
MMDetection
Release 3.0.0rc0

MMDetection Authors

Sep 30, 2022

GET STARTED

1 OVERVIEW 1

2 GET STARTED 3

3 Train & Test 9

4 Useful Tools 67

5 Basic Concepts 83

6 Component Customization 87

7 How to 115

8 Migration 121

9 mmdet.apis 123

10 mmdet.datasets 125

11 mmdet.engine 127

12 mmdet.evaluation 129

13 mmdet.models 131

14 mmdet.structures 133

15 mmdet.testing 135

16 mmdet.visulization 137

17 mmdet.utils 139

18 Benchmark and Model Zoo 141

19 Contribution 151

20 Projects based on MMDetection 153

21 Changelog of v3.x 155

22 Changelog v2.x 161

i

23 Frequently Asked Questions 205

24 Compatibility of MMDetection 2.x 211

25 English 217

26 219

27 Indices and tables 221

ii

CHAPTER

ONE

OVERVIEW

This chapter introduces you to the framework of MMDetection, and provides links to detailed tutorials about MMDe-
tection.

1.1 What is MMDetection

MMDetection is an object detection toolbox that contains a rich set of object detection, instance segmentation, and
panoptic segmentation methods as well as related components and modules, and below is its whole framework:

MMDetection consists of 7 main parts, apis, structures, datasets, models, engine, evaluation and visualization.

• apis provides high-level APIs for model inference.

• structures provides data structures like bbox, mask, and DetDataSample.

• datasets supports various dataset for object detection, instance segmentation, and panoptic segmentation.

– transforms contains a lot of useful data augmentation transforms .

– samplers defines different data loader sampling strategy.

• models is the most vital part for detectors and contains different components of a detector.

– detectors defines all of the detection model classes.

– data_preprocessors is for preprocessing the input data of the model.

– backbones contains various backbone networks

– necks contains various neck components

– dense_heads contains various detection heads that perform dense predictions.

– roi_heads contains various detection heads that predict from RoIs.

– seg_heads contains various segmentation heads

– losses contains various loss functions

1

MMDetection, Release 3.0.0rc0

– task_modules provides modules for detection tasks. E.g. assigners, samplers, box coders, and prior gen-
erators.

– layers provides some basic neural network layers

• engine is a part for runtime components.

– runner provides extensions for MMEngine’s runner.

– schedulers provides schedulers for adjusting optimization hyperparameters.

– optimizers provides optimizers and optimizer wrappers.

– hooks provides various hooks of the runner.

• evaluation provides different metrics for evaluating model performance.

• visualization is for visualizing detection results.

1.2 How to Use this Guide

Here is a detailed step-by-step guide to learn more about MMDetection:

1. For installation instructions, please see get_started.

2. Refer to the below tutorials for the basic usage of MMDetection.

• Train and Test

• Useful Tools

3. Refer to the below tutorials to dive deeper:

• Basic Concepts

• Component Customization

2 Chapter 1. OVERVIEW

https://mmengine.readthedocs.io/en/latest/tutorials/runner.html
https://mmdetection.readthedocs.io/en/dev-3.x/user_guides/index.html#train-test
https://mmdetection.readthedocs.io/en/dev-3.x/user_guides/index.html#useful-tools
https://mmdetection.readthedocs.io/en/dev-3.x/advanced_guides/index.html#basic-concepts
https://mmdetection.readthedocs.io/en/dev-3.x/advanced_guides/index.html#component-customization

CHAPTER

TWO

GET STARTED

2.1 Prerequisites

In this section we demonstrate how to prepare an environment with PyTorch.

MMDetection works on Linux, Windows and macOS. It requires Python 3.6+, CUDA 9.2+ and PyTorch 1.6+.

Note: If you are experienced with PyTorch and have already installed it, just skip this part and jump to the next section.
Otherwise, you can follow these steps for the preparation.

Step 0. Download and install Miniconda from the official website.

Step 1. Create a conda environment and activate it.

conda create --name openmmlab python=3.8 -y
conda activate openmmlab

Step 2. Install PyTorch following official instructions, e.g.

On GPU platforms:

conda install pytorch torchvision -c pytorch

On CPU platforms:

conda install pytorch torchvision cpuonly -c pytorch

2.2 Installation

We recommend that users follow our best practices to install MMDetection. However, the whole process is highly
customizable. See Customize Installation section for more information.

3

https://docs.conda.io/en/latest/miniconda.html
https://pytorch.org/get-started/locally/

MMDetection, Release 3.0.0rc0

2.2.1 Best Practices

Step 0. Install MMEngine and MMCV using MIM.

pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0rc1"

Note: In MMCV-v2.x, mmcv-full is rename to mmcv, if you want to install mmcv without CUDA ops, you can use mim
install "mmcv-lite>=2.0.0rc1" to install the lite version.

Step 1. Install MMDetection.

Case a: If you develop and run mmdet directly, install it from source:

git clone https://github.com/open-mmlab/mmdetection.git -b 3.x
"-b 3.x" means checkout to the `3.x` branch.
cd mmdetection
pip install -v -e .
"-v" means verbose, or more output
"-e" means installing a project in editable mode,
thus any local modifications made to the code will take effect without reinstallation.

Case b: If you use mmdet as a dependency or third-party package, install it with MIM:

mim install "mmdet>=3.0.0rc0"

2.3 Verify the installation

To verify whether MMDetection is installed correctly, we provide some sample codes to run an inference demo.

Step 1. We need to download config and checkpoint files.

mim download mmdet --config yolov3_mobilenetv2_8xb24-320-300e_coco --dest .

The downloading will take several seconds or more, depending on your network environment.
When it is done, you will find two files yolov3_mobilenetv2_8xb24-320-300e_coco.py and
yolov3_mobilenetv2_320_300e_coco_20210719_215349-d18dff72.pth in your current folder.

Step 2. Verify the inference demo.

Option (a). If you install MMDetection from source, just run the following command.

python demo/image_demo.py demo/demo.jpg yolov3_mobilenetv2_8xb24-ms-416-300e_coco.py␣
→˓yolov3_mobilenetv2_320_300e_coco_20210719_215349-d18dff72.pth --device cpu --out-file␣
→˓result.jpg

You will see a new image result.jpg on your current folder, where bounding boxes are plotted on cars, benches, etc.

Option (b). If you install MMDetection with MIM, open you python interpreter and copy&paste the following codes.

from mmdet.apis import init_detector, inference_detector
from mmdet.utils import register_all_modules

register_all_modules()
(continues on next page)

4 Chapter 2. GET STARTED

https://github.com/open-mmlab/mmengine
https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mim

MMDetection, Release 3.0.0rc0

(continued from previous page)

config_file = 'yolov3_mobilenetv2_8xb24-ms-416-300e_coco.py'
checkpoint_file = 'yolov3_mobilenetv2_320_300e_coco_20210719_215349-d18dff72.pth'
model = init_detector(config_file, checkpoint_file, device='cpu') # or device='cuda:0'
inference_detector(model, 'demo/demo.jpg')

You will see a list of DetDataSample, and the predictions are in the pred_instance, indicating the detected bounding
boxes, labels, and scores.

2.3.1 Customize Installation

CUDA versions

When installing PyTorch, you need to specify the version of CUDA. If you are not clear on which to choose, follow our
recommendations:

• For Ampere-based NVIDIA GPUs, such as GeForce 30 series and NVIDIA A100, CUDA 11 is a must.

• For older NVIDIA GPUs, CUDA 11 is backward compatible, but CUDA 10.2 offers better compatibility and is
more lightweight.

Please make sure the GPU driver satisfies the minimum version requirements. See this table for more information.

Note: Installing CUDA runtime libraries is enough if you follow our best practices, because no CUDA code will be
compiled locally. However if you hope to compile MMCV from source or develop other CUDA operators, you need to
install the complete CUDA toolkit from NVIDIA’s website, and its version should match the CUDA version of PyTorch.
i.e., the specified version of cudatoolkit in conda install command.

Install MMEngine without MIM

To install MMEngine with pip instead of MIM, please follow [MMEngine installation
guides](https://mmengine.readthedocs.io/en/latest/get_started/installation.html).

For example, you can install MMEngine by the following command.

pip install mmengine

Install MMCV without MIM

MMCV contains C++ and CUDA extensions, thus depending on PyTorch in a complex way. MIM solves such depen-
dencies automatically and makes the installation easier. However, it is not a must.

To install MMCV with pip instead of MIM, please follow MMCV installation guides. This requires manually specifying
a find-url based on PyTorch version and its CUDA version.

For example, the following command install mmcv built for PyTorch 1.12.x and CUDA 11.6.

pip install "mmcv>=2.0.0rc1" -f https://download.openmmlab.com/mmcv/dist/cu116/torch1.12.
→˓0/index.html

2.3. Verify the installation 5

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions
https://developer.nvidia.com/cuda-downloads
https://mmcv.readthedocs.io/en/2.x/get_started/installation.html

MMDetection, Release 3.0.0rc0

Install on CPU-only platforms

MMDetection can be built for CPU only environment. In CPU mode you can train (requires MMCV version >=
2.0.0rc1), test or inference a model.

However some functionalities are gone in this mode:

• Deformable Convolution

• Modulated Deformable Convolution

• ROI pooling

• Deformable ROI pooling

• CARAFE

• SyncBatchNorm

• CrissCrossAttention

• MaskedConv2d

• Temporal Interlace Shift

• nms_cuda

• sigmoid_focal_loss_cuda

• bbox_overlaps

If you try to train/test/inference a model containing above ops, an error will be raised. The following table lists affected
algorithms.

Install on Google Colab

Google Colab usually has PyTorch installed, thus we only need to install MMEngine, MMCV, and MMDetection with
the following commands.

Step 1. Install MMEngine and MMCV using MIM.

!pip3 install openmim
!mim install mmengine
!mim install mmcv>=2.0.0rc1,<2.1.0

Step 2. Install MMDetection from the source.

!git clone https://github.com/open-mmlab/mmdetection.git -b 3.x
%cd mmdetection
!pip install -e .

Step 3. Verification.

import mmdet
print(mmdet.__version__)
Example output: 3.0.0rc0, or other version.

Note: Within Jupyter, the exclamation mark ! is used to call external executables and %cd is a magic command to
change the current working directory of Python.

6 Chapter 2. GET STARTED

https://research.google.com/
https://github.com/open-mmlab/mmengine
https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mim
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-cd

MMDetection, Release 3.0.0rc0

Using MMDetection with Docker

We provide a Dockerfile to build an image. Ensure that your docker version >=19.03.

build an image with PyTorch 1.6, CUDA 10.1
If you prefer other versions, just modified the Dockerfile
docker build -t mmdetection docker/

Run it with

docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmdetection/data mmdetection

2.3.2 Trouble shooting

If you have some issues during the installation, please first view the FAQ page. You may open an issue on GitHub if
no solution is found.

2.3. Verify the installation 7

https://github.com/open-mmlab/mmdetection/blob/master/docker/Dockerfile
https://docs.docker.com/engine/install/
https://github.com/open-mmlab/mmdetection/issues/new/choose

MMDetection, Release 3.0.0rc0

8 Chapter 2. GET STARTED

CHAPTER

THREE

TRAIN & TEST

MMDetection provides hundreds of pretrained detection models in Model Zoo, and supports multiple standard datasets,
including Pascal VOC, COCO, CityScapes, LVIS, etc. This note will show how to perform common tasks on these
existing models and standard datasets:

3.1 Learn about Configs

MMDetection and other OpenMMLab repositories use MMEngine’s config system. It has a modular and inheritance
design, which is convenient to conduct various experiments.

3.1.1 Config file content

MMDetection uses a modular design, all modules with different functions can be configured through the config. Taking
Mask R-CNN as an example, we will introduce each field in the config according to different function modules:

Model config

In mmdetection’s config, we use model to setup detection algorithm components. In addition to neural net-
work components such as backbone, neck etc, it also requires data_preprocessor, train_cfg, and test_cfg.
data_preprocessor is responsible for processing a batch of data output by dataloader. train_cfg, and test_cfg
in the model config are for training and testing hyperparameters of the components.

model = dict(
type='MaskRCNN', # The name of detector
data_preprocessor=dict(# The config of data preprocessor, usually includes image␣

→˓normalization and padding
type='DetDataPreprocessor', # The type of the data preprocessor, refer to␣

→˓https://mmdetection.readthedocs.io/en/dev-3.x/api.html#module-mmdet.models.data_
→˓preprocessors

mean=[123.675, 116.28, 103.53], # Mean values used to pre-training the pre-
→˓trained backbone models, ordered in R, G, B

std=[58.395, 57.12, 57.375], # Standard variance used to pre-training the pre-
→˓trained backbone models, ordered in R, G, B

bgr_to_rgb=True, # whether to convert image from BGR to RGB
pad_mask=True, # whether to pad instance masks
pad_size_divisor=32), # The size of padded image should be divisible by ``pad_

→˓size_divisor``
backbone=dict(# The config of backbone

(continues on next page)

9

https://mmdetection.readthedocs.io/en/latest/model_zoo.html
https://mmengine.readthedocs.io/en/latest/tutorials/config.html

MMDetection, Release 3.0.0rc0

(continued from previous page)

type='ResNet',
depth=50, # The depth of backbone, usually it is 50 or 101 for ResNet and␣

→˓ResNext backbones.
num_stages=4, # Number of stages of the backbone.
out_indices=(0, 1, 2, 3), # The index of output feature maps produced in each␣

→˓stages
frozen_stages=1, # The weights in the first stage are frozen
norm_cfg=dict(# The config of normalization layers.

type='BN', # Type of norm layer, usually it is BN or GN
requires_grad=True), # Whether to train the gamma and beta in BN

norm_eval=True, # Whether to freeze the statistics in BN
style='pytorch', # The style of backbone, 'pytorch' means that stride 2 layers␣

→˓are in 3x3 conv, 'caffe' means stride 2 layers are in 1x1 convs.
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), #␣

→˓The ImageNet pretrained backbone to be loaded
neck=dict(

type='FPN', # The neck of detector is FPN. We also support 'NASFPN', 'PAFPN', etc.␣
→˓Refer to https://github.com/open-mmlab/mmdetection/blob/dev-3.x/mmdet/models/necks/fpn.
→˓py#L10 for more details.

in_channels=[256, 512, 1024, 2048], # The input channels, this is consistent␣
→˓with the output channels of backbone

out_channels=256, # The output channels of each level of the pyramid feature map
num_outs=5), # The number of output scales

rpn_head=dict(
type='RPNHead', # The type of RPN head is 'RPNHead', we also support 'GARPNHead',␣

→˓etc. Refer to https://github.com/open-mmlab/mmdetection/blob/dev-3.x/mmdet/models/
→˓dense_heads/rpn_head.py#L12 for more details.

in_channels=256, # The input channels of each input feature map, this is␣
→˓consistent with the output channels of neck

feat_channels=256, # Feature channels of convolutional layers in the head.
anchor_generator=dict(# The config of anchor generator

type='AnchorGenerator', # Most of methods use AnchorGenerator, SSD␣
→˓Detectors uses `SSDAnchorGenerator`. Refer to https://github.com/open-mmlab/mmdetection/
→˓blob/dev-3.x/mmdet/models/task_modules/prior_generators/anchor_generator.py for more␣
→˓details

scales=[8], # Basic scale of the anchor, the area of the anchor in one␣
→˓position of a feature map will be scale * base_sizes

ratios=[0.5, 1.0, 2.0], # The ratio between height and width.
strides=[4, 8, 16, 32, 64]), # The strides of the anchor generator. This is␣

→˓consistent with the FPN feature strides. The strides will be taken as base_sizes if␣
→˓base_sizes is not set.

bbox_coder=dict(# Config of box coder to encode and decode the boxes during␣
→˓training and testing

type='DeltaXYWHBBoxCoder', # Type of box coder. 'DeltaXYWHBBoxCoder' is␣
→˓applied for most of methods. Refer to https://github.com/open-mmlab/mmdetection/blob/
→˓dev-3.x/mmdet/models/task_modules/coders/delta_xywh_bbox_coder.py#L9 for more details.

