each scale)


	num_outs (int) – Number of output scales.


	start_level (int) – Index of the start input backbone level used to
build the feature pyramid. Default: 0.


	end_level (int) – Index of the end input backbone level (exclusive) to
build the feature pyramid. Default: -1, which means the last level.


	add_extra_convs (bool) – It decides whether to add conv
layers on top of the original feature maps. Default to False.
If True, its actual mode is specified by extra_convs_on_inputs.


	conv_cfg (dict) – dictionary to construct and config conv layer.


	norm_cfg (dict) – dictionary to construct and config norm layer.


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None









	
forward(inputs)

	Forward function.






	
init_weights()

	Initialize the weights of module.










	
class mmdet.models.necks.NASFPN(in_channels, out_channels, num_outs, stack_times, start_level=0, end_level=-1, add_extra_convs=False, norm_cfg=None, init_cfg={'layer': 'Conv2d', 'type': 'Caffe2Xavier'})

	NAS-FPN.

Implementation of NAS-FPN: Learning Scalable Feature Pyramid Architecture
for Object Detection [https://arxiv.org/abs/1904.07392]


	Parameters

	
	in_channels (List[int]) – Number of input channels per scale.


	out_channels (int) – Number of output channels (used at each scale)


	num_outs (int) – Number of output scales.


	stack_times (int) – The number of times the pyramid architecture will
be stacked.


	start_level (int) – Index of the start input backbone level used to
build the feature pyramid. Default: 0.


	end_level (int) – Index of the end input backbone level (exclusive) to
build the feature pyramid. Default: -1, which means the last level.


	add_extra_convs (bool) – It decides whether to add conv
layers on top of the original feature maps. Default to False.
If True, its actual mode is specified by extra_convs_on_inputs.


	init_cfg (dict or list[dict], optional) – Initialization config dict.









	
forward(inputs)

	Forward function.










	
class mmdet.models.necks.PAFPN(in_channels, out_channels, num_outs, start_level=0, end_level=-1, add_extra_convs=False, relu_before_extra_convs=False, no_norm_on_lateral=False, conv_cfg=None, norm_cfg=None, act_cfg=None, init_cfg={'distribution': 'uniform', 'layer': 'Conv2d', 'type': 'Xavier'})

	Path Aggregation Network for Instance Segmentation.

This is an implementation of the PAFPN in Path Aggregation Network [https://arxiv.org/abs/1803.01534].


	Parameters

	
	in_channels (List[int]) – Number of input channels per scale.


	out_channels (int) – Number of output channels (used at each scale)


	num_outs (int) – Number of output scales.


	start_level (int) – Index of the start input backbone level used to
build the feature pyramid. Default: 0.


	end_level (int) – Index of the end input backbone level (exclusive) to
build the feature pyramid. Default: -1, which means the last level.


	add_extra_convs (bool | str) – If bool, it decides whether to add conv
layers on top of the original feature maps. Default to False.
If True, it is equivalent to add_extra_convs=’on_input’.
If str, it specifies the source feature map of the extra convs.
Only the following options are allowed


	’on_input’: Last feat map of neck inputs (i.e. backbone feature).


	’on_lateral’:  Last feature map after lateral convs.


	’on_output’: The last output feature map after fpn convs.







	relu_before_extra_convs (bool) – Whether to apply relu before the extra
conv. Default: False.


	no_norm_on_lateral (bool) – Whether to apply norm on lateral.
Default: False.


	conv_cfg (dict) – Config dict for convolution layer. Default: None.


	norm_cfg (dict) – Config dict for normalization layer. Default: None.


	act_cfg (str) – Config dict for activation layer in ConvModule.
Default: None.


	init_cfg (dict or list[dict], optional) – Initialization config dict.









	
forward(inputs)

	Forward function.










	
class mmdet.models.necks.RFP(Recursive Feature Pyramid)

	This is an implementation of RFP in DetectoRS [https://arxiv.org/pdf/2006.02334.pdf]. Different from standard FPN, the
input of RFP should be multi level features along with origin input image
of backbone.


	Parameters

	
	rfp_steps (int) – Number of unrolled steps of RFP.


	rfp_backbone (dict) – Configuration of the backbone for RFP.


	aspp_out_channels (int) – Number of output channels of ASPP module.


	aspp_dilations (tuple[int]) – Dilation rates of four branches.
Default: (1, 3, 6, 1)


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None









	
forward(inputs)

	Forward function.






	
init_weights()

	Initialize the weights.










	
class mmdet.models.necks.SSDNeck(in_channels, out_channels, level_strides, level_paddings, l2_norm_scale=20.0, last_kernel_size=3, use_depthwise=False, conv_cfg=None, norm_cfg=None, act_cfg={'type': 'ReLU'}, init_cfg=[{'type': 'Xavier', 'distribution': 'uniform', 'layer': 'Conv2d'}, {'type': 'Constant', 'val': 1, 'layer': 'BatchNorm2d'}])

	Extra layers of SSD backbone to generate multi-scale feature maps.