target_means=[0.0, 0.0, 0.0, 0.0], # The target means used to encode and␣
→˓decode boxes

target_stds=[1.0, 1.0, 1.0, 1.0]), # The standard variance used to encode␣
→˓and decode boxes

loss_cls=dict(# Config of loss function for the classification branch
type='CrossEntropyLoss', # Type of loss for classification branch, we also␣

→˓support FocalLoss etc. (continues on next page)

10 Chapter 3. Train & Test

MMDetection, Release 3.0.0rc0

(continued from previous page)

use_sigmoid=True, # RPN usually perform two-class classification, so it␣
→˓usually uses sigmoid function.

loss_weight=1.0), # Loss weight of the classification branch.
loss_bbox=dict(# Config of loss function for the regression branch.

type='L1Loss', # Type of loss, we also support many IoU Losses and smooth␣
→˓L1-loss, etc. Refer to https://github.com/open-mmlab/mmdetection/blob/dev-3.x/mmdet/
→˓models/losses/smooth_l1_loss.py#L56 for implementation.

loss_weight=1.0)), # Loss weight of the regression branch.
roi_head=dict(# RoIHead encapsulates the second stage of two-stage/cascade␣

→˓detectors.
type='StandardRoIHead',
bbox_roi_extractor=dict(# RoI feature extractor for bbox regression.

type='SingleRoIExtractor', # Type of the RoI feature extractor, most of␣
→˓methods uses SingleRoIExtractor. Refer to https://github.com/open-mmlab/mmdetection/
→˓blob/dev-3.x/mmdet/models/roi_heads/roi_extractors/single_level_roi_extractor.py#L10␣
→˓for details.

roi_layer=dict(# Config of RoI Layer
type='RoIAlign', # Type of RoI Layer, DeformRoIPoolingPack and␣

→˓ModulatedDeformRoIPoolingPack are also supported. Refer to https://mmcv.readthedocs.io/
→˓en/latest/api.html#mmcv.ops.RoIAlign for details.

output_size=7, # The output size of feature maps.
sampling_ratio=0), # Sampling ratio when extracting the RoI features. 0␣

→˓means adaptive ratio.
out_channels=256, # output channels of the extracted feature.
featmap_strides=[4, 8, 16, 32]), # Strides of multi-scale feature maps. It␣

→˓should be consistent to the architecture of the backbone.
bbox_head=dict(# Config of box head in the RoIHead.

type='Shared2FCBBoxHead', # Type of the bbox head, Refer to https://github.
→˓com/open-mmlab/mmdetection/blob/dev-3.x/mmdet/models/roi_heads/bbox_heads/convfc_bbox_
→˓head.py#L177 for implementation details.

in_channels=256, # Input channels for bbox head. This is consistent with␣
→˓the out_channels in roi_extractor

fc_out_channels=1024, # Output feature channels of FC layers.
roi_feat_size=7, # Size of RoI features
num_classes=80, # Number of classes for classification
bbox_coder=dict(# Box coder used in the second stage.

type='DeltaXYWHBBoxCoder', # Type of box coder. 'DeltaXYWHBBoxCoder' is␣
→˓applied for most of methods.

target_means=[0.0, 0.0, 0.0, 0.0], # Means used to encode and decode box
target_stds=[0.1, 0.1, 0.2, 0.2]), # Standard variance for encoding and␣

→˓decoding. It is smaller since the boxes are more accurate. [0.1, 0.1, 0.2, 0.2] is a␣
→˓conventional setting.

reg_class_agnostic=False, # Whether the regression is class agnostic.
loss_cls=dict(# Config of loss function for the classification branch

type='CrossEntropyLoss', # Type of loss for classification branch, we␣
→˓also support FocalLoss etc.

use_sigmoid=False, # Whether to use sigmoid.
loss_weight=1.0), # Loss weight of the classification branch.

loss_bbox=dict(# Config of loss function for the regression branch.
type='L1Loss', # Type of loss, we also support many IoU Losses and␣

→˓smooth L1-loss, etc.
loss_weight=1.0)), # Loss weight of the regression branch.

(continues on next page)

3.1. Learn about Configs 11

MMDetection, Release 3.0.0rc0

(continued from previous page)

mask_roi_extractor=dict(# RoI feature extractor for mask generation.
type='SingleRoIExtractor', # Type of the RoI feature extractor, most of␣

→˓methods uses SingleRoIExtractor.
roi_layer=dict(# Config of RoI Layer that extracts features for instance␣

→˓segmentation
type='RoIAlign', # Type of RoI Layer, DeformRoIPoolingPack and␣

→˓ModulatedDeformRoIPoolingPack are also supported
output_size=14, # The output size of feature maps.
sampling_ratio=0), # Sampling ratio when extracting the RoI features.

out_channels=256, # Output channels of the extracted feature.
featmap_strides=[4, 8, 16, 32]), # Strides of multi-scale feature maps.

mask_head=dict(# Mask prediction head
type='FCNMaskHead', # Type of mask head, refer to https://github.com/open-

→˓mmlab/mmdetection/blob/dev-3.x/mmdet/models/roi_heads/mask_heads/fcn_mask_head.py#L21␣
→˓for implementation details.

num_convs=4, # Number of convolutional layers in mask head.
in_channels=256, # Input channels, should be consistent with the output␣

→˓channels of mask roi extractor.
conv_out_channels=256, # Output channels of the convolutional layer.
num_classes=80, # Number of class to be segmented.
loss_mask=dict(# Config of loss function for the mask branch.

type='CrossEntropyLoss', # Type of loss used for segmentation
use_mask=True, # Whether to only train the mask in the correct class.
loss_weight=1.0))), # Loss weight of mask branch.

train_cfg = dict(# Config of training hyperparameters for rpn and rcnn
rpn=dict(# Training config of rpn

assigner=dict(# Config of assigner
type='MaxIoUAssigner', # Type of assigner, MaxIoUAssigner is used for␣

→˓many common detectors. Refer to https://github.com/open-mmlab/mmdetection/blob/dev-3.x/
→˓mmdet/models/task_modules/assigners/max_iou_assigner.py for more details.

pos_iou_thr=0.7, # IoU >= threshold 0.7 will be taken as positive␣
→˓samples

neg_iou_thr=0.3, # IoU < threshold 0.3 will be taken as negative samples
min_pos_iou=0.3, # The minimal IoU threshold to take boxes as positive␣

→˓samples
match_low_quality=True, # Whether to match the boxes under low quality␣

→˓(see API doc for more details).
ignore_iof_thr=-1), # IoF threshold for ignoring bboxes

sampler=dict(# Config of positive/negative sampler
type='RandomSampler', # Type of sampler, PseudoSampler and other␣

→˓samplers are also supported. Refer to https://github.com/open-mmlab/mmdetection/blob/
→˓dev-3.x/mmdet/models/task_modules/samplers/random_sampler.py for implementation␣
→˓details.

num=256, # Number of samples
pos_fraction=0.5, # The ratio of positive samples in the total samples.
neg_pos_ub=-1, # The upper bound of negative samples based on the␣

→˓number of positive samples.
add_gt_as_proposals=False), # Whether add GT as proposals after␣

→˓sampling.
allowed_border=-1, # The border allowed after padding for valid anchors.
pos_weight=-1, # The weight of positive samples during training.
debug=False), # Whether to set the debug mode

(continues on next page)

12 Chapter 3. Train & Test

MMDetection, Release 3.0.0rc0

(continued from previous page)

rpn_proposal=dict(# The config to generate proposals during training
nms_across_levels=False, # Whether to do NMS for boxes across levels. Only␣

→˓work in `GARPNHead`, naive rpn does not support do nms cross levels.
nms_pre=2000, # The number of boxes before NMS
nms_post=1000, # The number of boxes to be kept by NMS. Only work in␣

→˓`GARPNHead`.
max_per_img=1000, # The number of boxes to be kept after NMS.
nms=dict(# Config of NMS

type='nms', # Type of NMS
iou_threshold=0.7 # NMS threshold
),

min_bbox_size=0), # The allowed minimal box size
rcnn=dict(# The config for the roi heads.

assigner=dict(# Config of assigner for second stage, this is different for␣
→˓that in rpn

type='MaxIoUAssigner', # Type of assigner, MaxIoUAssigner is used for␣
→˓all roi_heads for now. Refer to https://github.com/open-mmlab/mmdetection/blob/dev-3.x/
→˓mmdet/models/task_modules/assigners/max_iou_assigner.py for more details.

pos_iou_thr=0.5, # IoU >= threshold 0.5 will be taken as positive␣
→˓samples

neg_iou_thr=0.5, # IoU < threshold 0.5 will be taken as negative samples
min_pos_iou=0.5, # The minimal IoU threshold to take boxes as positive␣

→˓samples
match_low_quality=False, # Whether to match the boxes under low quality␣

→˓(see API doc for more details).
ignore_iof_thr=-1), # IoF threshold for ignoring bboxes

sampler=dict(
type='RandomSampler', # Type of sampler, PseudoSampler and other␣

→˓samplers are also supported. Refer to https://github.com/open-mmlab/mmdetection/blob/
→˓dev-3.x/mmdet/models/task_modules/samplers/random_sampler.py for implementation␣
→˓details.

num=512, # Number of samples
pos_fraction=0.25, # The ratio of positive samples in the total samples.
neg_pos_ub=-1, # The upper bound of negative samples based on the␣

→˓number of positive samples.
add_gt_as_proposals=True

), # Whether add GT as proposals after sampling.
mask_size=28, # Size of mask
pos_weight=-1, # The weight of positive samples during training.
debug=False)), # Whether to set the debug mode

test_cfg = dict(# Config for testing hyperparameters for rpn and rcnn
rpn=dict(# The config to generate proposals during testing

nms_across_levels=False, # Whether to do NMS for boxes across levels. Only␣
→˓work in `GARPNHead`, naive rpn does not support do nms cross levels.

nms_pre=1000, # The number of boxes before NMS
nms_post=1000, # The number of boxes to be kept by NMS. Only work in␣

→˓`GARPNHead`.
max_per_img=1000, # The number of boxes to be kept after NMS.
nms=dict(# Config of NMS

type='nms', #Type of NMS
iou_threshold=0.7 # NMS threshold
),

(continues on next page)

3.1. Learn about Configs 13

MMDetection, Release 3.0.0rc0

(continued from previous page)

min_bbox_size=0), # The allowed minimal box size
rcnn=dict(# The config for the roi heads.

score_thr=0.05, # Threshold to filter out boxes
nms=dict(# Config of NMS in the second stage

type='nms', # Type of NMS
iou_thr=0.5), # NMS threshold

max_per_img=100, # Max number of detections of each image
mask_thr_binary=0.5))) # Threshold of mask prediction

Dataset and evaluator config

Dataloaders are required for the training, validation, and testing of the runner. Dataset and data pipeline need to be
set to build the dataloader. Due to the complexity of this part, we use intermediate variables to simplify the writing of
dataloader configs.

dataset_type = 'CocoDataset' # Dataset type, this will be used to define the dataset
data_root = 'data/coco/' # Root path of data
file_client_args = dict(backend='disk') # file client arguments

train_pipeline = [# Training data processing pipeline
dict(type='LoadImageFromFile', file_client_args=file_client_args), # First pipeline␣

→˓to load images from file path
dict(

type='LoadAnnotations', # Second pipeline to load annotations for current image
with_bbox=True, # Whether to use bounding box, True for detection
with_mask=True, # Whether to use instance mask, True for instance segmentation
poly2mask=True), # Whether to convert the polygon mask to instance mask, set␣

→˓False for acceleration and to save memory
dict(

type='Resize', # Pipeline that resizes the images and their annotations
scale=(1333, 800), # The largest scale of image
keep_ratio=True # Whether to keep the ratio between height and width
),

dict(
type='RandomFlip', # Augmentation pipeline that flips the images and their␣

→˓annotations
prob=0.5), # The probability to flip

dict(type='PackDetInputs') # Pipeline that formats the annotation data and decides␣
→˓which keys in the data should be packed into data_samples
]
test_pipeline = [# Testing data processing pipeline

dict(type='LoadImageFromFile', file_client_args=file_client_args), # First pipeline␣
→˓to load images from file path

dict(type='Resize', scale=(1333, 800), keep_ratio=True), # Pipeline that resizes␣
→˓the images

dict(
type='PackDetInputs', # Pipeline that formats the annotation data and decides␣

→˓which keys in the data should be packed into data_samples
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',

'scale_factor'))
]

(continues on next page)

14 Chapter 3. Train & Test

https://pytorch.org/docs/stable/data.html?highlight=data%20loader#torch.utils.data.DataLoader
https://mmengine.readthedocs.io/en/latest/tutorials/runner.html

MMDetection, Release 3.0.0rc0

(continued from previous page)

train_dataloader = dict(# Train dataloader config
batch_size=2, # Batch size of a single GPU
num_workers=2, # Worker to pre-fetch data for each single GPU
persistent_workers=True, # If ``True``, the dataloader will not shut down the worker␣

→˓processes after an epoch end, which can accelerate training speed.
sampler=dict(# training data sampler

type='DefaultSampler', # DefaultSampler which supports both distributed and non-
→˓distributed training. Refer to https://github.com/open-mmlab/mmengine/blob/main/
→˓mmengine/dataset/sampler.py

shuffle=True), # randomly shuffle the training data in each epoch
batch_sampler=dict(type='AspectRatioBatchSampler'), # Batch sampler for grouping␣

→˓images with similar aspect ratio into a same batch. It can reduce GPU memory cost.
dataset=dict(# Train dataset config

type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_train2017.json', # Path of annotation file
data_prefix=dict(img='train2017/'), # Prefix of image path
filter_cfg=dict(filter_empty_gt=True, min_size=32), # Config of filtering␣

→˓images and annotations
pipeline=train_pipeline))

val_dataloader = dict(# Validation dataloader config
batch_size=1, # Batch size of a single GPU. If batch-szie > 1, the extra padding␣

→˓area may influence the performance.
num_workers=2, # Worker to pre-fetch data for each single GPU
persistent_workers=True, # If ``True``, the dataloader will not shut down the worker␣

→˓processes after an epoch end, which can accelerate training speed.
drop_last=False, # Whether to drop the last incomplete batch, if the dataset size␣

→˓is not divisible by the batch size
sampler=dict(

type='DefaultSampler',
shuffle=False), # not shuffle during validation and testing

dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_val2017.json',
data_prefix=dict(img='val2017/'),
test_mode=True, # Turn on test mode of the dataset to avoid filtering␣

→˓annotations or images
pipeline=test_pipeline))

test_dataloader = val_dataloader # Testing dataloader config

Evaluators are used to compute the metrics of the trained model on the validation and testing datasets. The config of
evaluators consists of one or a list of metric configs:

val_evaluator = dict(# Validation evaluator config
type='CocoMetric', # The coco metric used to evaluate AR, AP, and mAP for detection␣

→˓and instance segmentation
ann_file=data_root + 'annotations/instances_val2017.json', # Annotation file path
metric=['bbox', 'segm'], # Metrics to be evaluated, `bbox` for detection and `segm`␣

→˓for instance segmentation
format_only=False)

test_evaluator = val_evaluator # Testing evaluator config

3.1. Learn about Configs 15

https://mmengine.readthedocs.io/en/latest/design/metric_and_evaluator.html

MMDetection, Release 3.0.0rc0

Since the test dataset has no annotation files, the test_dataloader and test_evaluator config in MMDetection are generally
equal to the val’s. If you want to save the detection results on the test dataset, you can write the config like this:

inference on test dataset and
format the output results for submission.
test_dataloader = dict(

batch_size=1,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(

type=dataset_type,
data_root=data_root,
ann_file=data_root + 'annotations/image_info_test-dev2017.json',
data_prefix=dict(img='test2017/'),
test_mode=True,
pipeline=test_pipeline))

test_evaluator = dict(
type='CocoMetric',
ann_file=data_root + 'annotations/image_info_test-dev2017.json',
metric=['bbox', 'segm'], # Metrics to be evaluated
format_only=True, # Only format and save the results to coco json file
outfile_prefix='./work_dirs/coco_detection/test') # The prefix of output json files