	Parameters

	
	in_channels (Sequence[int]) – Number of input channels per scale.


	out_channels (Sequence[int]) – Number of output channels per scale.


	level_strides (Sequence[int]) – Stride of 3x3 conv per level.


	level_paddings (Sequence[int]) – Padding size of 3x3 conv per level.


	l2_norm_scale (float|None) – L2 normalization layer init scale.
If None, not use L2 normalization on the first input feature.


	last_kernel_size (int) – Kernel size of the last conv layer.
Default: 3.


	use_depthwise (bool) – Whether to use DepthwiseSeparableConv.
Default: False.


	conv_cfg (dict) – Config dict for convolution layer. Default: None.


	norm_cfg (dict) – Dictionary to construct and config norm layer.
Default: None.


	act_cfg (dict) – Config dict for activation layer.
Default: dict(type=’ReLU’).


	init_cfg (dict or list[dict], optional) – Initialization config dict.









	
forward(inputs)

	Forward function.










	
class mmdet.models.necks.YOLOV3Neck(num_scales, in_channels, out_channels, conv_cfg=None, norm_cfg={'requires_grad': True, 'type': 'BN'}, act_cfg={'negative_slope': 0.1, 'type': 'LeakyReLU'}, init_cfg=None)

	The neck of YOLOV3.

It can be treated as a simplified version of FPN. It
will take the result from Darknet backbone and do some upsampling and
concatenation. It will finally output the detection result.


Note


	The input feats should be from top to bottom.
	i.e., from high-lvl to low-lvl



	But YOLOV3Neck will process them in reversed order.
	i.e., from bottom (high-lvl) to top (low-lvl)








	Parameters

	
	num_scales (int) – The number of scales / stages.


	in_channels (List[int]) – The number of input channels per scale.


	out_channels (List[int]) – The number of output channels  per scale.


	conv_cfg (dict, optional) – Config dict for convolution layer.
Default: None.


	norm_cfg (dict, optional) – Dictionary to construct and config norm
layer. Default: dict(type=’BN’, requires_grad=True)


	act_cfg (dict, optional) – Config dict for activation layer.
Default: dict(type=’LeakyReLU’, negative_slope=0.1).


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None









	
forward(feats)

	Defines the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.












	
class mmdet.models.necks.YOLOXPAFPN(in_channels, out_channels, num_csp_blocks=3, use_depthwise=False, upsample_cfg={'mode': 'nearest', 'scale_factor': 2}, conv_cfg=None, norm_cfg={'eps': 0.001, 'momentum': 0.03, 'type': 'BN'}, act_cfg={'type': 'Swish'}, init_cfg={'a': 2.23606797749979, 'distribution': 'uniform', 'layer': 'Conv2d', 'mode': 'fan_in', 'nonlinearity': 'leaky_relu', 'type': 'Kaiming'})

	Path Aggregation Network used in YOLOX.


	Parameters

	
	in_channels (List[int]) – Number of input channels per scale.


	out_channels (int) – Number of output channels (used at each scale)


	num_csp_blocks (int) – Number of bottlenecks in CSPLayer. Default: 3


	use_depthwise (bool) – Whether to depthwise separable convolution in
blocks. Default: False


	upsample_cfg (dict) – Config dict for interpolate layer.
Default: dict(scale_factor=2, mode=’nearest’)


	conv_cfg (dict, optional) – Config dict for convolution layer.
Default: None, which means using conv2d.


	norm_cfg (dict) – Config dict for normalization layer.
Default: dict(type=’BN’)


	act_cfg (dict) – Config dict for activation layer.
Default: dict(type=’Swish’)


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None.









	
forward(inputs)

	
	Parameters

	inputs (tuple[Tensor]) – input features.



	Returns

	YOLOXPAFPN features.



	Return type

	tuple[Tensor]
















dense_heads




roi_heads
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utils


	
class mmdet.models.utils.AdaptiveAvgPool2d(output_size: Union[int, None, Tuple[Optional[int], ...]])

	Handle empty batch dimension to AdaptiveAvgPool2d.


	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.












	
class mmdet.models.utils.CSPLayer(in_channels, out_channels, expand_ratio=0.5, num_blocks=1, add_identity=True, use_depthwise=False, conv_cfg=None, norm_cfg={'eps': 0.001, 'momentum': 0.03, 'type': 'BN'}, act_cfg={'type': 'Swish'}, init_cfg=None)

	Cross Stage Partial Layer.


	Parameters

	
	in_channels (int) – The input channels of the CSP layer.


	out_channels (int) – The output channels of the CSP layer.


	expand_ratio (float) – Ratio to adjust the number of channels of the
hidden layer. Default: 0.5


	num_blocks (int) – Number of blocks. Default: 1


	add_identity (bool) – Whether to add identity in blocks.
Default: True


	use_depthwise (bool) – Whether to depthwise separable convolution in
blocks. Default: False


	conv_cfg (dict, optional) – Config dict for convolution layer.
Default: None, which means using conv2d.


	norm_cfg (dict) – Config dict for normalization layer.
Default: dict(type=’BN’)


	act_cfg (dict) – Config dict for activation layer.
Default: dict(type=’Swish’)









	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.












	
class mmdet.models.utils.ConvUpsample(in_channels, inner_channels, num_layers=1, num_upsample=None, conv_cfg=None, norm_cfg=None, init_cfg=None, **kwargs)

	ConvUpsample performs 2x upsampling after Conv.

There are several ConvModule layers. In the first few layers, upsampling
will be applied after each layer of convolution. The number of upsampling
must be no more than the number of ConvModule layers.