Training and testing config

MMEngine’s runner uses Loop to control the training, validation, and testing processes. Users can set the maximum
training epochs and validation intervals with these fields.

train_cfg = dict(
type='EpochBasedTrainLoop', # The training loop type. Refer to https://github.com/

→˓open-mmlab/mmengine/blob/main/mmengine/runner/loops.py
max_epochs=12, # Maximum training epochs
val_interval=1) # Validation intervals. Run validation every epoch.

val_cfg = dict(type='ValLoop') # The validation loop type
test_cfg = dict(type='TestLoop') # The testing loop type

Optimization config

optim_wrapper is the field to configure optimization related settings. The optimizer wrapper not only provides the
functions of the optimizer, but also supports functions such as gradient clipping, mixed precision training, etc. Find
more in optimizer wrapper tutorial.

optim_wrapper = dict(# Optimizer wrapper config
type='OptimWrapper', # Optimizer wrapper type, switch to AmpOptimWrapper to enable␣

→˓mixed precision training.
optimizer=dict(# Optimizer config. Support all kinds of optimizers in PyTorch.␣

→˓Refer to https://pytorch.org/docs/stable/optim.html#algorithms
type='SGD', # Stochastic gradient descent optimizer
lr=0.02, # The base learning rate

(continues on next page)

16 Chapter 3. Train & Test

https://mmengine.readthedocs.io/en/latest/tutorials/optimizer.html

MMDetection, Release 3.0.0rc0

(continued from previous page)

momentum=0.9, # Stochastic gradient descent with momentum
weight_decay=0.0001), # Weight decay of SGD

clip_grad=None, # Gradient clip option. Set None to disable gradient clip. Find␣
→˓usage in https://mmengine.readthedocs.io/en/latest/tutorials/optimizer.html

)

param_scheduler is a field that configures methods of adjusting optimization hyperparameters such as learning rate
and momentum. Users can combine multiple schedulers to create a desired parameter adjustment strategy. Find more
in parameter scheduler tutorial and parameter scheduler API documents

param_scheduler = [
dict(

type='LinearLR', # Use linear policy to warmup learning rate
start_factor=0.001, # The ratio of the starting learning rate used for warmup
by_epoch=False, # The warmup learning rate is updated by iteration
begin=0, # Start from the first iteration
end=500), # End the warmup at the 500th iteration

dict(
type='MultiStepLR', # Use multi step learning rate policy during training
by_epoch=True, # The learning rate is updated by epoch
begin=0, # Start from the first epoch
end=12, # End at the 12th epoch
milestones=[8, 11], # Epochs to decay the learning rate
gamma=0.1) # The learning rate decay ratio

]

Hook config

Users can attach hooks to training, validation, and testing loops to insert some oprations during running. There are two
different hook fields, one is default_hooks and the other is custom_hooks.

default_hooks is a dict of hook configs. default_hooks are the hooks must required at runtime. They have default
priority which should not be modified. If not set, runner will use the default values. To disable a default hook, users
can set its config to None.

default_hooks = dict(
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=50),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', interval=1),
sampler_seed=dict(type='DistSamplerSeedHook'),
visualization=dict(type='DetVisualizationHook'))

custom_hooks is a list of hook configs. Users can develop their own hooks and insert them in this field.

custom_hooks = []

3.1. Learn about Configs 17

https://mmengine.readthedocs.io/en/latest/tutorials/param_scheduler.html

MMDetection, Release 3.0.0rc0

Runtime config

default_scope = 'mmdet' # The default registry scope to find modules. Refer to https://
→˓mmengine.readthedocs.io/en/latest/tutorials/registry.html

env_cfg = dict(
cudnn_benchmark=False, # Whether to enable cudnn benchmark
mp_cfg=dict(# Multi-processing config

mp_start_method='fork', # Use fork to start multi-processing threads. 'fork'␣
→˓usually faster than 'spawn' but maybe unsafe. See discussion in https://github.com/
→˓pytorch/pytorch/issues/1355

opencv_num_threads=0), # Disable opencv multi-threads to avoid system being␣
→˓overloaded

dist_cfg=dict(backend='nccl'), # Distribution configs
)

vis_backends = [dict(type='LocalVisBackend')] # Visualization backends. Refer to TODO:␣
→˓visualization documents
visualizer = dict(

type='DetLocalVisualizer', vis_backends=vis_backends, name='visualizer')
log_processor = dict(

type='LogProcessor', # Log processor to process runtime logs
window_size=50, # Smooth interval of log values
by_epoch=True) # Whether to format logs with epoch stype. Should be consistent with␣

→˓train loop's type.

log_level = 'INFO' # The level of logging.
load_from = None # Load model checkpoint as a pre-trained model from a given path. This␣
→˓will not resume training.
resume = False # Whether to resume from the checkpoint defined in `load_from`. If `load_
→˓from` is None, it will resume the latest checkpoint in the `work_dir`.

3.1.2 Iter-based config

MMEngine’s Runner also provides an iter-based training loop except for epoch-based. To use iter-based
training, users should modify the train_cfg, param_scheduler, train_dataloader, default_hooks, and
log_processor. Here is an example of changing an epoch-based RetinaNet config to iter-based: configs/
retinanet/retinanet_r50_fpn_90k_coco.py

Iter-based training config
train_cfg = dict(

delete=True, # Ignore the base config setting (optional)
type='IterBasedTrainLoop', # Use iter-based training loop
max_iters=90000, # Maximum iterations
val_interval=10000) # Validation interval

Change the scheduler to iter-based
param_scheduler = [

dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),

dict(
(continues on next page)

18 Chapter 3. Train & Test

MMDetection, Release 3.0.0rc0

(continued from previous page)

type='MultiStepLR',
begin=0,
end=90000,
by_epoch=False,
milestones=[60000, 80000],
gamma=0.1)

]

Switch to InfiniteSampler to avoid dataloader restart
train_dataloader = dict(sampler=dict(type='InfiniteSampler'))

Change the checkpoint saving interval to iter-based
default_hooks = dict(checkpoint=dict(by_epoch=False, interval=10000))

Change the log format to iter-based
log_processor = dict(by_epoch=False)

3.1.3 Config file inheritance

There are 4 basic component types under config/_base_, dataset, model, schedule, default_runtime. Many methods
could be easily constructed with one of each like Faster R-CNN, Mask R-CNN, Cascade R-CNN, RPN, SSD. The
configs that are composed by components from _base_ are called primitive.

For all configs under the same folder, it is recommended to have only one primitive config. All other configs should
inherit from the primitive config. In this way, the maximum of inheritance level is 3.

For easy understanding, we recommend contributors to inherit from existing methods. For example, if some modifica-
tion is made base on Faster R-CNN, user may first inherit the basic Faster R-CNN structure by specifying _base_ =
../faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py, then modify the necessary fields in the config files.

If you are building an entirely new method that does not share the structure with any of the existing methods, you may
create a folder xxx_rcnn under configs,

Please refer to mmengine config tutorial for detailed documentation.

By setting the _base_ field, we can set which files the current configuration file inherits from.

When _base_ is a string of a file path, it means inherit the contents of one config file.

base = './mask-rcnn_r50_fpn_1x_coco.py'

When _base_ is a list of multiple file paths, it means inheriting multiple files.

base = [
'../_base_/models/mask-rcnn_r50_fpn.py',
'../_base_/datasets/coco_instance.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'

]

If you wish to inspect the config file, you may run python tools/misc/print_config.py /PATH/TO/CONFIG to
see the complete config.

3.1. Learn about Configs 19

https://mmengine.readthedocs.io/en/latest/tutorials/config.html

MMDetection, Release 3.0.0rc0

Ignore some fields in the base configs

Sometimes, you may set _delete_=True to ignore some of fields in base configs. You may refer to mmengine config
tutorial for simple illustration.

In MMDetection, for example, to change the backbone of Mask R-CNN with the following config.

model = dict(
type='MaskRCNN',
backbone=dict(

type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),

neck=dict(...),
rpn_head=dict(...),
roi_head=dict(...))

ResNet and HRNet use different keywords to construct.

base = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py'
model = dict(

backbone=dict(
delete=True,
type='HRNet',
extra=dict(

stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4,),
num_channels=(64,)),

stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(32, 64)),

stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(32, 64, 128)),

stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),

(continues on next page)

20 Chapter 3. Train & Test

https://mmengine.readthedocs.io/en/latest/tutorials/config.html
https://mmengine.readthedocs.io/en/latest/tutorials/config.html

MMDetection, Release 3.0.0rc0

(continued from previous page)

num_channels=(32, 64, 128, 256))),
init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w32')),

neck=dict(...))

The _delete_=True would replace all old keys in backbone field with new keys.

Use intermediate variables in configs

Some intermediate variables are used in the configs files, like train_pipeline/test_pipeline in datasets. It’s
worth noting that when modifying intermediate variables in the children configs, user need to pass the intermediate
variables into corresponding fields again. For example, we would like to use multi scale strategy to train a Mask R-CNN.
train_pipeline/test_pipeline are intermediate variable we would like modify.

base = './mask-rcnn_r50_fpn_1x_coco.py'

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(

type='RandomResize', scale=[(1333, 640), (1333, 800)],
keep_ratio=True),

dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs')

]
test_pipeline = [

dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
dict(

type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',

'scale_factor'))
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))

We first define the new train_pipeline/test_pipeline and pass them into dataloader fields.

Similarly, if we would like to switch from SyncBN to BN or MMSyncBN, we need to substitute every norm_cfg in the
config.

base = './mask-rcnn_r50_fpn_1x_coco.py'
norm_cfg = dict(type='BN', requires_grad=True)
model = dict(

backbone=dict(norm_cfg=norm_cfg),
neck=dict(norm_cfg=norm_cfg),
...)

3.1. Learn about Configs 21

MMDetection, Release 3.0.0rc0

Reuse variables in _base_ file

If the users want to reuse the variables in the base file, they can get a copy of the corresponding variable by using
{{_base_.xxx}}. E.g:

base = './mask-rcnn_r50_fpn_1x_coco.py'

a = {{_base_.model}} # Variable `a` is equal to the `model` defined in `_base_`

3.1.4 Modify config through script arguments

When submitting jobs using tools/train.py or tools/test.py, you may specify --cfg-options to in-place
modify the config.

• Update config keys of dict chains.

The config options can be specified following the order of the dict keys in the original config. For example,
--cfg-options model.backbone.norm_eval=False changes the all BN modules in model backbones to
train mode.

• Update keys inside a list of configs.

Some config dicts are composed as a list in your config. For example, the training pipeline train_dataloader.
dataset.pipeline is normally a list e.g. [dict(type='LoadImageFromFile'), ...]. If you
want to change 'LoadImageFromFile' to 'LoadImageFromNDArray' in the pipeline, you may specify
--cfg-options data.train.pipeline.0.type=LoadImageFromNDArray.

• Update values of list/tuples.

If the value to be updated is a list or a tuple. For example, the config file normally sets model.
data_preprocessor.mean=[123.675, 116.28, 103.53]. If you want to change the mean values, you
may specify --cfg-options model.data_preprocessor.mean="[127,127,127]". Note that the quota-
tion mark " is necessary to support list/tuple data types, and that NO white space is allowed inside the quotation
marks in the specified value.

3.1.5 Config name style

We follow the below style to name config files. Contributors are advised to follow the same style.

{algorithm name}_{model component names [component1]_[component2]_[...]}_{training␣
→˓settings}_{training dataset information}_{testing dataset information}.py

The file name is divided to five parts. All parts and components are connected with _ and words of each part or
component should be connected with -.

• {algorithm name}: The name of the algorithm. It can be a detector name such as faster-rcnn, mask-rcnn,
etc. Or can be a semi-supervise or knowladge-distillation algorithm such as soft-teacher, lad. etc.

• {model component names}: Names of the components used in the algorithm such as backbone, neck, etc. For
example, r50-caffe_fpn_gn-head means using caffe-style ResNet50, FPN and detection head with Group
Norm in the algorithm.

• {training settings}: Information of training settings such as batch size, augmentations, loss trick, sched-
uler, and epochs/iterations. For example: 4xb4-mixup-giou-coslr-100emeans using 8-gpus x 4-images-per-
gpu, mixup augmentation, GIoU loss, cosine annealing learning rate, and train 100 epochs. Some abbreviations:

22 Chapter 3. Train & Test

MMDetection, Release 3.0.0rc0

– {gpu x batch_per_gpu}: GPUs and samples per GPU. bN indicates N batch size per GPU. E.g. 4xb4
is the short term of 4-gpus x 4-images-per-gpu. And 8xb2 is used by default if not mentioned.

– {schedule}: training schedule, options are 1x, 2x, 20e, etc. 1x and 2x means 12 epochs and 24 epochs
respectively. 20e is adopted in cascade models, which denotes 20 epochs. For 1x/2x, initial learning rate
decays by a factor of 10 at the 8/16th and 11/22th epochs. For 20e, initial learning rate decays by a factor
of 10 at the 16th and 19th epochs.

• {training dataset information}: Training dataset names like coco, coco-panoptic, cityscapes,
voc-0712, wider-face.

• {testing dataset information} (optional): Testing dataset name for models trained on one dataset but
tested on another. If not mentioned, it means the model was trained and tested on the same dataset type.

3.2 Inference with existing models

MMDetection provides hundreds of pretrained detection models in Model Zoo. This note will show how to inference,
which means using trained models to detect objects on images.

In MMDetection, a model is defined by a configuration file and existing model parameters are save in a checkpoint file.

To start with, we recommend Faster RCNN with this configuration file and this checkpoint file. It is recommended to
download the checkpoint file to checkpoints directory.

3.2.1 High-level APIs for inference

MMDetection provide high-level Python APIs for inference on images. Here is an example of building the model and
inference on given images or videos.

import cv2
import mmcv
from mmcv.transforms import Compose
from mmengine.utils import track_iter_progress
from mmdet.registry import VISUALIZERS
from mmdet.utils import register_all_modules
from mmdet.apis import init_detector, inference_detector

Register all modules in mmdet into the registries
register_all_modules()

Specify the path to model config and checkpoint file
config_file = 'configs/faster_rcnn/faster-rcnn_r50-fpn_1x_coco.py'
checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'

Build the model from a config file and a checkpoint file
model = init_detector(config_file, checkpoint_file, device='cuda:0')

Init visualizer
visualizer = VISUALIZERS.build(model.cfg.visualizer)
The dataset_meta is loaded from the checkpoint and
then pass to the model in init_detector
visualizer.dataset_meta = model.dataset_meta
Ttest a single image and show the results

(continues on next page)

3.2. Inference with existing models 23

https://mmdetection.readthedocs.io/en/latest/model_zoo.html
https://github.com/open-mmlab/mmdetection/tree/dev-3.x/configs/faster_rcnn
https://github.com/open-mmlab/mmdetection/blob/dev-3.x/configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py
https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth

MMDetection, Release 3.0.0rc0

(continued from previous page)

img = 'test.jpg' # or img = mmcv.imread(img), which will only load it once
result = inference_detector(model, img)

Show the results
img = mmcv.imread(img)
img = mmcv.imconvert(img, 'bgr', 'rgb')

visualizer.add_datasample(
'result',
img,
data_sample=result,
draw_gt=False,
show=True)

Test a video and show the results
Build test pipeline
model.cfg.test_dataloader.dataset.pipeline[0].type = 'LoadImageFromNDArray'
test_pipeline = Compose(model.cfg.test_dataloader.dataset.pipeline)

Init visualizer
visualizer = VISUALIZERS.build(model.cfg.visualizer)
The dataset_meta is loaded from the checkpoint and
then pass to the model in init_detector
visualizer.dataset_meta = model.dataset_meta

The interval of show (s), 0 is block
wait_time = 1

video_reader = mmcv.VideoReader('video.mp4')

for frame in track_iter_progress(video_reader):
result = inference_detector(model, frame, test_pipeline=test_pipeline)
visualizer.add_datasample(

name='video',
image=frame,
data_sample=result,
draw_gt=False,
show=False)

frame = visualizer.get_image()

cv2.namedWindow('video', 0)
mmcv.imshow(frame, 'video', wait_time)

A notebook demo can be found in demo/inference_demo.ipynb.

Note: inference_detector only supports single-image inference for now.

24 Chapter 3. Train & Test

https://github.com/open-mmlab/mmdetection/blob/dev-3.x/demo/inference_demo.ipynb

MMDetection, Release 3.0.0rc0

3.2.2 Demos

We also provide three demo scripts, implemented with high-level APIs and supporting functionality codes. Source
codes are available here.

Image demo

This script performs inference on a single image.

python demo/image_demo.py \
${IMAGE_FILE} \
${CONFIG_FILE} \
${CHECKPOINT_FILE} \
[--device ${GPU_ID}] \
[--score-thr ${SCORE_THR}]

Examples:

python demo/image_demo.py demo/demo.jpg \
configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py \
checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
--device cpu

Webcam demo

This is a live demo from a webcam.

python demo/webcam_demo.py \
${CONFIG_FILE} \
${CHECKPOINT_FILE} \
[--device ${GPU_ID}] \
[--camera-id ${CAMERA-ID}] \
[--score-thr ${SCORE_THR}]

Examples:

python demo/webcam_demo.py \
configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py \
checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth

Video demo

This script performs inference on a video.

python demo/video_demo.py \
${VIDEO_FILE} \
${CONFIG_FILE} \
${CHECKPOINT_FILE} \
[--device ${GPU_ID}] \
[--score-thr ${SCORE_THR}] \
[--out ${OUT_FILE}] \

(continues on next page)

3.2. Inference with existing models 25

https://github.com/open-mmlab/mmdetection/tree/dev-3.x/demo

MMDetection, Release 3.0.0rc0

(continued from previous page)

[--show] \
[--wait-time ${WAIT_TIME}]

Examples:

python demo/video_demo.py demo/demo.mp4 \
configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py \
checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
--out result.mp4

Video demo with GPU acceleration

This script performs inference on a video with GPU acceleration.

python demo/video_gpuaccel_demo.py \
${VIDEO_FILE} \
${CONFIG_FILE} \
${CHECKPOINT_FILE} \
[--device ${GPU_ID}] \
[--score-thr ${SCORE_THR}] \
[--nvdecode] \
[--out ${OUT_FILE}] \
[--show] \
[--wait-time ${WAIT_TIME}]

Examples:

python demo/video_gpuaccel_demo.py demo/demo.mp4 \
configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py \
checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
--nvdecode --out result.mp4

3.3 Dataset Prepare

MMDetection supports multiple public datasets including COCO, Pascal VOC, CityScapes, and more.

Public datasets like Pascal VOC or mirror and COCO are available from official websites or mirrors. Note: In the
detection task, Pascal VOC 2012 is an extension of Pascal VOC 2007 without overlap, and we usually use them together.
It is recommended to download and extract the dataset somewhere outside the project directory and symlink the dataset
root to $MMDETECTION/data as below. If your folder structure is different, you may need to change the corresponding
paths in config files.

We provide a script to download datasets such as COCO , you can run python tools/misc/download_dataset.py
--dataset-name coco2017 to download COCO dataset.

For more usage please refer to dataset-download

mmdetection
mmdet
tools
configs

(continues on next page)

26 Chapter 3. Train & Test

https://github.com/open-mmlab/mmdetection/tree/dev-3.x/configs/_base_/datasets
http://host.robots.ox.ac.uk/pascal/VOC/index.html
https://cocodataset.org/#download
https://mmdetection.readthedocs.io/en/dev-3.x/user_guides/useful_tools.html#dataset-download

MMDetection, Release 3.0.0rc0

(continued from previous page)

data
coco

annotations
train2017
val2017
test2017

cityscapes
annotations
leftImg8bit

train
val

gtFine
train
val

VOCdevkit
VOC2007
VOC2012

Some models require additional COCO-stuff datasets, such as HTC, DetectoRS and SCNet, you can download and
unzip then move to the coco folder. The directory should be like this.

mmdetection
data

coco
annotations
train2017
val2017
test2017
stuffthingmaps

Panoptic segmentation models like PanopticFPN require additional COCO Panoptic datasets, you can download and
unzip then move to the coco annotation folder. The directory should be like this.

mmdetection
data

coco
annotations

panoptic_train2017.json
panoptic_train2017
panoptic_val2017.json
panoptic_val2017

train2017
val2017
test2017

The cityscapes annotations need to be converted into the coco format using tools/dataset_converters/
cityscapes.py:

pip install cityscapesscripts

python tools/dataset_converters/cityscapes.py \
./data/cityscapes \

(continues on next page)

3.3. Dataset Prepare 27

http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip
http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip
https://www.cityscapes-dataset.com/

MMDetection, Release 3.0.0rc0

(continued from previous page)

--nproc 8 \
--out-dir ./data/cityscapes/annotations

3.4 Test existing models on standard datasets

To evaluate a model’s accuracy, one usually tests the model on some standard datasets, please refer to dataset prepare
guide to prepare the dataset.

This section will show how to test existing models on supported datasets.

3.4.1 Test existing models

We provide testing scripts for evaluating an existing model on the whole dataset (COCO, PASCAL VOC, Cityscapes,
etc.). The following testing environments are supported:

• single GPU

• CPU

• single node multiple GPUs

• multiple nodes

Choose the proper script to perform testing depending on the testing environment.

Single-gpu testing
python tools/test.py \

${CONFIG_FILE} \
${CHECKPOINT_FILE} \
[--out ${RESULT_FILE}] \
[--show]

CPU: disable GPUs and run single-gpu testing script
export CUDA_VISIBLE_DEVICES=-1
python tools/test.py \

${CONFIG_FILE} \
${CHECKPOINT_FILE} \
[--out ${RESULT_FILE}] \
[--show]

Multi-gpu testing
bash tools/dist_test.sh \

${CONFIG_FILE} \
${CHECKPOINT_FILE} \
${GPU_NUM} \
[--out ${RESULT_FILE}]

tools/dist_test.sh also supports multi-node testing, but relies on PyTorch’s launch utility.

Optional arguments:

• RESULT_FILE: Filename of the output results in pickle format. If not specified, the results will not be saved to a
file.

28 Chapter 3. Train & Test

https://pytorch.org/docs/stable/distributed.html#launch-utility

MMDetection, Release 3.0.0rc0

• --show: If specified, detection results will be plotted on the images and shown in a new window. It is only
applicable to single GPU testing and used for debugging and visualization. Please make sure that GUI is available
in your environment. Otherwise, you may encounter an error like cannot connect to X server.

• --show-dir: If specified, detection results will be plotted on the images and saved to the specified directory.
It is only applicable to single GPU testing and used for debugging and visualization. You do NOT need a GUI
available in your environment for using this option.

• --work-dir: If specified, detection results containing evaluation metrics will be saved to the specified directory.

• --cfg-options: If specified, the key-value pair optional cfg will be merged into config file

3.4.2 Examples

Assuming that you have already downloaded the checkpoints to the directory checkpoints/.

1. Test Faster R-CNN and visualize the results. Press any key for the next image. Config and checkpoint files are
available here.

python tools/test.py \
configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py \
checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
--show

2. Test Faster R-CNN and save the painted images for future visualization. Config and checkpoint files are available
here.

python tools/test.py \
configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py \
checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
--show-dir faster_rcnn_r50_fpn_1x_results

3. Test Faster R-CNN on PASCAL VOC (without saving the test results). Config and checkpoint files are available
here.

python tools/test.py \
configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc.py \
checkpoints/faster_rcnn_r50_fpn_1x_voc0712_20200624-c9895d40.pth

4. Test Mask R-CNN with 8 GPUs, and evaluate. Config and checkpoint files are available here.

./tools/dist_test.sh \
configs/mask-rcnn_r50_fpn_1x_coco.py \
checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
8 \
--out results.pkl

5. Test Mask R-CNN with 8 GPUs, and evaluate the metric class-wise. Config and checkpoint files are available
here.

./tools/dist_test.sh \
configs/mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py \
checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
8 \
--out results.pkl \
--cfg-options test_evaluator.classwise=True

3.4. Test existing models on standard datasets 29

https://github.com/open-mmlab/mmdetection/tree/dev-3.x/configs/faster_rcnn
https://github.com/open-mmlab/mmdetection/tree/dev-3.x/configs/faster_rcnn
https://github.com/open-mmlab/mmdetection/tree/dev-3.x/configs/pascal_voc
https://github.com/open-mmlab/mmdetection/tree/dev-3.x/configs/mask_rcnn
https://github.com/open-mmlab/mmdetection/tree/dev-3.x/configs/mask_rcnn

MMDetection, Release 3.0.0rc0

6. Test Mask R-CNN on COCO test-dev with 8 GPUs, and generate JSON files for submitting to the official evalu-
ation server. Config and checkpoint files are available here.

Replace the original test_evaluator and test_dataloader with test_evaluator and test_dataloader in the comment
in config and run:

./tools/dist_test.sh \
configs/mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py \
checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
8

This command generates two JSON files ./work_dirs/coco_instance/test.bbox.json and ./
work_dirs/coco_instance/test.segm.json.

7. Test Mask R-CNN on Cityscapes test with 8 GPUs, and generate txt and png files for submitting to the official
evaluation server. Config and checkpoint files are available here.

Replace the original test_evaluator and test_dataloader with test_evaluator and test_dataloader in the comment
in config and run:

./tools/dist_test.sh \
configs/cityscapes/mask-rcnn_r50_fpn_1x_cityscapes.py \
checkpoints/mask_rcnn_r50_fpn_1x_cityscapes_20200227-afe51d5a.pth \
8

The generated png and txt would be under ./work_dirs/cityscapes_metric/ directory.

3.4.3 Test without Ground Truth Annotations

MMDetection supports to test models without ground-truth annotations using CocoDataset. If your dataset format
is not in COCO format, please convert them to COCO format. For example, if your dataset format is VOC, you can
directly convert it to COCO format by the script in tools. If your dataset format is Cityscapes, you can directly convert
it to COCO format by the script in tools. The rest of the formats can be converted using this script.

python tools/dataset_converters/images2coco.py \
${IMG_PATH} \
${CLASSES} \
${OUT} \
[--exclude-extensions]

arguments

• IMG_PATH: The root path of images.

• CLASSES: The text file with a list of categories.

• OUT: The output annotation json file name. The save dir is in the same directory as IMG_PATH.

• exclude-extensions: The suffix of images to be excluded, such as ‘png’ and ‘bmp’.

After the conversion is complete, you need to replace the original test_evaluator and test_dataloader with test_evaluator
and test_dataloader in the comment in config(find which dataset in ‘configs/base/datasets’ the current config corre-
sponds to) and run:

Single-gpu testing
python tools/test.py \

${CONFIG_FILE} \
(continues on next page)

30 Chapter 3. Train & Test

https://github.com/open-mmlab/mmdetection/tree/dev-3.x/configs/mask_rcnn
https://github.com/open-mmlab/mmdetection/tree/dev-3.x/configs/_base_/datasets/coco_instance.py
https://github.com/open-mmlab/mmdetection/tree/dev-3.x/configs/cityscapes
https://github.com/open-mmlab/mmdetection/tree/dev-3.x/configs/_base_/datasets/cityscapes_instance.py
https://github.com/open-mmlab/mmdetection/tree/dev-3.x/tools/dataset_converters/pascal_voc.py
https://github.com/open-mmlab/mmdetection/tree/dev-3.x/tools/dataset_converters/cityscapes.py
https://github.com/open-mmlab/mmdetection/tree/dev-3.x/tools/dataset_converters/images2coco.py
https://github.com/open-mmlab/mmdetection/tree/dev-3.x/configs/_base_/datasets/coco_detection.py

MMDetection, Release 3.0.0rc0

(continued from previous page)

${CHECKPOINT_FILE} \
[--show]

CPU: disable GPUs and run single-gpu testing script
export CUDA_VISIBLE_DEVICES=-1
python tools/test.py \

${CONFIG_FILE} \
${CHECKPOINT_FILE} \
[--out ${RESULT_FILE}] \
[--show]

Multi-gpu testing
bash tools/dist_test.sh \

${CONFIG_FILE} \
${CHECKPOINT_FILE} \
${GPU_NUM} \
[--show]

Assuming that the checkpoints in the model zoo have been downloaded to the directory checkpoints/, we can test
Mask R-CNN on COCO test-dev with 8 GPUs, and generate JSON files using the following command.

./tools/dist_test.sh \
configs/mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py \
checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
8

This command generates two JSON files ./work_dirs/coco_instance/test.bbox.json and ./work_dirs/
coco_instance/test.segm.json.

3.4.4 Batch Inference

MMDetection supports inference with a single image or batched images in test mode. By default, we use single-image
inference and you can use batch inference by modifying samples_per_gpu in the config of test data. You can do that
either by modifying the config as below.

data = dict(train_dataloader=dict(...), val_dataloader=dict(...), test_
→˓dataloader=dict(batch_size=2, ...))

Or you can set it through --cfg-options as --cfg-options test_dataloader.batch_size=2

3.5 Train predefined models on standard datasets

MMDetection also provides out-of-the-box tools for training detection models. This section will show how to train
predefined models (under configs) on standard datasets i.e. COCO.

3.5. Train predefined models on standard datasets 31

https://mmdetection.readthedocs.io/en/latest/modelzoo_statistics.html
https://github.com/open-mmlab/mmdetection/tree/dev-3.x/configs

MMDetection, Release 3.0.0rc0

3.5.1 Prepare datasets

Training requires preparing datasets too. See section Prepare datasets above for details.

Note: Currently, the config files under configs/cityscapes use COCO pretrained weights to initialize. You could
download the existing models in advance if the network connection is unavailable or slow. Otherwise, it would cause
errors at the beginning of training.

3.5.2 Learning rate automatically scale

Important: The default learning rate in config files is for 8 GPUs and 2 sample per gpu (batch size = 8 * 2 = 16).
And it had been set to auto_scale_lr.base_batch_size in config/_base_/default_runtime.py. Learning
rate will be automatically scaled base on this value when the batch size is 16. Meanwhile, in order not to affect other
codebase which based on mmdet, the flag auto_scale_lr.enable is set to False by default.

If you want to enable this feature, you need to add argument --auto-scale-lr. And you need to check the
config name which you want to use before you process the command, because the config name indicates the de-
fault batch size. By default, it is 8 x 2 = 16 batch size, like faster_rcnn_r50_caffe_fpn_90k_coco.py or
pisa_faster_rcnn_x101_32x4d_fpn_1x_coco.py. In other cases, you will see the config file name have _NxM_
in dictating, like cornernet_hourglass104_mstest_32x3_210e_coco.py which batch size is 32 x 3 = 96, or
scnet_x101_64x4d_fpn_8x1_20e_coco.py which batch size is 8 x 1 = 8.

Please remember to check the bottom of the specific config file you want to use, it will have auto_scale_lr.
base_batch_size if the batch size is not 16. If you can’t find those values, check the config file which in
base=[xxx] and you will find it. Please do not modify its values if you want to automatically scale the LR.

Learning rate automatically scale basic usage is as follows.

python tools/train.py \
${CONFIG_FILE} \
--auto-scale-lr \
[optional arguments]

If you enabled this feature, the learning rate will be automatically scaled according to the number of GPUs of the
machine and the batch size of training. See linear scaling rule for details. For example, If there are 4 GPUs and 2
pictures on each GPU, lr = 0.01, then if there are 16 GPUs and 4 pictures on each GPU, it will automatically scale
to lr = 0.08.

If you don’t want to use it, you need to calculate the learning rate according to the linear scaling rule manually then
change optimizer.lr in specific config file.