	Parameters

	
	in_channels (int) – Number of channels in the input feature map.


	inner_channels (int) – Number of channels produced by the convolution.


	num_layers (int) – Number of convolution layers.


	num_upsample (int | optional) – Number of upsampling layer. Must be no
more than num_layers. Upsampling will be applied after the first
num_upsample layers of convolution. Default: num_layers.


	conv_cfg (dict) – Config dict for convolution layer. Default: None,
which means using conv2d.


	norm_cfg (dict) – Config dict for normalization layer. Default: None.


	init_cfg (dict) – Config dict for initialization. Default: None.


	kwargs (key word augments) – Other augments used in ConvModule.









	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.












	
class mmdet.models.utils.DetrTransformerDecoder(*args, post_norm_cfg={'type': 'LN'}, return_intermediate=False, **kwargs)

	Implements the decoder in DETR transformer.


	Parameters

	
	return_intermediate (bool) – Whether to return intermediate outputs.


	post_norm_cfg (dict) – Config of last normalization layer. Default：
LN.









	
forward(query, *args, **kwargs)

	Forward function for TransformerDecoder.


	Parameters

	query (Tensor) – Input query with shape
(num_query, bs, embed_dims).



	Returns

	
	Results with shape [1, num_query, bs, embed_dims] when
	return_intermediate is False, otherwise it has shape
[num_layers, num_query, bs, embed_dims].









	Return type

	Tensor














	
class mmdet.models.utils.DetrTransformerDecoderLayer(attn_cfgs, feedforward_channels, ffn_dropout=0.0, operation_order=None, act_cfg={'inplace': True, 'type': 'ReLU'}, norm_cfg={'type': 'LN'}, ffn_num_fcs=2, **kwargs)

	Implements decoder layer in DETR transformer.


	Parameters

	
	attn_cfgs (list[mmcv.ConfigDict] | list[dict] | dict )) – Configs for self_attention or cross_attention, the order
should be consistent with it in operation_order. If it is
a dict, it would be expand to the number of attention in
operation_order.


	feedforward_channels (int) – The hidden dimension for FFNs.


	ffn_dropout (float) – Probability of an element to be zeroed
in ffn. Default 0.0.


	operation_order (tuple[str]) – The execution order of operation
in transformer. Such as (‘self_attn’, ‘norm’, ‘ffn’, ‘norm’).
Default：None


	act_cfg (dict) – The activation config for FFNs. Default: LN


	norm_cfg (dict) – Config dict for normalization layer.
Default: LN.


	ffn_num_fcs (int) – The number of fully-connected layers in FFNs.
Default：2.













	
class mmdet.models.utils.DyReLU(channels, ratio=4, conv_cfg=None, act_cfg=({'type': 'ReLU'}, {'type': 'HSigmoid', 'bias': 3.0, 'divisor': 6.0}), init_cfg=None)

	Dynamic ReLU (DyReLU) module.

See Dynamic ReLU [https://arxiv.org/abs/2003.10027] for details.
Current implementation is specialized for task-aware attention in DyHead.
HSigmoid arguments in default act_cfg follow DyHead official code.
https://github.com/microsoft/DynamicHead/blob/master/dyhead/dyrelu.py


	Parameters

	
	channels (int) – The input (and output) channels of DyReLU module.


	ratio (int) – Squeeze ratio in Squeeze-and-Excitation-like module,
the intermediate channel will be int(channels/ratio).
Default: 4.


	conv_cfg (None or dict) – Config dict for convolution layer.
Default: None, which means using conv2d.


	act_cfg (dict or Sequence[dict]) – Config dict for activation layer.
If act_cfg is a dict, two activation layers will be configurated
by this dict. If act_cfg is a sequence of dicts, the first
activation layer will be configurated by the first dict and the
second activation layer will be configurated by the second dict.
Default: (dict(type=’ReLU’), dict(type=’HSigmoid’, bias=3.0,
divisor=6.0))


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None









	
forward(x)

	Forward function.










	
class mmdet.models.utils.DynamicConv(in_channels=256, feat_channels=64, out_channels=None, input_feat_shape=7, with_proj=True, act_cfg={'inplace': True, 'type': 'ReLU'}, norm_cfg={'type': 'LN'}, init_cfg=None)

	Implements Dynamic Convolution.

This module generate parameters for each sample and
use bmm to implement 1*1 convolution. Code is modified
from the official github repo [https://github.com/PeizeSun/SparseR-CNN/blob/main/projects/SparseRCNN/sparsercnn/head.py#L258] .


	Parameters

	
	in_channels (int) – The input feature channel.
Defaults to 256.


	feat_channels (int) – The inner feature channel.
Defaults to 64.


	out_channels (int, optional) – The output feature channel.
When not specified, it will be set to in_channels
by default


	input_feat_shape (int) – The shape of input feature.
Defaults to 7.


	with_proj (bool) – Project two-dimentional feature to
one-dimentional feature. Default to True.


	act_cfg (dict) – The activation config for DynamicConv.


	norm_cfg (dict) – Config dict for normalization layer. Default
layer normalization.


	(obj (init_cfg) – mmcv.ConfigDict): The Config for initialization.
Default: None.









	
forward(param_feature, input_feature)

	Forward function for DynamicConv.