3.5.3 Training on a single GPU

We provide tools/train.py to launch training jobs on a single GPU. The basic usage is as follows.

python tools/train.py \
${CONFIG_FILE} \
[optional arguments]

During training, log files and checkpoints will be saved to the working directory, which is specified by work_dir in
the config file or via CLI argument --work-dir.

By default, the model is evaluated on the validation set every epoch, the evaluation interval can be specified in the
config file as shown below.

32 Chapter 3. Train & Test

https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1706.02677

MMDetection, Release 3.0.0rc0

evaluate the model every 12 epoch.
train_cfg = dict(val_interval=12)

This tool accepts several optional arguments, including:

• --work-dir ${WORK_DIR}: Override the working directory.

• --auto-resume: resume from the latest checkpoint in the work_dir automatically.

• --cfg-options 'Key=value': Overrides other settings in the used config.

3.5.4 Training on CPU

The process of training on the CPU is consistent with single GPU training. We just need to disable GPUs before the
training process.

export CUDA_VISIBLE_DEVICES=-1

And then run the script above.

Note:

We do not recommend users to use CPU for training because it is too slow. We support this feature to allow users to
debug on machines without GPU for convenience.

3.5.5 Training on multiple GPUs

We provide tools/dist_train.sh to launch training on multiple GPUs. The basic usage is as follows.

bash ./tools/dist_train.sh \
${CONFIG_FILE} \
${GPU_NUM} \
[optional arguments]

Optional arguments remain the same as stated above.

Launch multiple jobs simultaneously

If you would like to launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs,
you need to specify different ports (29500 by default) for each job to avoid communication conflict.

If you use dist_train.sh to launch training jobs, you can set the port in commands.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh ${CONFIG_FILE} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh ${CONFIG_FILE} 4

3.5. Train predefined models on standard datasets 33

MMDetection, Release 3.0.0rc0

3.5.6 Train with multiple machines

If you launch with multiple machines simply connected with ethernet, you can simply run following commands:

On the first machine:

NNODES=2 NODE_RANK=0 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh
→˓$CONFIG $GPUS

On the second machine:

NNODES=2 NODE_RANK=1 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh
→˓$CONFIG $GPUS

Usually it is slow if you do not have high speed networking like InfiniBand.

3.5.7 Manage jobs with Slurm

Slurm is a good job scheduling system for computing clusters. On a cluster managed by Slurm, you can use
slurm_train.sh to spawn training jobs. It supports both single-node and multi-node training.

The basic usage is as follows.

[GPUS=${GPUS}] ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR}

Below is an example of using 16 GPUs to train Mask R-CNN on a Slurm partition named dev, and set the work-dir to
some shared file systems.

GPUS=16 ./tools/slurm_train.sh dev mask_r50_1x configs/mask-rcnn_r50_fpn_1x_coco.py /nfs/
→˓xxxx/mask_rcnn_r50_fpn_1x

You can check the source code to review full arguments and environment variables.

When using Slurm, the port option need to be set in one of the following ways:

1. Set the port through --options. This is more recommended since it does not change the original configs.

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config1.py ${WORK_DIR} --options 'dist_params.port=29500'
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config2.py ${WORK_DIR} --options 'dist_params.port=29501'

2. Modify the config files to set different communication ports.

In config1.py, set

dist_params = dict(backend='nccl', port=29500)

In config2.py, set

dist_params = dict(backend='nccl', port=29501)

Then you can launch two jobs with config1.py and config2.py.

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config1.py ${WORK_DIR}
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config2.py ${WORK_DIR} (continues on next page)

34 Chapter 3. Train & Test

https://slurm.schedmd.com/
https://github.com/open-mmlab/mmdetection/blob/dev-3.x/tools/slurm_train.sh

MMDetection, Release 3.0.0rc0

(continued from previous page)

3.6 Train with customized datasets

In this part, you will know how to train predefined models with customized datasets and then test it. We use the balloon
dataset as an example to describe the whole process.

The basic steps are as below:

1. Prepare the customized dataset

2. Prepare a config

3. Train, test, inference models on the customized dataset.

3.6.1 Prepare the customized dataset

There are three ways to support a new dataset in MMDetection:

1. Reorganize the dataset into COCO format.

2. Reorganize the dataset into a middle format.

3. Implement a new dataset.

Usually we recommend using the first two methods which are usually easier than the third.

In this note, we give an example for converting the data into COCO format.

Note: Datasets and metrics have been decoupled except CityScapes since MMDetection 3.0 . Therefore, uers can use
any kind of evaluation metrics for any format of datasets during validation. For example: evaluate on COCO dataset
with VOC metric, or evaluate on OpenImages dataset with both VOC and COCO metrics.

COCO annotation format

The necessary keys of COCO format for instance segmentation is as below, for the complete details, please refer here.

{
"images": [image],
"annotations": [annotation],
"categories": [category]

}

image = {
"id": int,
"width": int,
"height": int,
"file_name": str,

}

annotation = {
"id": int,
"image_id": int,
"category_id": int,

(continues on next page)

3.6. Train with customized datasets 35

https://github.com/matterport/Mask_RCNN/tree/master/samples/balloon
https://github.com/matterport/Mask_RCNN/tree/master/samples/balloon
https://cocodataset.org/#format-data

MMDetection, Release 3.0.0rc0

(continued from previous page)

"segmentation": RLE or [polygon],
"area": float,
"bbox": [x,y,width,height], # (x, y) are the coordinates of the upper left corner of␣

→˓the bbox
"iscrowd": 0 or 1,

}

categories = [{
"id": int,
"name": str,
"supercategory": str,

}]

Assume we use the balloon dataset. After downloading the data, we need to implement a function to convert the
annotation format into the COCO format. Then we can use implemented CocoDataset to load the data and perform
training and evaluation.

If you take a look at the dataset, you will find the dataset format is as below:

{'base64_img_data': '',
'file_attributes': {},
'filename': '34020010494_e5cb88e1c4_k.jpg',
'fileref': '',
'regions': {'0': {'region_attributes': {},
'shape_attributes': {'all_points_x': [1020,
1000,
994,
1003,
1023,
1050,
1089,
1134,
1190,
1265,
1321,
1361,
1403,
1428,
1442,
1445,
1441,
1427,
1400,
1361,
1316,
1269,
1228,
1198,
1207,
1210,
1190,
1177,
1172,

(continues on next page)

36 Chapter 3. Train & Test

MMDetection, Release 3.0.0rc0

(continued from previous page)

1174,
1170,
1153,
1127,
1104,
1061,
1032,
1020],
'all_points_y': [963,
899,
841,
787,
738,
700,
663,
638,
621,
619,
643,
672,
720,
765,
800,
860,
896,
942,
990,
1035,
1079,
1112,
1129,
1134,
1144,
1153,
1166,
1166,
1150,
1136,
1129,
1122,
1112,
1084,
1037,
989,
963],
'name': 'polygon'}}},

'size': 1115004}

The annotation is a JSON file where each key indicates an image’s all annotations. The code to convert the balloon
dataset into coco format is as below.

import os.path as osp
(continues on next page)

3.6. Train with customized datasets 37

MMDetection, Release 3.0.0rc0

(continued from previous page)

import mmcv

from mmengine.fileio import dump, load
from mmengine.utils import track_iter_progress

def convert_balloon_to_coco(ann_file, out_file, image_prefix):
data_infos = load(ann_file)

annotations = []
images = []
obj_count = 0
for idx, v in enumerate(track_iter_progress(data_infos.values())):

filename = v['filename']
img_path = osp.join(image_prefix, filename)
height, width = mmcv.imread(img_path).shape[:2]

images.append(
dict(id=idx, file_name=filename, height=height, width=width))

for _, obj in v['regions'].items():
assert not obj['region_attributes']
obj = obj['shape_attributes']
px = obj['all_points_x']
py = obj['all_points_y']
poly = [(x + 0.5, y + 0.5) for x, y in zip(px, py)]
poly = [p for x in poly for p in x]

x_min, y_min, x_max, y_max = (min(px), min(py), max(px), max(py))

data_anno = dict(
image_id=idx,
id=obj_count,
category_id=0,
bbox=[x_min, y_min, x_max - x_min, y_max - y_min],
area=(x_max - x_min) * (y_max - y_min),
segmentation=[poly],
iscrowd=0)

annotations.append(data_anno)
obj_count += 1

coco_format_json = dict(
images=images,
annotations=annotations,
categories=[{

'id': 0,
'name': 'balloon'

}])
dump(coco_format_json, out_file)

(continues on next page)

38 Chapter 3. Train & Test

MMDetection, Release 3.0.0rc0

(continued from previous page)

if __name__ == '__main__':
convert_balloon_to_coco(ann_file='data/balloon/train/via_region_data.json',

out_file='data/balloon/train/annotation_coco.json',
image_prefix='data/balloon/train')

convert_balloon_to_coco(ann_file='data/balloon/val/via_region_data.json',
out_file='data/balloon/val/annotation_coco.json',
image_prefix='data/balloon/val')

Using the function above, users can successfully convert the annotation file into json format, then we can use
CocoDataset to train and evaluate the model with CocoMetric.

3.6.2 Prepare a config

The second step is to prepare a config thus the dataset could be successfully loaded. Assume that we want to use Mask
R-CNN with FPN, the config to train the detector on balloon dataset is as below. Assume the config is under directory
configs/balloon/ and named as mask-rcnn_r50-caffe_fpn_ms-poly-1x_balloon.py, the config is as below.

The new config inherits a base config to highlight the necessary modification
base = '../mask_rcnn/mask-rcnn_r50-caffe_fpn_ms-poly-1x_coco.py'

We also need to change the num_classes in head to match the dataset's annotation
model = dict(

roi_head=dict(
bbox_head=dict(num_classes=1), mask_head=dict(num_classes=1)))

Modify dataset related settings
data_root = 'data/balloon/'
metainfo = {

'CLASSES': ('balloon',),
'PALETTE': [

(220, 20, 60),
]

}
train_dataloader = dict(

batch_size=1,
dataset=dict(

data_root=data_root,
metainfo=metainfo,
ann_file='train/annotation_coco.json',
data_prefix=dict(img='train/')))

val_dataloader = dict(
dataset=dict(

data_root=data_root,
metainfo=metainfo,
ann_file='val/annotation_coco.json',
data_prefix=dict(img='val/')))

test_dataloader = val_dataloader

Modify metric related settings
val_evaluator = dict(ann_file=data_root + 'val/annotation_coco.json')

(continues on next page)

3.6. Train with customized datasets 39

MMDetection, Release 3.0.0rc0

(continued from previous page)

test_evaluator = val_evaluator

We can use the pre-trained Mask RCNN model to obtain higher performance
load_from = 'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_
→˓caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.
→˓408__segm_mAP-0.37_20200504_163245-42aa3d00.pth'

3.6.3 Train a new model

To train a model with the new config, you can simply run

python tools/train.py configs/balloon/mask-rcnn_r50-caffe_fpn_ms-poly-1x_balloon.py

For more detailed usages, please refer to the training guide.

3.6.4 Test and inference

To test the trained model, you can simply run

python tools/test.py configs/balloon/mask-rcnn_r50-caffe_fpn_ms-poly-1x_balloon.py work_
→˓dirs/mask-rcnn_r50-caffe_fpn_ms-poly-1x_balloon/epoch_12.pth

For more detailed usages, please refer to the testing guide.

3.7 Train with customized models and standard datasets

In this note, you will know how to train, test and inference your own customized models under standard datasets. We use
the cityscapes dataset to train a customized Cascade Mask R-CNN R50 model as an example to demonstrate the whole
process, which using AugFPN to replace the default FPN as neck, and add Rotate or TranslateX as training-time auto
augmentation.

The basic steps are as below:

1. Prepare the standard dataset

2. Prepare your own customized model

3. Prepare a config

4. Train, test, and inference models on the standard dataset.

40 Chapter 3. Train & Test

https://github.com/Gus-Guo/AugFPN

MMDetection, Release 3.0.0rc0

3.7.1 Prepare the standard dataset

In this note, as we use the standard cityscapes dataset as an example.

It is recommended to symlink the dataset root to $MMDETECTION/data. If your folder structure is different, you may
need to change the corresponding paths in config files.

mmdetection
mmdet
tools
configs
data

coco
annotations
train2017
val2017
test2017

cityscapes
annotations
leftImg8bit

train
val

gtFine
train
val

VOCdevkit
VOC2007
VOC2012

Or you can set your dataset root through

export MMDET_DATASETS=$data_root

We will replace dataset root with $MMDET_DATASETS, so you don’t have to modify the corresponding path in config
files.

The cityscapes annotations have to be converted into the coco format using tools/dataset_converters/
cityscapes.py:

pip install cityscapesscripts
python tools/dataset_converters/cityscapes.py ./data/cityscapes --nproc 8 --out-dir ./
→˓data/cityscapes/annotations

Currently the config files in cityscapes use COCO pre-trained weights to initialize. You could download the pre-
trained models in advance if network is unavailable or slow, otherwise it would cause errors at the beginning of training.

3.7. Train with customized models and standard datasets 41

MMDetection, Release 3.0.0rc0

3.7.2 Prepare your own customized model

The second step is to use your own module or training setting. Assume that we want to implement a new neck called
AugFPN to replace with the default FPN under the existing detector Cascade Mask R-CNN R50. The following imple-
ments AugFPN under MMDetection.

1. Define a new neck (e.g. AugFPN)

Firstly create a new file mmdet/models/necks/augfpn.py.

import torch.nn as nn
from mmdet.registry import MODELS

@MODELS.register_module()
class AugFPN(nn.Module):

def __init__(self,
in_channels,
out_channels,
num_outs,
start_level=0,
end_level=-1,
add_extra_convs=False):

pass

def forward(self, inputs):
implementation is ignored
pass

2. Import the module

You can either add the following line to mmdet/models/necks/__init__.py,

from .augfpn import AugFPN

or alternatively add

custom_imports = dict(
imports=['mmdet.models.necks.augfpn'],
allow_failed_imports=False)

to the config file and avoid modifying the original code.

42 Chapter 3. Train & Test

MMDetection, Release 3.0.0rc0

3. Modify the config file

neck=dict(
type='AugFPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5)

For more detailed usages about customizing your own models (e.g. implement a new backbone, head, loss, etc) and
runtime training settings (e.g. define a new optimizer, use gradient clip, customize training schedules and hooks, etc),
please refer to the guideline Customize Models and Customize Runtime Settings respectively.

3.7.3 Prepare a config

The third step is to prepare a config for your own training setting. Assume that we want to add
AugFPN and Rotate or Translate augmentation to existing Cascade Mask R-CNN R50 to train the
cityscapes dataset, and assume the config is under directory configs/cityscapes/ and named as
cascade-mask-rcnn_r50_augfpn_autoaug-10e_cityscapes.py, the config is as below.