	Parameters

	
	param_feature (Tensor) – The feature can be used
to generate the parameter, has shape
(num_all_proposals, in_channels).


	input_feature (Tensor) – Feature that
interact with parameters, has shape
(num_all_proposals, in_channels, H, W).






	Returns

	The output feature has shape
(num_all_proposals, out_channels).



	Return type

	Tensor














	
class mmdet.models.utils.InvertedResidual(in_channels, out_channels, mid_channels, kernel_size=3, stride=1, se_cfg=None, with_expand_conv=True, conv_cfg=None, norm_cfg={'type': 'BN'}, act_cfg={'type': 'ReLU'}, drop_path_rate=0.0, with_cp=False, init_cfg=None)

	Inverted Residual Block.


	Parameters

	
	in_channels (int) – The input channels of this Module.


	out_channels (int) – The output channels of this Module.


	mid_channels (int) – The input channels of the depthwise convolution.


	kernel_size (int) – The kernel size of the depthwise convolution.
Default: 3.


	stride (int) – The stride of the depthwise convolution. Default: 1.


	se_cfg (dict) – Config dict for se layer. Default: None, which means no
se layer.


	with_expand_conv (bool) – Use expand conv or not. If set False,
mid_channels must be the same with in_channels.
Default: True.


	conv_cfg (dict) – Config dict for convolution layer. Default: None,
which means using conv2d.


	norm_cfg (dict) – Config dict for normalization layer.
Default: dict(type=’BN’).


	act_cfg (dict) – Config dict for activation layer.
Default: dict(type=’ReLU’).


	drop_path_rate (float) – stochastic depth rate. Defaults to 0.


	with_cp (bool) – Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None






	Returns

	The output tensor.



	Return type

	Tensor






	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.












	
class mmdet.models.utils.LearnedPositionalEncoding(num_feats, row_num_embed=50, col_num_embed=50, init_cfg={'layer': 'Embedding', 'type': 'Uniform'})

	Position embedding with learnable embedding weights.


	Parameters

	
	num_feats (int) – The feature dimension for each position
along x-axis or y-axis. The final returned dimension for
each position is 2 times of this value.


	row_num_embed (int, optional) – The dictionary size of row embeddings.
Default 50.


	col_num_embed (int, optional) – The dictionary size of col embeddings.
Default 50.


	init_cfg (dict or list[dict], optional) – Initialization config dict.









	
forward(mask)

	Forward function for LearnedPositionalEncoding.


	Parameters

	mask (Tensor) – ByteTensor mask. Non-zero values representing
ignored positions, while zero values means valid positions
for this image. Shape [bs, h, w].



	Returns

	
	Returned position embedding with shape
	[bs, num_feats*2, h, w].









	Return type

	pos (Tensor)














	
class mmdet.models.utils.NormedConv2d(*args, tempearture=20, power=1.0, eps=1e-06, norm_over_kernel=False, **kwargs)

	Normalized Conv2d Layer.


	Parameters

	
	tempeature (float, optional) – Tempeature term. Default to 20.


	power (int, optional) – Power term. Default to 1.0.


	eps (float, optional) – The minimal value of divisor to
keep numerical stability. Default to 1e-6.


	norm_over_kernel (bool, optional) – Normalize over kernel.
Default to False.









	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.












	
class mmdet.models.utils.NormedLinear(*args, tempearture=20, power=1.0, eps=1e-06, **kwargs)

	Normalized Linear Layer.


	Parameters

	
	tempeature (float, optional) – Tempeature term. Default to 20.


	power (int, optional) – Power term. Default to 1.0.


	eps (float, optional) – The minimal value of divisor to
keep numerical stability. Default to 1e-6.









	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.












	
class mmdet.models.utils.PatchEmbed(in_channels=3, embed_dims=768, conv_type='Conv2d', kernel_size=16, stride=16, padding='corner', dilation=1, bias=True, norm_cfg=None, input_size=None, init_cfg=None)

	Image to Patch Embedding.

We use a conv layer to implement PatchEmbed.


	Parameters

	
	in_channels (int) – The num of input channels. Default: 3


	embed_dims (int) – The dimensions of embedding. Default: 768


	conv_type (str) – The config dict for embedding
conv layer type selection. Default: “Conv2d.


	kernel_size (int) – The kernel_size of embedding conv. Default: 16.


	stride (int) – The slide stride of embedding conv.
Default: None (Would be set as kernel_size).


	padding (int | tuple | string) – The padding length of
embedding conv. When it is a string, it means the mode
of adaptive padding, support “same” and “corner” now.
Default: “corner”.


	dilation (int) – The dilation rate of embedding conv. Default: 1.


	bias (bool) – Bias of embed conv. Default: True.


	norm_cfg (dict, optional) – Config dict for normalization layer.
Default: None.


	input_size (int | tuple | None) – The size of input, which will be
used to calculate the out size. Only work when dynamic_size
is False. Default: None.


	init_cfg (mmcv.ConfigDict, optional) – The Config for initialization.
Default: None.









	
forward(x)

	
	Parameters

	x (Tensor) – Has shape (B, C, H, W). In most case, C is 3.



	Returns

	Contains merged results and its spatial shape.



	x (Tensor): Has shape (B, out_h * out_w, embed_dims)


	
	out_size (tuple[int]): Spatial shape of x, arrange as
	(out_h, out_w).
















	Return type

	tuple














	
class mmdet.models.utils.ResLayer(block, inplanes, planes, num_blocks, stride=1, avg_down=False, conv_cfg=None, norm_cfg={'type': 'BN'}, downsample_first=True, **kwargs)

	ResLayer to build ResNet style backbone.


	Parameters

	
	block (nn.Module) – block used to build ResLayer.


	inplanes (int) – inplanes of block.


	planes (int) – planes of block.


	num_blocks (int) – number of blocks.


	stride (int) – stride of the first block. Default: 1


	avg_down (bool) – Use AvgPool instead of stride conv when
downsampling in the bottleneck. Default: False


	conv_cfg (dict) – dictionary to construct and config conv layer.
Default: None


	norm_cfg (dict) – dictionary to construct and config norm layer.
Default: dict(type=’BN’)


	downsample_first (bool) – Downsample at the first block or last block.
False for Hourglass, True for ResNet. Default: True













	
class mmdet.models.utils.SELayer(channels, ratio=16, conv_cfg=None, act_cfg=({'type': 'ReLU'}, {'type': 'Sigmoid'}), init_cfg=None)

	Squeeze-and-Excitation Module.


	Parameters

	
	channels (int) – The input (and output) channels of the SE layer.


	ratio (int) – Squeeze ratio in SELayer, the intermediate channel will be
int(channels/ratio). Default: 16.


	conv_cfg (None or dict) – Config dict for convolution layer.
Default: None, which means using conv2d.


	act_cfg (dict or Sequence[dict]) – Config dict for activation layer.
If act_cfg is a dict, two activation layers will be configurated
by this dict. If act_cfg is a sequence of dicts, the first
activation layer will be configurated by the first dict and the
second activation layer will be configurated by the second dict.
Default: (dict(type=’ReLU’), dict(type=’Sigmoid’))


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None









	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.












	
class mmdet.models.utils.SimplifiedBasicBlock(inplanes, planes, stride=1, dilation=1, downsample=None, style='pytorch', with_cp=False, conv_cfg=None, norm_cfg={'type': 'BN'}, dcn=None, plugins=None, init_fg=None)

	Simplified version of original basic residual block. This is used in
SCNet [https://arxiv.org/abs/2012.10150].


	Norm layer is now optional


	Last ReLU in forward function is removed





	
forward(x)

	Forward function.






	
property norm1

	normalization layer after the first convolution layer


	Type

	nn.Module










	
property norm2

	normalization layer after the second convolution layer


	Type

	nn.Module














	
class mmdet.models.utils.SinePositionalEncoding(num_feats, temperature=10000, normalize=False, scale=6.283185307179586, eps=1e-06, offset=0.0, init_cfg=None)

	Position encoding with sine and cosine functions.

See End-to-End Object Detection with Transformers [https://arxiv.org/pdf/2005.12872] for details.


	Parameters

	
	num_feats (int) – The feature dimension for each position
along x-axis or y-axis. Note the final returned dimension
for each position is 2 times of this value.


	temperature (int, optional) – The temperature used for scaling
the position embedding. Defaults to 10000.


	normalize (bool, optional) – Whether to normalize the position
embedding. Defaults to False.


	scale (float, optional) – A scale factor that scales the position
embedding. The scale will be used only when normalize is True.
Defaults to 2*pi.


	eps (float, optional) – A value added to the denominator for
numerical stability. Defaults to 1e-6.


	offset (float) – offset add to embed when do the normalization.
Defaults to 0.


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None









	
forward(mask)

	Forward function for SinePositionalEncoding.


	Parameters

	mask (Tensor) – ByteTensor mask. Non-zero values representing
ignored positions, while zero values means valid positions
for this image. Shape [bs, h, w].



	Returns

	
	Returned position embedding with shape
	[bs, num_feats*2, h, w].









	Return type

	pos (Tensor)














	
class mmdet.models.utils.Transformer(encoder=None, decoder=None, init_cfg=None)

	Implements the DETR transformer.

Following the official DETR implementation, this module copy-paste
from torch.nn.Transformer with modifications:



	positional encodings are passed in MultiheadAttention


	extra LN at the end of encoder is removed


	decoder returns a stack of activations from all decoding layers







See paper: End-to-End Object Detection with Transformers [https://arxiv.org/pdf/2005.12872] for details.


	Parameters

	
	encoder (mmcv.ConfigDict | Dict) – Config of
TransformerEncoder. Defaults to None.


	decoder ((mmcv.ConfigDict | Dict)) – Config of
TransformerDecoder. Defaults to None


	(obj (init_cfg) – mmcv.ConfigDict): The Config for initialization.
Defaults to None.









	
forward(x, mask, query_embed, pos_embed)

	Forward function for Transformer.


	Parameters

	
	x (Tensor) – Input query with shape [bs, c, h, w] where
c = embed_dims.


	mask (Tensor) – The key_padding_mask used for encoder and decoder,
with shape [bs, h, w].


	query_embed (Tensor) – The query embedding for decoder, with shape
[num_query, c].


	pos_embed (Tensor) – The positional encoding for encoder and
decoder, with the same shape as x.