The new config inherits the base configs to highlight the necessary modification
base = [

'../_base_/models/cascade-mask-rcnn_r50_fpn.py',
'../_base_/datasets/cityscapes_instance.py', '../_base_/default_runtime.py'

]

model = dict(
set None to avoid loading ImageNet pretrained backbone,
instead here we set `load_from` to load from COCO pretrained detectors.
backbone=dict(init_cfg=None),
replace neck from defaultly `FPN` to our new implemented module `AugFPN`
neck=dict(

type='AugFPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5),

We also need to change the num_classes in head from 80 to 8, to match the
cityscapes dataset's annotation. This modification involves `bbox_head` and `mask_

→˓head`.
roi_head=dict(

bbox_head=[
dict(

type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
change the number of classes from defaultly COCO to cityscapes
num_classes=8,
bbox_coder=dict(

type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2]),

reg_class_agnostic=True,
(continues on next page)

3.7. Train with customized models and standard datasets 43

MMDetection, Release 3.0.0rc0

(continued from previous page)

loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),

loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
loss_weight=1.0)),

dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
change the number of classes from defaultly COCO to cityscapes
num_classes=8,
bbox_coder=dict(

type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.05, 0.05, 0.1, 0.1]),

reg_class_agnostic=True,
loss_cls=dict(

type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),

loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
loss_weight=1.0)),

dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
change the number of classes from defaultly COCO to cityscapes
num_classes=8,
bbox_coder=dict(

type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.033, 0.033, 0.067, 0.067]),

reg_class_agnostic=True,
loss_cls=dict(

type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),

loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
],
mask_head=dict(

type='FCNMaskHead',
num_convs=4,
in_channels=256,
conv_out_channels=256,
change the number of classes from defaultly COCO to cityscapes
num_classes=8,
loss_mask=dict(

type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))))

(continues on next page)

44 Chapter 3. Train & Test

MMDetection, Release 3.0.0rc0

(continued from previous page)

over-write `train_pipeline` for new added `AutoAugment` training setting
train_pipeline = [

dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(

type='AutoAugment',
policies=[

[dict(
type='Rotate',
level=5,
img_fill_val=(124, 116, 104),
prob=0.5,
scale=1)

],
[dict(type='Rotate', level=7, img_fill_val=(124, 116, 104)),
dict(

type='TranslateX',
level=5,
prob=0.5,
img_fill_val=(124, 116, 104))

],
]),

dict(
type='RandomResize',
scale=[(2048, 800), (2048, 1024)],
keep_ratio=True),

dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs'),

]

set batch_size per gpu, and set new training pipeline
train_dataloader = dict(

batch_size=1,
num_workers=3,
over-write `pipeline` with new training pipeline setting
dataset=dict(pipeline=train_pipeline))

Set optimizer
optim_wrapper = dict(

type='OptimWrapper',
optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))

Set customized learning policy
param_scheduler = [

dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),

dict(
type='MultiStepLR',
begin=0,
end=10,
by_epoch=True,
milestones=[8],

(continues on next page)

3.7. Train with customized models and standard datasets 45

MMDetection, Release 3.0.0rc0

(continued from previous page)

gamma=0.1)
]

train, val, test loop config
train_cfg = dict(max_epochs=10, val_interval=1)

We can use the COCO pretrained Cascade Mask R-CNN R50 model for more stable␣
→˓performance initialization
load_from = 'https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_
→˓rcnn_r50_fpn_1x_coco/cascade_mask_rcnn_r50_fpn_1x_coco_20200203-9d4dcb24.pth'

3.7.4 Train a new model

To train a model with the new config, you can simply run

python tools/train.py configs/cityscapes/cascade-mask-rcnn_r50_augfpn_autoaug-10e_
→˓cityscapes.py

For more detailed usages, please refer to the training guide.

3.7.5 Test and inference

To test the trained model, you can simply run

python tools/test.py configs/cityscapes/cascade-mask-rcnn_r50_augfpn_autoaug-10e_
→˓cityscapes.py work_dirs/cascade-mask-rcnn_r50_augfpn_autoaug-10e_cityscapes/epoch_10.
→˓pth

For more detailed usages, please refer to the testing guide.

3.8 Finetuning Models

Detectors pre-trained on the COCO dataset can serve as a good pre-trained model for other datasets, e.g., CityScapes
and KITTI Dataset. This tutorial provides instruction for users to use the models provided in the Model Zoo for other
datasets to obtain better performance.

There are two steps to finetune a model on a new dataset.

• Add support for the new dataset following Customize Datasets.

• Modify the configs as will be discussed in this tutorial.

Take the finetuning process on Cityscapes Dataset as an example, the users need to modify five parts in the config.

46 Chapter 3. Train & Test

MMDetection, Release 3.0.0rc0

3.8.1 Inherit base configs

To release the burden and reduce bugs in writing the whole configs, MMDetection V2.0 support inheriting configs
from multiple existing configs. To finetune a Mask RCNN model, the new config needs to inherit _base_/models/
mask-rcnn_r50_fpn.py to build the basic structure of the model. To use the Cityscapes Dataset, the new config can
also simply inherit _base_/datasets/cityscapes_instance.py. For runtime settings such as logger settings, the
new config needs to inherit _base_/default_runtime.py. For training schedules, the new config can to inherit
base/schedules/schedule_1x.py. These configs are in the configs directory and the users can also choose to
write the whole contents rather than use inheritance.

base = [
'../_base_/models/mask-rcnn_r50_fpn.py',
'../_base_/datasets/cityscapes_instance.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_1x.py'

]

3.8.2 Modify head

Then the new config needs to modify the head according to the class numbers of the new datasets. By only changing
num_classes in the roi_head, the weights of the pre-trained models are mostly reused except the final prediction head.

model = dict(
roi_head=dict(

bbox_head=dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=8,
bbox_coder=dict(

type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2]),

reg_class_agnostic=False,
loss_cls=dict(

type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),

mask_head=dict(
type='FCNMaskHead',
num_convs=4,
in_channels=256,
conv_out_channels=256,
num_classes=8,
loss_mask=dict(

type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))))

3.8. Finetuning Models 47

MMDetection, Release 3.0.0rc0

3.8.3 Modify dataset

The users may also need to prepare the dataset and write the configs about dataset, refer to Customize Datasets for
more detail. MMDetection V3.0 already supports VOC, WIDERFACE, COCO, LIVS, OpenImages, DeepFashion and
Cityscapes Dataset.

3.8.4 Modify training schedule

The finetuning hyperparameters vary from the default schedule. It usually requires smaller learning rate and less
training epochs

optimizer
lr is set for a batch size of 8
optim_wrapper = dict(optimizer=dict(lr=0.01))

learning rate
param_scheduler = [

dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),

dict(
type='MultiStepLR',
begin=0,
end=8,
by_epoch=True,
milestones=[7],
gamma=0.1)

]

max_epochs
train_cfg = dict(max_epochs=8)

log config
default_hooks = dict(logger=dict(interval=100)),

3.8.5 Use pre-trained model

To use the pre-trained model, the new config add the link of pre-trained models in the load_from. The users might
need to download the model weights before training to avoid the download time during training.

load_from = 'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_
→˓caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.
→˓408__segm_mAP-0.37_20200504_163245-42aa3d00.pth' # noqa

48 Chapter 3. Train & Test

MMDetection, Release 3.0.0rc0

3.9 Test Results Submission

3.9.1 Panoptic segmentation test results submission

The following sections introduce how to produce the prediction results of panoptic segmentation models on the COCO
test-dev set and submit the predictions to COCO evaluation server.

Prerequisites

• Download COCO test dataset images, testing image info, and panoptic train/val annotations, then unzip them,
put ‘test2017’ to data/coco/, put json files and annotation files to data/coco/annotations/.

suppose data/coco/ does not exist
mkdir -pv data/coco/

download test2017
wget -P data/coco/ http://images.cocodataset.org/zips/test2017.zip
wget -P data/coco/ http://images.cocodataset.org/annotations/image_info_test2017.zip
wget -P data/coco/ http://images.cocodataset.org/annotations/panoptic_annotations_
→˓trainval2017.zip

unzip them
unzip data/coco/test2017.zip -d data/coco/
unzip data/coco/image_info_test2017.zip -d data/coco/
unzip data/coco/panoptic_annotations_trainval2017.zip -d data/coco/

remove zip files (optional)
rm -rf data/coco/test2017.zip data/coco/image_info_test2017.zip data/coco/panoptic_
→˓annotations_trainval2017.zip

• Run the following code to update category information in testing image info. Since the attribute isthing is
missing in category information of ‘image_info_test-dev2017.json’, we need to update it with the category infor-
mation in ‘panoptic_val2017.json’.

python tools/misc/gen_coco_panoptic_test_info.py data/coco/annotations

After completing the above preparations, your directory structure of data should be like this:

data
`-- coco

|-- annotations
| |-- image_info_test-dev2017.json
| |-- image_info_test2017.json
| |-- panoptic_image_info_test-dev2017.json
| |-- panoptic_train2017.json
| |-- panoptic_train2017.zip
| |-- panoptic_val2017.json
| `-- panoptic_val2017.zip
`-- test2017

3.9. Test Results Submission 49

https://competitions.codalab.org/competitions/19507
http://images.cocodataset.org/zips/test2017.zip
http://images.cocodataset.org/annotations/image_info_test2017.zip
http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip

MMDetection, Release 3.0.0rc0

Inference on coco test-dev

To do inference on coco test-dev, we should update the setting of test_dataloder and test_evaluator first. There
two ways to do this: 1. update them in config file; 2. update them in command line.

Update them in config file

The relevant settings are provided at the end of configs/_base_/datasets/coco_panoptic.py, as below.

test_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(

type=dataset_type,
data_root=data_root,
ann_file='annotations/panoptic_image_info_test-dev2017.json',
data_prefix=dict(img='test2017/'),
test_mode=True,
pipeline=test_pipeline))

test_evaluator = dict(
type='CocoPanopticMetric',
format_only=True,
ann_file=data_root + 'annotations/panoptic_image_info_test-dev2017.json',
outfile_prefix='./work_dirs/coco_panoptic/test')

Any of the following way can be used to update the setting for inference on coco test-dev set.

Case 1: Directly uncomment the setting in configs/_base_/datasets/coco_panoptic.py.

Case 2: Copy the following setting to the config file you used now.

test_dataloader = dict(
dataset=dict(

ann_file='annotations/panoptic_image_info_test-dev2017.json',
data_prefix=dict(img='test2017/', _delete_=True)))

test_evaluator = dict(
format_only=True,
ann_file=data_root + 'annotations/panoptic_image_info_test-dev2017.json',
outfile_prefix='./work_dirs/coco_panoptic/test')

Then infer on coco test-dev et by the following command.

python tools/test.py \
${CONFIG_FILE} \
${CHECKPOINT_FILE}

50 Chapter 3. Train & Test

MMDetection, Release 3.0.0rc0

Update them in command line

The command for update of the related settings and inference on coco test-dev are as below.

test with single gpu
CUDA_VISIBLE_DEVICES=0 python tools/test.py \

${CONFIG_FILE} \
${CHECKPOINT_FILE} \
--cfg-options \
test_dataloader.dataset.ann_file=annotations/panoptic_image_info_test-dev2017.json \
test_dataloader.dataset.data_prefix.img=test2017 \
test_dataloader.dataset.data_prefix._delete_=True \
test_evaluator.format_only=True \
test_evaluator.ann_file=data/coco/annotations/panoptic_image_info_test-dev2017.json \
test_evaluator.outfile_prefix=${WORK_DIR}/results

test with four gpus
CUDA_VISIBLE_DEVICES=0,1,3,4 bash tools/dist_test.sh \

${CONFIG_FILE} \
${CHECKPOINT_FILE} \
8 \ # eights gpus
--cfg-options \
test_dataloader.dataset.ann_file=annotations/panoptic_image_info_test-dev2017.json \
test_dataloader.dataset.data_prefix.img=test2017 \
test_dataloader.dataset.data_prefix._delete_=True \
test_evaluator.format_only=True \
test_evaluator.ann_file=data/coco/annotations/panoptic_image_info_test-dev2017.json \
test_evaluator.outfile_prefix=${WORK_DIR}/results

test with slurm
GPUS=8 tools/slurm_test.sh \

${Partition} \
${JOB_NAME} \
${CONFIG_FILE} \
${CHECKPOINT_FILE} \
--cfg-options \
test_dataloader.dataset.ann_file=annotations/panoptic_image_info_test-dev2017.json \
test_dataloader.dataset.data_prefix.img=test2017 \
test_dataloader.dataset.data_prefix._delete_=True \
test_evaluator.format_only=True \
test_evaluator.ann_file=data/coco/annotations/panoptic_image_info_test-dev2017.json \
test_evaluator.outfile_prefix=${WORK_DIR}/results

Example

Suppose we perform inference on test2017 using pretrained MaskFormer with ResNet-50 backbone.

test with single gpu
CUDA_VISIBLE_DEVICES=0 python tools/test.py \

configs/maskformer/maskformer_r50_mstrain_16x1_75e_coco.py \
checkpoints/maskformer_r50_mstrain_16x1_75e_coco_20220221_141956-bc2699cb.pth \
--cfg-options \
test_dataloader.dataset.ann_file=annotations/panoptic_image_info_test-dev2017.json \
test_dataloader.dataset.data_prefix.img=test2017 \

(continues on next page)

3.9. Test Results Submission 51

MMDetection, Release 3.0.0rc0

(continued from previous page)

test_dataloader.dataset.data_prefix._delete_=True \
test_evaluator.format_only=True \
test_evaluator.ann_file=data/coco/annotations/panoptic_image_info_test-dev2017.json \
test_evaluator.outfile_prefix=work_dirs/maskformer/results

Rename files and zip results

After inference, the panoptic segmentation results (a json file and a directory where the masks are stored) will be in
WORK_DIR. We should rename them according to the naming convention described on COCO’s Website. Finally, we
need to compress the json and the directory where the masks are stored into a zip file, and rename the zip file according
to the naming convention. Note that the zip file should directly contains the above two files.

The commands to rename files and zip results:

In WORK_DIR, we have panoptic segmentation results: 'panoptic' and 'results.panoptic.json
→˓'.
cd ${WORK_DIR}

replace '[algorithm_name]' with the name of algorithm you used.
mv ./panoptic ./panoptic_test-dev2017_[algorithm_name]_results
mv ./results.panoptic.json ./panoptic_test-dev2017_[algorithm_name]_results.json
zip panoptic_test-dev2017_[algorithm_name]_results.zip -ur panoptic_test-dev2017_
→˓[algorithm_name]_results panoptic_test-dev2017_[algorithm_name]_results.json

3.10 Weight initialization

During training, a proper initialization strategy is beneficial to speeding up the training or obtaining a higher perfor-
mance. MMCV provide some commonly used methods for initializing modules like nn.Conv2d. Model initialization
in MMdetection mainly uses init_cfg. Users can initialize models with following two steps:

1. Define init_cfg for a model or its components in model_cfg, but init_cfg of children components have
higher priority and will override init_cfg of parents modules.

2. Build model as usual, but call model.init_weights() method explicitly, and model parameters will be ini-
tialized as configuration.

The high-level workflow of initialization in MMdetection is :

model_cfg(init_cfg) -> build_from_cfg -> model -> init_weight() -> initialize(self, self.init_cfg) -> children’s
init_weight()

3.10.1 Description

It is dict or list[dict], and contains the following keys and values:

• type (str), containing the initializer name in INTIALIZERS, and followed by arguments of the initializer.

• layer (str or list[str]), containing the names of basic layers in Pytorch or MMCV with learnable parameters that
will be initialized, e.g. 'Conv2d','DeformConv2d'.

• override (dict or list[dict]), containing the sub-modules that not inherit from BaseModule and whose initializa-
tion configuration is different from other layers’ which are in 'layer' key. Initializer defined in type will work

52 Chapter 3. Train & Test

https://cocodataset.org/#upload
https://github.com/open-mmlab/mmcv/blob/master/mmcv/cnn/utils/weight_init.py

MMDetection, Release 3.0.0rc0

for all layers defined in layer, so if sub-modules are not derived Classes of BaseModule but can be initialized
as same ways of layers in layer, it does not need to use override. override contains:

– type followed by arguments of initializer;

– name to indicate sub-module which will be initialized.

3.10.2 Initialize parameters

Inherit a new model from mmcv.runner.BaseModule or mmdet.models Here we show an example of FooModel.

import torch.nn as nn
from mmcv.runner import BaseModule

class FooModel(BaseModule)
def __init__(self,

arg1,
arg2,
init_cfg=None):

super(FooModel, self).__init__(init_cfg)
...

• Initialize model by using init_cfg directly in code

import torch.nn as nn
from mmcv.runner import BaseModule
or directly inherit mmdet models

class FooModel(BaseModule)
def __init__(self,

arg1,
arg2,
init_cfg=XXX):
super(FooModel, self).__init__(init_cfg)

...

• Initialize model by using init_cfg directly in mmcv.Sequential or mmcv.ModuleList code

from mmcv.runner import BaseModule, ModuleList

class FooModel(BaseModule)
def __init__(self,

arg1,
arg2,
init_cfg=None):

super(FooModel, self).__init__(init_cfg)
...
self.conv1 = ModuleList(init_cfg=XXX)

• Initialize model by using init_cfg in config file

model = dict(
...
model = dict(

(continues on next page)

3.10. Weight initialization 53

MMDetection, Release 3.0.0rc0

(continued from previous page)

type='FooModel',
arg1=XXX,
arg2=XXX,
init_cfg=XXX),

...

3.10.3 Usage of init_cfg

1. Initialize model by layer key

If we only define layer, it just initialize the layer in layer key.

NOTE: Value of layer key is the class name with attributes weights and bias of Pytorch, (so such as
MultiheadAttention layer is not supported).

• Define layer key for initializing module with same configuration.

init_cfg = dict(type='Constant', layer=['Conv1d', 'Conv2d', 'Linear'], val=1)
initialize whole module with same configuration

• Define layer key for initializing layer with different configurations.

init_cfg = [dict(type='Constant', layer='Conv1d', val=1),
dict(type='Constant', layer='Conv2d', val=2),
dict(type='Constant', layer='Linear', val=3)]

nn.Conv1d will be initialized with dict(type='Constant', val=1)
nn.Conv2d will be initialized with dict(type='Constant', val=2)
nn.Linear will be initialized with dict(type='Constant', val=3)

2. Initialize model by override key

• When initializing some specific part with its attribute name, we can use override key, and the value in override
will ignore the value in init_cfg.

layers
self.feat = nn.Conv1d(3, 1, 3)
self.reg = nn.Conv2d(3, 3, 3)
self.cls = nn.Linear(1,2)

init_cfg = dict(type='Constant',
layer=['Conv1d','Conv2d'], val=1, bias=2,
override=dict(type='Constant', name='reg', val=3, bias=4))

self.feat and self.cls will be initialized with dict(type='Constant', val=1,
→˓ bias=2)
The module called 'reg' will be initialized with dict(type='Constant', val=3, bias=4)

• If layer is None in init_cfg, only sub-module with the name in override will be initialized, and type and other
args in override can be omitted.

layers
self.feat = nn.Conv1d(3, 1, 3)
self.reg = nn.Conv2d(3, 3, 3)
self.cls = nn.Linear(1,2)

(continues on next page)

54 Chapter 3. Train & Test

MMDetection, Release 3.0.0rc0

(continued from previous page)

init_cfg = dict(type='Constant', val=1, bias=2, override=dict(name='reg'))

self.feat and self.cls will be initialized by Pytorch
The module called 'reg' will be initialized with dict(type='Constant', val=1, bias=2)

• If we don’t define layer key or override key, it will not initialize anything.

• Invalid usage

It is invalid that override don't have name key
init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'], val=1, bias=2,

override=dict(type='Constant', val=3, bias=4))

It is also invalid that override has name and other args except type
init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'], val=1, bias=2,

override=dict(name='reg', val=3, bias=4))

3. Initialize model with the pretrained model

init_cfg = dict(type='Pretrained',
checkpoint='torchvision://resnet50')

More details can refer to the documentation in MMEngine

3.11 Use a single stage detector as RPN

Region proposal network (RPN) is a submodule in Faster R-CNN, which generates proposals for the second stage of
Faster R-CNN. Most two-stage detectors in MMDetection use RPNHead to generate proposals as RPN. However, any
single-stage detector can serve as an RPN since their bounding box predictions can also be regarded as region proposals
and thus be refined in the R-CNN. Therefore, MMDetection v3.0 supports that.

To illustrate the whole process, here we give an example of how to use an anchor-free single-stage model FCOS as an
RPN in Faster R-CNN.

The outline of this tutorial is as below:

1. Use FCOSHead as an RPNHead in Faster R-CNN

2. Evaluate proposals

3. Train the customized Faster R-CNN with pre-trained FCOS

3.11.1 Use FCOSHead as an RPNHead in Faster R-CNN

To set FCOSHead as an RPNHead in Faster R-CNN, we should create a new config file named configs/faster_rcnn/
faster-rcnn_r50_fpn_fcos-rpn_1x_coco.py, and replace with the setting of rpn_head with the setting of
bbox_head in configs/fcos/fcos_r50-caffe_fpn_gn-head_1x_coco.py. Besides, we still use the neck set-
ting of FCOS with strides of [8, 16, 32, 64, 128], and update featmap_strides of bbox_roi_extractor to
[8, 16, 32, 64, 128]. To avoid loss goes NAN, we apply warmup during the first 1000 iterations instead of the
first 500 iterations, which means that the lr increases more slowly. The config is as follows:

3.11. Use a single stage detector as RPN 55

https://mmengine.readthedocs.io/en/latest/advanced_tutorials/initialize.html
https://arxiv.org/abs/1506.01497
https://github.com/open-mmlab/mmdetection/blob/dev-3.x/mmdet/models/dense_heads/rpn_head.py

MMDetection, Release 3.0.0rc0

base = [
'../_base_/models/faster-rcnn_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'

]

model = dict(
copied from configs/fcos/fcos_r50-caffe_fpn_gn-head_1x_coco.py
neck=dict(

start_level=1,
add_extra_convs='on_output', # use P5
relu_before_extra_convs=True),

rpn_head=dict(
delete=True, # ignore the unused old settings
type='FCOSHead',
num_classes=1, # num_classes = 1 for rpn, if num_classes > 1, it will be set to␣

→˓1 in TwoStageDetector automatically
in_channels=256,
stacked_convs=4,
feat_channels=256,
strides=[8, 16, 32, 64, 128],
loss_cls=dict(

type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),

loss_bbox=dict(type='IoULoss', loss_weight=1.0),
loss_centerness=dict(

type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
roi_head=dict(# update featmap_strides due to the strides in neck

bbox_roi_extractor=dict(featmap_strides=[8, 16, 32, 64, 128])))

learning rate
param_scheduler = [

dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
end=1000), # Slowly increase lr, otherwise loss becomes NAN

dict(
type='MultiStepLR',
begin=0,
end=12,
by_epoch=True,
milestones=[8, 11],
gamma=0.1)

]

Then, we could use the following command to train our customized model. For more training commands, please refer
to here.

training with 8 GPUS
bash tools/dist_train.sh configs/faster_rcnn/faster-rcnn_r50_fpn_fcos-rpn_1x_coco.py \

8 \
(continues on next page)

56 Chapter 3. Train & Test

https://github.com/open-mmlab/mmdetection/blob/dev-3.x/docs/en/user_guides/train.md

MMDetection, Release 3.0.0rc0

(continued from previous page)

--work-dir ./work_dirs/faster-rcnn_r50_fpn_fcos-rpn_1x_coco

3.11.2 Evaluate proposals

The quality of proposals is of great importance to the performance of detector, therefore, we also pro-
vide a way to evaluate proposals. Same as above, create a new config file named configs/rpn/
fcos-rpn_r50_fpn_1x_coco.py, and replace with setting of rpn_headwith the setting of bbox_head in configs/
fcos/fcos_r50-caffe_fpn_gn-head_1x_coco.py.

base = [
'../_base_/models/rpn_r50_fpn.py', '../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'

]

val_evaluator = dict(metric='proposal_fast')
test_evaluator = val_evaluator

model = dict(
copied from configs/fcos/fcos_r50-caffe_fpn_gn-head_1x_coco.py
neck=dict(

start_level=1,
add_extra_convs='on_output', # use P5
relu_before_extra_convs=True),

rpn_head=dict(
delete=True, # ignore the unused old settings
type='FCOSHead',
num_classes=1, # num_classes = 1 for rpn, if num_classes > 1, it will be set to␣

→˓1 in RPN automatically
in_channels=256,
stacked_convs=4,
feat_channels=256,
strides=[8, 16, 32, 64, 128],
loss_cls=dict(

type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),

loss_bbox=dict(type='IoULoss', loss_weight=1.0),
loss_centerness=dict(

type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)))

Suppose we have the checkpoint ./work_dirs/faster-rcnn_r50_fpn_fcos-rpn_1x_coco/epoch_12.pth after
training, then we can evaluate the quality of proposals with the following command.

testing with 8 GPUs
bash tools/dist_test.sh \

configs/rpn/fcos-rpn_r50_fpn_1x_coco.py \
./work_dirs/faster-rcnn_r50_fpn_fcos-rpn_1x_coco/epoch_12.pth \
8

3.11. Use a single stage detector as RPN 57

MMDetection, Release 3.0.0rc0

3.11.3 Train the customized Faster R-CNN with pre-trained FCOS

Pre-training not only speeds up convergence of training, but also improves the performance of the detec-
tor. Therefore, here we give an example to illustrate how to do use a pre-trained FCOS as an RPN to ac-
celerate training and improve the accuracy. Suppose we want to use FCOSHead as an rpn head in Faster
R-CNN and train with the pre-trained fcos_r50-caffe_fpn_gn-head_1x_coco. The content of config file
named configs/faster_rcnn/faster-rcnn_r50-caffe_fpn_fcos-rpn_1x_coco.py is as the following. Note
that fcos_r50-caffe_fpn_gn-head_1x_coco uses a caffe version of ResNet50, the pixel mean and std in
data_preprocessor thus need to be updated.

base = [
'../_base_/models/faster-rcnn_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'

]

model = dict(
data_preprocessor=dict(

mean=[103.530, 116.280, 123.675],
std=[1.0, 1.0, 1.0],
bgr_to_rgb=False),

backbone=dict(
norm_cfg=dict(type='BN', requires_grad=False),
style='caffe',
init_cfg=None), # the checkpoint in ``load_from`` contains the weights of␣

→˓backbone
neck=dict(

start_level=1,
add_extra_convs='on_output', # use P5
relu_before_extra_convs=True),

rpn_head=dict(
delete=True, # ignore the unused old settings
type='FCOSHead',
num_classes=1, # num_classes = 1 for rpn, if num_classes > 1, it will be set to␣

→˓1 in TwoStageDetector automatically
in_channels=256,
stacked_convs=4,
feat_channels=256,
strides=[8, 16, 32, 64, 128],
loss_cls=dict(

type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),

loss_bbox=dict(type='IoULoss', loss_weight=1.0),
loss_centerness=dict(

type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
roi_head=dict(# update featmap_strides due to the strides in neck

bbox_roi_extractor=dict(featmap_strides=[8, 16, 32, 64, 128])))

load_from = 'https://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_gn-
→˓head_1x_coco/fcos_r50_caffe_fpn_gn-head_1x_coco-821213aa.pth'

58 Chapter 3. Train & Test

https://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco/fcos_r50_caffe_fpn_gn-head_1x_coco-821213aa.pth

MMDetection, Release 3.0.0rc0

The command for training is as below.

bash tools/dist_train.sh \
configs/faster_rcnn/faster-rcnn_r50-caffe_fpn_fcos-rpn_1x_coco.py \
8 \
--work-dir ./work_dirs/faster-rcnn_r50-caffe_fpn_fcos-rpn_1x_coco

3.12 Semi-supervised Object Detection

Semi-supervised object detection uses both labeled data and unlabeled data for training. It not only reduces the anno-
tation burden for training high-performance object detectors but also further improves the object detector by using a
large number of unlabeled data.

A typical procedure to train a semi-supervised object detector is as below:

• Prepare and split dataset

• Configure multi-branch pipeline

• Configure semi-supervised dataloader

• Configure semi-supervised model

• Configure MeanTeacherHook

• Configure TeacherStudentValLoop

3.12.1 Prepare and split dataset

We provide a dataset download script, which downloads the coco2017 dataset by default and decompresses it automat-
ically.

python tools/misc/download_dataset.py

The decompressed dataset directory structure is as below:

mmdetection
data

coco
annotations

image_info_unlabeled2017.json
instances_train2017.json
instances_val2017.json

test2017
train2017
unlabeled2017
val2017

There are two common experimental settings for semi-supervised object detection on the coco2017 dataset:

(1) Split train2017 according to a fixed percentage (1%, 2%, 5% and 10%) as a labeled dataset, and the rest of
train2017 as an unlabeled dataset. Because the different splits of train2017 as labeled datasets will cause significant
fluctuation on the accuracy of the semi-supervised detectors, five-fold cross-validation is used in practice to evaluate
the algorithm. We provide the dataset split script:

3.12. Semi-supervised Object Detection 59

MMDetection, Release 3.0.0rc0

python tools/misc/split_coco.py

By default, the script will split train2017 according to the labeled data ratio 1%, 2%, 5% and 10%, and each split
will be randomly repeated 5 times for cross-validation. The generated semi-supervised annotation file name format is
as below:

• the name format of labeled dataset: instances_train2017.{fold}@{percent}.json

• the name format of unlabeled dataset: instances_train2017.{fold}@{percent}-unlabeled.json

Here, fold is used for cross-validation, and percent represents the ratio of labeled data. The directory structure of
the divided dataset is as below:

mmdetection
data

coco
annotations

image_info_unlabeled2017.json
instances_train2017.json
instances_val2017.json

semi_anns
instances_train2017.1@1.json
instances_train2017.1@1-unlabeled.json
instances_train2017.1@2.json
instances_train2017.1@2-unlabeled.json
instances_train2017.1@5.json
instances_train2017.1@5-unlabeled.json
instances_train2017.1@10.json
instances_train2017.1@10-unlabeled.json
instances_train2017.2@1.json
instances_train2017.2@1-unlabeled.json

test2017
train2017
unlabeled2017
val2017

(2) Use train2017 as the labeled dataset and unlabeled2017 as the unlabeled dataset. Since
image_info_unlabeled2017.json does not contain categories information, the CocoDataset cannot be initial-
ized, so you need to write the categories of instances_train2017.json into image_info_unlabeled2017.
json and save it as instances_unlabeled2017.json, the relevant script is as below:

from mmengine.fileio import load, dump

anns_train = load('instances_train2017.json')
anns_unlabeled = load('image_info_unlabeled2017.json')
anns_unlabeled['categories'] = anns_train['categories']
dump(anns_unlabeled, 'instances_unlabeled2017.json')

The processed dataset directory is as below:

mmdetection
data

coco
annotations

image_info_unlabeled2017.json
(continues on next page)

60 Chapter 3. Train & Test

MMDetection, Release 3.0.0rc0

(continued from previous page)

instances_train2017.json
instances_unlabeled2017.json
instances_val2017.json

test2017
train2017
unlabeled2017
val2017

3.12.2 Configure multi-branch pipeline

There are two main approaches to semi-supervised learning, consistency regularization and pseudo label. Consistency
regularization often requires some careful design, while pseudo label have a simpler form and are easier to extend
to downstream tasks. We adopt a teacher-student joint training semi-supervised object detection framework based on
pseudo label, so labeled data and unlabeled data need to configure different data pipeline:

(1) Pipeline for labeled data

pipeline used to augment labeled data,
which will be sent to student model for supervised training.
sup_pipeline = [

dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='RandomResize', scale=scale, keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='RandAugment', aug_space=color_space, aug_num=1),
dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)),
dict(type='MultiBranch', sup=dict(type='PackDetInputs'))

]

(2) Pipeline for unlabeled data

pipeline used to augment unlabeled data weakly,
which will be sent to teacher model for predicting pseudo instances.
weak_pipeline = [

dict(type='RandomResize', scale=scale, keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(

type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',

'scale_factor', 'flip', 'flip_direction',
'homography_matrix')),

]

pipeline used to augment unlabeled data strongly,
which will be sent to student model for unsupervised training.
strong_pipeline = [

dict(type='RandomResize', scale=scale, keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(

type='RandomOrder',
transforms=[

(continues on next page)

3.12. Semi-supervised Object Detection 61

https://research.nvidia.com/sites/default/files/publications/laine2017iclr_paper.pdf
https://www.researchgate.net/profile/Dong-Hyun-Lee/publication/280581078_Pseudo-Label_The_Simple_and_Efficient_Semi-Supervised_Learning_Method_for_Deep_Neural_Networks/links/55bc4ada08ae092e9660b776/Pseudo-Label-The-Simple-and-Efficient-Semi-Supervised-Learning-Method-for-Deep-Neural-Networks.pdf