	Returns

	results of decoder containing the following tensor.



	
	out_dec: Output from decoder. If return_intermediate_dec                       is True output has shape [num_dec_layers, bs,
	num_query, embed_dims], else has shape [1, bs,                       num_query, embed_dims].







	memory: Output results from encoder, with shape                       [bs, embed_dims, h, w].











	Return type

	tuple[Tensor]










	
init_weights()

	Initialize the weights.










	
mmdet.models.utils.adaptive_avg_pool2d(input, output_size)

	Handle empty batch dimension to adaptive_avg_pool2d.


	Parameters

	
	input (tensor) – 4D tensor.


	output_size (int, tuple[int,int]) – the target output size.













	
mmdet.models.utils.build_linear_layer(cfg, *args, **kwargs)

	Build linear layer.
:param cfg: The linear layer config, which should contain:



	type (str): Layer type.


	layer args: Args needed to instantiate an linear layer.








	Parameters

	
	args (argument list) – Arguments passed to the __init__
method of the corresponding linear layer.


	kwargs (keyword arguments) – Keyword arguments passed to the __init__
method of the corresponding linear layer.






	Returns

	Created linear layer.



	Return type

	nn.Module










	
mmdet.models.utils.build_transformer(cfg, default_args=None)

	Builder for Transformer.






	
mmdet.models.utils.gaussian_radius(det_size, min_overlap)

	Generate 2D gaussian radius.

This function is modified from the official github repo [https://github.com/princeton-vl/CornerNet-Lite/blob/master/core/sample/utils.py#L65].

Given min_overlap, radius could computed by a quadratic equation
according to Vieta’s formulas.

There are 3 cases for computing gaussian radius, details are following:


	Explanation of figure: lt and br indicates the left-top and
bottom-right corner of ground truth box. x indicates the
generated corner at the limited position when radius=r.


	Case1: one corner is inside the gt box and the other is outside.




|<   width   >|

lt-+----------+         -
|  |          |         ^
+--x----------+--+
|  |          |  |
|  |          |  |    height
|  | overlap  |  |
|  |          |  |
|  |          |  |      v
+--+---------br--+      -
   |          |  |
   +----------+--x





To ensure IoU of generated box and gt box is larger than min_overlap:


\[\begin{split}\cfrac{(w-r)*(h-r)}{w*h+(w+h)r-r^2} \ge {iou} \quad\Rightarrow\quad
{r^2-(w+h)r+\cfrac{1-iou}{1+iou}*w*h} \ge 0 \\
{a} = 1,\quad{b} = {-(w+h)},\quad{c} = {\cfrac{1-iou}{1+iou}*w*h} \\
{r} \le \cfrac{-b-\sqrt{b^2-4*a*c}}{2*a}\end{split}\]


	Case2: both two corners are inside the gt box.




|<   width   >|

lt-+----------+         -
|  |          |         ^
+--x-------+  |
|  |       |  |
|  |overlap|  |       height
|  |       |  |
|  +-------x--+
|          |  |         v
+----------+-br         -





To ensure IoU of generated box and gt box is larger than min_overlap:


\[\begin{split}\cfrac{(w-2*r)*(h-2*r)}{w*h} \ge {iou} \quad\Rightarrow\quad
{4r^2-2(w+h)r+(1-iou)*w*h} \ge 0 \\
{a} = 4,\quad {b} = {-2(w+h)},\quad {c} = {(1-iou)*w*h} \\
{r} \le \cfrac{-b-\sqrt{b^2-4*a*c}}{2*a}\end{split}\]


	Case3: both two corners are outside the gt box.




   |<   width   >|

x--+----------------+
|  |                |
+-lt-------------+  |   -
|  |             |  |   ^
|  |             |  |
|  |   overlap   |  | height
|  |             |  |
|  |             |  |   v
|  +------------br--+   -
|                |  |
+----------------+--x





To ensure IoU of generated box and gt box is larger than min_overlap:


\[\begin{split}\cfrac{w*h}{(w+2*r)*(h+2*r)} \ge {iou} \quad\Rightarrow\quad
{4*iou*r^2+2*iou*(w+h)r+(iou-1)*w*h} \le 0 \\
{a} = {4*iou},\quad {b} = {2*iou*(w+h)},\quad {c} = {(iou-1)*w*h} \\
{r} \le \cfrac{-b+\sqrt{b^2-4*a*c}}{2*a}\end{split}\]


	Parameters

	
	det_size (list[int]) – Shape of object.


	min_overlap (float) – Min IoU with ground truth for boxes generated by
keypoints inside the gaussian kernel.






	Returns

	Radius of gaussian kernel.



	Return type

	radius (int)










	
mmdet.models.utils.gen_gaussian_target(heatmap, center, radius, k=1)

	Generate 2D gaussian heatmap.


	Parameters

	
	heatmap (Tensor) – Input heatmap, the gaussian kernel will cover on
it and maintain the max value.


	center (list[int]) – Coord of gaussian kernel’s center.


	radius (int) – Radius of gaussian kernel.


	k (int) – Coefficient of gaussian kernel. Default: 1.






	Returns

	Updated heatmap covered by gaussian kernel.



	Return type

	out_heatmap (Tensor)










	
mmdet.models.utils.get_uncertain_point_coords_with_randomness(mask_pred, labels, num_points, oversample_ratio, importance_sample_ratio)

	Get num_points most uncertain points with random points during
train.

Sample points in [0, 1] x [0, 1] coordinate space based on their
uncertainty. The uncertainties are calculated for each point using
‘get_uncertainty()’ function that takes point’s logit prediction as
input.


	Parameters

	
	mask_pred (Tensor) – A tensor of shape (num_rois, num_classes,
mask_height, mask_width) for class-specific or class-agnostic
prediction.


	labels (list) – The ground truth class for each instance.


	num_points (int) – The number of points to sample.


	oversample_ratio (int) – Oversampling parameter.


	importance_sample_ratio (float) – Ratio of points that are sampled
via importnace sampling.






	Returns

	
	A tensor of shape (num_rois, num_points, 2)
	that contains the coordinates sampled points.









	Return type

	point_coords (Tensor)










	
mmdet.models.utils.get_uncertainty(mask_pred, labels)

	Estimate uncertainty based on pred logits.

We estimate uncertainty as L1 distance between 0.0 and the logits
prediction in ‘mask_pred’ for the foreground class in classes.


	Parameters

	
	mask_pred (Tensor) – mask predication logits, shape (num_rois,
num_classes, mask_height, mask_width).


	labels (list[Tensor]) – Either predicted or ground truth label for
each predicted mask, of length num_rois.






	Returns

	
	Uncertainty scores with the most uncertain
	locations having the highest uncertainty score,
shape (num_rois, 1, mask_height, mask_width)









	Return type

	scores (Tensor)










	
mmdet.models.utils.interpolate_as(source, target, mode='bilinear', align_corners=False)

	Interpolate the source to the shape of the target.

The source must be a Tensor, but the target can be a Tensor or a
np.ndarray with the shape (…, target_h, target_w).


	Parameters

	
	source (Tensor) – A 3D/4D Tensor with the shape (N, H, W) or
(N, C, H, W).


	target (Tensor | np.ndarray) – The interpolation target with the shape
(…, target_h, target_w).


	mode (str) – Algorithm used for interpolation. The options are the
same as those in F.interpolate(). Default: 'bilinear'.


	align_corners (bool) – The same as the argument in F.interpolate().






	Returns

	The interpolated source Tensor.



	Return type

	Tensor










	
mmdet.models.utils.make_divisible(value, divisor, min_value=None, min_ratio=0.9)

	Make divisible function.

This function rounds the channel number to the nearest value that can be
divisible by the divisor. It is taken from the original tf repo. It ensures
that all layers have a channel number that is divisible by divisor. It can
be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py  # noqa


	Parameters

	
	value (int) – The original channel number.


	divisor (int) – The divisor to fully divide the channel number.


	min_value (int) – The minimum value of the output channel.
Default: None, means that the minimum value equal to the divisor.


	min_ratio (float) – The minimum ratio of the rounded channel number to
the original channel number. Default: 0.9.






	Returns

	The modified output channel number.



	Return type

	int










	
mmdet.models.utils.nchw_to_nlc(x)

	Flatten [N, C, H, W] shape tensor to [N, L, C] shape tensor.


	Parameters

	x (Tensor) – The input tensor of shape [N, C, H, W] before conversion.



	Returns

	The output tensor of shape [N, L, C] after conversion.



	Return type

	Tensor










	
mmdet.models.utils.nlc_to_nchw(x, hw_shape)

	Convert [N, L, C] shape tensor to [N, C, H, W] shape tensor.


	Parameters

	
	x (Tensor) – The input tensor of shape [N, L, C] before conversion.


	hw_shape (Sequence[int]) – The height and width of output feature map.






	Returns

	The output tensor of shape [N, C, H, W] after conversion.



	Return type

	Tensor










	
mmdet.models.utils.preprocess_panoptic_gt(gt_labels, gt_masks, gt_semantic_seg, num_things, num_stuff, img_metas)

	Preprocess the ground truth for a image.


	Parameters

	
	gt_labels (Tensor) – Ground truth labels of each bbox,
with shape (num_gts, ).


	gt_masks (BitmapMasks) – Ground truth masks of each instances
of a image, shape (num_gts, h, w).


	gt_semantic_seg (Tensor | None) – Ground truth of semantic
segmentation with the shape (1, h, w).
[0, num_thing_class - 1] means things,
[num_thing_class, num_class-1] means stuff,
255 means VOID. It’s None when training instance segmentation.


	img_metas (dict) – List of image meta information.






	Returns

	a tuple containing the following targets.



	
	labels (Tensor): Ground truth class indices for a
	image, with shape (n, ), n is the sum of number
of stuff type and number of instance in a image.







	
	masks (Tensor): Ground truth mask for a image, with
	shape (n, h, w). Contains stuff and things when training
panoptic segmentation, and things only when training
instance segmentation.
















	Return type

	tuple
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NPU (HUAWEI Ascend)


Usage

Please refer to link [https://github.com/open-mmlab/mmcv/blob/master/docs/zh_cn/get_started/build.md] installing mmcv on NPU Devices.

Here we use 8 NPUs on your computer to train the model with the following command:

bash tools/dist_train.sh configs/ssd/ssd300_coco.py 8





Also, you can use only one NPU to train the model with the following command:

python tools/train.py configs/ssd/ssd300_coco.py








Verified Models




	Model
	box AP
	mask AP
	Config
	Download





	ssd300
	25.6
	---
	config
	log



	ssd512
	29.4
	---
	config
	log



	*ssdlite-mbv2
	20.2
	---
	config
	log



	retinanet-r50
	36.6
	---
	config
	log



	*fcos-r50
	36.1
	---
	config
	log



	solov2-r50
	---
	34.7
	config
	log





Notes:


	If not specially marked, the results are same between results on the NPU and results on the GPU with FP32.


	(*) The results on the NPU of these models are aligned with the results of the mixed-precision training on the GPU, but are lower than the results of the FP32. This situation is mainly related to the phase of the model itself in mixed-precision training, users please adjust the hyperparameters to achieve the best result by self.




All above models are provided by Huawei Ascend group.
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A


  	
      	adaptive_avg_pool2d() (in module mmdet.models.utils)
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Corruption Benchmarking


Introduction

We provide tools to test object detection and instance segmentation models on the image corruption benchmark defined in Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming [https://arxiv.org/abs/1907.07484].
This page provides basic tutorials how to use the benchmark.

@article{michaelis2019winter,
  title={Benchmarking Robustness in Object Detection:
    Autonomous Driving when Winter is Coming},
  author={Michaelis, Claudio and Mitzkus, Benjamin and
    Geirhos, Robert and Rusak, Evgenia and
    Bringmann, Oliver and Ecker, Alexander S. and
    Bethge, Matthias and Brendel, Wieland},
  journal={arXiv:1907.07484},
  year={2019}
}





[image: image corruption example]




About the benchmark

To submit results to the benchmark please visit the benchmark homepage [https://github.com/bethgelab/robust-detection-benchmark]

The benchmark is modelled after the imagenet-c benchmark [https://github.com/hendrycks/robustness] which was originally
published in Benchmarking Neural Network Robustness to Common Corruptions and Perturbations [https://arxiv.org/abs/1903.12261] (ICLR 2019) by Dan Hendrycks and Thomas Dietterich.

The image corruption functions are included in this library but can be installed separately using:

pip install imagecorruptions





Compared to imagenet-c a few changes had to be made to handle images of arbitrary size and greyscale images.
We also modified the ‘motion blur’ and ‘snow’ corruptions to remove dependency from a linux specific library,
which would have to be installed separately otherwise. For details please refer to the imagecorruptions repository [https://github.com/bethgelab/imagecorruptions].




Inference with pretrained models

We provide a testing script to evaluate a models performance on any combination of the corruptions provided in the benchmark.


Test a dataset


	[x] single GPU testing


	[ ] multiple GPU testing


	[ ] visualize detection results




You can use the following commands to test a models performance under the 15 corruptions used in the benchmark.

# single-gpu testing
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]





Alternatively different group of corruptions can be selected.

# noise
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --corruptions noise

# blur
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --corruptions blur

# wetaher
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --corruptions weather

# digital
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --corruptions digital





Or a costom set of corruptions e.g.:

# gaussian noise, zoom blur and snow
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --corruptions gaussian_noise zoom_blur snow





Finally the corruption severities to evaluate can be chosen.
Severity 0 corresponds to clean data and the effect increases from 1 to 5.

# severity 1
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --severities 1

# severities 0,2,4
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --severities 0 2 4










Results for modelzoo models

The results on COCO 2017val are shown in the below table.




	Model
	Backbone
	Style
	Lr schd
	box AP clean
	box AP corr.
	box %
	mask AP clean
	mask AP corr.
	mask %





	Faster R-CNN
	R-50-FPN
	pytorch
	1x
	36.3
	18.2
	50.2
	-
	-
	-



	Faster R-CNN
	R-101-FPN
	pytorch
	1x
	38.5
	20.9
	54.2
	-
	-
	-



	Faster R-CNN
	X-101-32x4d-FPN
	pytorch
	1x
	40.1
	22.3
	55.5
	-
	-
	-



	Faster R-CNN
	X-101-64x4d-FPN
	pytorch
	1x
	41.3
	23.4
	56.6
	-
	-
	-



	Faster R-CNN
	R-50-FPN-DCN
	pytorch
	1x
	40.0
	22.4
	56.1
	-
	-
	-



	Faster R-CNN
	X-101-32x4d-FPN-DCN
	pytorch
	1x
	43.4
	26.7
	61.6
	-
	-
	-



	Mask R-CNN
	R-50-FPN
	pytorch
	1x
	37.3
	18.7
	50.1
	34.2
	16.8
	49.1



	Mask R-CNN
	R-50-FPN-DCN
	pytorch
	1x
	41.1
	23.3
	56.7
	37.2
	20.7
	55.7



	Cascade R-CNN
	R-50-FPN
	pytorch
	1x
	40.4
	20.1
	49.7
	-
	-
	-



	Cascade Mask R-CNN
	R-50-FPN
	pytorch
	1x
	41.2
	20.7
	50.2
	35.7
	17.6
	49.3



	RetinaNet
	R-50-FPN
	pytorch
	1x
	35.6
	17.8
	50.1
	-
	-
	-



	Hybrid Task Cascade
	X-101-64x4d-FPN-DCN
	pytorch
	1x
	50.6
	32.7
	64.7
	43.8
	28.1
	64.0





Results may vary slightly due to the stochastic application of the corruptions.
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