MMDetection, Release 3.0.0rc0

(continued from previous page)

dict(type='RandAugment', aug_space=color_space, aug_num=1),
dict(type='RandAugment', aug_space=geometric, aug_num=1),

]),
dict(type='RandomErasing', n_patches=(1, 5), ratio=(0, 0.2)),
dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)),
dict(

type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',

'scale_factor', 'flip', 'flip_direction',
'homography_matrix')),

]

pipeline used to augment unlabeled data into different views
unsup_pipeline = [

dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='LoadEmptyAnnotations'),
dict(

type='MultiBranch',
unsup_teacher=weak_pipeline,
unsup_student=strong_pipeline,

)
]

3.12.3 Configure semi-supervised dataloader

(1) Build a semi-supervised dataset. Use ConcatDataset to concatenate labeled and unlabeled datasets.

labeled_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_train2017.json',
data_prefix=dict(img='train2017/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=sup_pipeline)

unlabeled_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_unlabeled2017.json',
data_prefix=dict(img='unlabeled2017/'),
filter_cfg=dict(filter_empty_gt=False),
pipeline=unsup_pipeline)

train_dataloader = dict(
batch_size=batch_size,
num_workers=num_workers,
persistent_workers=True,
sampler=dict(

type='GroupMultiSourceSampler',
batch_size=batch_size,
source_ratio=[1, 4]),

(continues on next page)

62 Chapter 3. Train & Test

MMDetection, Release 3.0.0rc0

(continued from previous page)

dataset=dict(
type='ConcatDataset', datasets=[labeled_dataset, unlabeled_dataset]))

(2) Use multi-source dataset sampler. Use GroupMultiSourceSampler to sample data form batches from
labeled_dataset and labeled_dataset, source_ratio controls the proportion of labeled data and unlabeled
data in the batch. GroupMultiSourceSampler also ensures that the images in the same batch have similar aspect
ratios. If you don’t need to guarantee the aspect ratio of the images in the batch, you can use MultiSourceSampler.
The sampling diagram of GroupMultiSourceSampler is as below:

sup=1000 indicates that the scale of the labeled dataset is 1000, sup_h=200 indicates that the scale of the images
with an aspect ratio greater than or equal to 1 in the labeled dataset is 200, and sup_w=800 indicates that the scale of
the images with an aspect ratio less than 1 in the labeled dataset is 800, unsup=9000 indicates that the scale of the
unlabeled dataset is 9000, unsup_h=1800 indicates that the scale of the images with an aspect ratio greater than or
equal to 1 in the unlabeled dataset is 1800, and unsup_w=7200 indicates the scale of the images with an aspect ratio
less than 1 in the unlabeled dataset is 7200. GroupMultiSourceSampler randomly selects a group according to the
overall aspect ratio distribution of the images in the labeled dataset and the unlabeled dataset, and then sample data
to form batches from the two datasets according to source_ratio, so labeled datasets and unlabeled datasets have
different repetitions.

3.12.4 Configure semi-supervised model

We choose Faster R-CNN as detector for semi-supervised training. Take the semi-supervised object detec-
tion algorithm SoftTeacher as an example, the model configuration can be inherited from _base_/models/
faster-rcnn_r50_fpn.py, replacing the backbone network of the detector with caffe style. Note that unlike
the supervised training configs, Faster R-CNN as detector is an attribute of model, not model . In addition,
data_preprocessor needs to be set to MultiBranchDataPreprocessor, which is used to pad and normalize im-
ages from different pipelines. Finally, parameters required for semi-supervised training and testing can be configured
via semi_train_cfg and semi_test_cfg.

base = [
'../_base_/models/faster-rcnn_r50_fpn.py', '../_base_/default_runtime.py',
'../_base_/datasets/semi_coco_detection.py'

]

detector = _base_.model
detector.data_preprocessor = dict(

type='DetDataPreprocessor',
mean=[103.530, 116.280, 123.675],
std=[1.0, 1.0, 1.0],
bgr_to_rgb=False,
pad_size_divisor=32)

detector.backbone = dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=False),
norm_eval=True,
style='caffe',
init_cfg=dict(

type='Pretrained',
(continues on next page)

3.12. Semi-supervised Object Detection 63

MMDetection, Release 3.0.0rc0

(continued from previous page)

checkpoint='open-mmlab://detectron2/resnet50_caffe'))

model = dict(
delete=True,
type='SoftTeacher',
detector=detector,
data_preprocessor=dict(

type='MultiBranchDataPreprocessor',
data_preprocessor=detector.data_preprocessor),

semi_train_cfg=dict(
freeze_teacher=True,
sup_weight=1.0,
unsup_weight=4.0,
pseudo_label_initial_score_thr=0.5,
rpn_pseudo_thr=0.9,
cls_pseudo_thr=0.9,
reg_pseudo_thr=0.02,
jitter_times=10,
jitter_scale=0.06,
min_pseudo_bbox_wh=(1e-2, 1e-2)),

semi_test_cfg=dict(predict_on='teacher'))

In addition, we also support semi-supervised training for other detection models, such as RetinaNet and Cascade
R-CNN. Since SoftTeacher only supports Faster R-CNN, it needs to be replaced with SemiBaseDetector, example
is as below:

base = [
'../_base_/models/retinanet_r50_fpn.py', '../_base_/default_runtime.py',
'../_base_/datasets/semi_coco_detection.py'

]

detector = _base_.model

model = dict(
delete=True,
type='SemiBaseDetector',
detector=detector,
data_preprocessor=dict(

type='MultiBranchDataPreprocessor',
data_preprocessor=detector.data_preprocessor),

semi_train_cfg=dict(
freeze_teacher=True,
sup_weight=1.0,
unsup_weight=1.0,
cls_pseudo_thr=0.9,
min_pseudo_bbox_wh=(1e-2, 1e-2)),

semi_test_cfg=dict(predict_on='teacher'))

Following the semi-supervised training configuration of SoftTeacher, change batch_size to 2 and source_ratio
to [1, 1], the experimental results of supervised and semi-supervised training of RetinaNet, Faster R-CNN,
Cascade R-CNN and SoftTeacher on the 10% coco train2017 are as below:

64 Chapter 3. Train & Test

MMDetection, Release 3.0.0rc0

3.12.5 Configure MeanTeacherHook

Usually, the teacher model is updated by Exponential Moving Average (EMA) the student model, and then the teacher
model is optimized with the optimization of the student model, which can be achieved by configuring custom_hooks:

custom_hooks = [dict(type='MeanTeacherHook')]

3.12.6 Configure TeacherStudentValLoop

Since there are two models in the teacher-student joint training framework, we can replace ValLoop with
TeacherStudentValLoop to test the accuracy of both models during the training process.

val_cfg = dict(type='TeacherStudentValLoop')

3.12. Semi-supervised Object Detection 65

MMDetection, Release 3.0.0rc0

66 Chapter 3. Train & Test

CHAPTER

FOUR

USEFUL TOOLS

Apart from training/testing scripts, We provide lots of useful tools under the tools/ directory.

4.1 Log Analysis

tools/analysis_tools/analyze_logs.py plots loss/mAP curves given a training log file. Run pip install
seaborn first to install the dependency.

python tools/analysis_tools/analyze_logs.py plot_curve [--keys ${KEYS}] [--eval-interval
→˓${EVALUATION_INTERVAL}] [--title ${TITLE}] [--legend ${LEGEND}] [--backend ${BACKEND}]␣
→˓[--style ${STYLE}] [--out ${OUT_FILE}]

../resources/loss_curve.png

Examples:

• Plot the classification loss of some run.

python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_cls --
→˓legend loss_cls

• Plot the classification and regression loss of some run, and save the figure to a pdf.

python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_cls␣
→˓loss_bbox --out losses.pdf

• Compare the bbox mAP of two runs in the same figure.

python tools/analysis_tools/analyze_logs.py plot_curve log1.json log2.json --keys␣
→˓bbox_mAP --legend run1 run2

• Compute the average training speed.

python tools/analysis_tools/analyze_logs.py cal_train_time log.json [--include-
→˓outliers]

The output is expected to be like the following.

67

MMDetection, Release 3.0.0rc0

-----Analyze train time of work_dirs/some_exp/20190611_192040.log.json-----
slowest epoch 11, average time is 1.2024
fastest epoch 1, average time is 1.1909
time std over epochs is 0.0028
average iter time: 1.1959 s/iter

4.2 Result Analysis

tools/analysis_tools/analyze_results.py calculates single image mAP and saves or shows the topk images
with the highest and lowest scores based on prediction results.

Usage

python tools/analysis_tools/analyze_results.py \
${CONFIG} \
${PREDICTION_PATH} \
${SHOW_DIR} \
[--show] \
[--wait-time ${WAIT_TIME}] \
[--topk ${TOPK}] \
[--show-score-thr ${SHOW_SCORE_THR}] \
[--cfg-options ${CFG_OPTIONS}]

Description of all arguments:

• config : The path of a model config file.

• prediction_path: Output result file in pickle format from tools/test.py

• show_dir: Directory where painted GT and detection images will be saved

• --showDetermines whether to show painted images, If not specified, it will be set to False

• --wait-time: The interval of show (s), 0 is block

• --topk: The number of saved images that have the highest and lowest topk scores after sorting. If not specified,
it will be set to 20.

• --show-score-thr: Show score threshold. If not specified, it will be set to 0.

• --cfg-options: If specified, the key-value pair optional cfg will be merged into config file

Examples:

Assume that you have got result file in pickle format from tools/test.py in the path ‘./result.pkl’.

1. Test Faster R-CNN and visualize the results, save images to the directory results/

python tools/analysis_tools/analyze_results.py \
configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py \
result.pkl \
results \
--show

2. Test Faster R-CNN and specified topk to 50, save images to the directory results/

68 Chapter 4. Useful Tools

MMDetection, Release 3.0.0rc0

python tools/analysis_tools/analyze_results.py \
configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py \
result.pkl \
results \
--topk 50

3. If you want to filter the low score prediction results, you can specify the show-score-thr parameter

python tools/analysis_tools/analyze_results.py \
configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py \
result.pkl \
results \
--show-score-thr 0.3

4.3 Visualization

4.3.1 Visualize Datasets

tools/analysis_tools/browse_dataset.py helps the user to browse a detection dataset (both images and bound-
ing box annotations) visually, or save the image to a designated directory.

python tools/misc/browse_dataset.py ${CONFIG} [-h] [--skip-type ${SKIP_TYPE[SKIP_TYPE...
→˓]}] [--output-dir ${OUTPUT_DIR}] [--not-show] [--show-interval ${SHOW_INTERVAL}]

4.3.2 Visualize Models

First, convert the model to ONNX as described here. Note that currently only RetinaNet is supported, support for other
models will be coming in later versions. The converted model could be visualized by tools like Netron.

4.3.3 Visualize Predictions

If you need a lightweight GUI for visualizing the detection results, you can refer DetVisGUI project.

4.4 Error Analysis

tools/analysis_tools/coco_error_analysis.py analyzes COCO results per category and by different crite-
rion. It can also make a plot to provide useful information.

python tools/analysis_tools/coco_error_analysis.py ${RESULT} ${OUT_DIR} [-h] [--ann $
→˓{ANN}] [--types ${TYPES[TYPES...]}]

Example:

Assume that you have got Mask R-CNN checkpoint file in the path ‘checkpoint’. For other checkpoints, please refer to
our model zoo.

You can modify the test_evaluator to save the results bbox by:

1. Find which dataset in ‘configs/base/datasets’ the current config corresponds to.

4.3. Visualization 69

https://github.com/lutzroeder/netron
https://github.com/Chien-Hung/DetVisGUI/tree/mmdetection
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth

MMDetection, Release 3.0.0rc0

2. Replace the original test_evaluator and test_dataloader with test_evaluator and test_dataloader in the comment
in dateset config.

3. Use the following command to get the results bbox and segmentation json file.

python tools/test.py \
configs/mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py \
checkpoint/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \

1. Get COCO bbox error results per category , save analyze result images to the directory(In config the default
directory is ‘./work_dirs/coco_instance/test’)

python tools/analysis_tools/coco_error_analysis.py \
results.bbox.json \
results \
--ann=data/coco/annotations/instances_val2017.json \

2. Get COCO segmentation error results per category , save analyze result images to the directory

python tools/analysis_tools/coco_error_analysis.py \
results.segm.json \
results \
--ann=data/coco/annotations/instances_val2017.json \
--types='segm'

4.5 Model Serving

In order to serve an MMDetection model with TorchServe, you can follow the steps:

4.5.1 1. Convert model from MMDetection to TorchServe

python tools/deployment/mmdet2torchserve.py ${CONFIG_FILE} ${CHECKPOINT_FILE} \
--output-folder ${MODEL_STORE} \
--model-name ${MODEL_NAME}

Note: ${MODEL_STORE} needs to be an absolute path to a folder.

4.5.2 2. Build mmdet-serve docker image

docker build -t mmdet-serve:latest docker/serve/

70 Chapter 4. Useful Tools

https://github.com/open-mmlab/mmdetection/tree/dev-3.x/configs/_base_/datasets/coco_instance.py
https://pytorch.org/serve/

MMDetection, Release 3.0.0rc0

4.5.3 3. Run mmdet-serve

Check the official docs for running TorchServe with docker.

In order to run in GPU, you need to install nvidia-docker. You can omit the --gpus argument in order to run in CPU.

Example:

docker run --rm \
--cpus 8 \
--gpus device=0 \
-p8080:8080 -p8081:8081 -p8082:8082 \
--mount type=bind,source=$MODEL_STORE,target=/home/model-server/model-store \
mmdet-serve:latest

Read the docs about the Inference (8080), Management (8081) and Metrics (8082) APis

4.5.4 4. Test deployment

curl -O curl -O https://raw.githubusercontent.com/pytorch/serve/master/docs/images/3dogs.
→˓jpg
curl http://127.0.0.1:8080/predictions/${MODEL_NAME} -T 3dogs.jpg

You should obtain a response similar to:

[
{
"class_name": "dog",
"bbox": [
294.63409423828125,
203.99111938476562,
417.048583984375,
281.62744140625

],
"score": 0.9987992644309998

},
{
"class_name": "dog",
"bbox": [
404.26019287109375,
126.0080795288086,
574.5091552734375,
293.6662292480469

],
"score": 0.9979367256164551

},
{
"class_name": "dog",
"bbox": [
197.2144775390625,
93.3067855834961,
307.8505554199219,
276.7560119628906

(continues on next page)

4.5. Model Serving 71

https://github.com/pytorch/serve/blob/master/docker/README.md#running-torchserve-in-a-production-docker-environment
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html
https://github.com/pytorch/serve/blob/072f5d088cce9bb64b2a18af065886c9b01b317b/docs/rest_api.md/

MMDetection, Release 3.0.0rc0

(continued from previous page)

],
"score": 0.993338406085968

}
]

And you can use test_torchserver.py to compare result of torchserver and pytorch, and visualize them.

python tools/deployment/test_torchserver.py ${IMAGE_FILE} ${CONFIG_FILE} ${CHECKPOINT_
→˓FILE} ${MODEL_NAME}
[--inference-addr ${INFERENCE_ADDR}] [--device ${DEVICE}] [--score-thr ${SCORE_THR}]

Example:

python tools/deployment/test_torchserver.py \
demo/demo.jpg \
configs/yolo/yolov3_d53_8xb8-320-273e_coco.py \
checkpoint/yolov3_d53_320_273e_coco-421362b6.pth \
yolov3

4.6 Model Complexity

tools/analysis_tools/get_flops.py is a script adapted from flops-counter.pytorch to compute the FLOPs and
params of a given model.

python tools/analysis_tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]

You will get the results like this.

==============================
Input shape: (3, 1280, 800)
Flops: 239.32 GFLOPs
Params: 37.74 M
==============================

Note: This tool is still experimental and we do not guarantee that the number is absolutely correct. You may well use
the result for simple comparisons, but double check it before you adopt it in technical reports or papers.

1. FLOPs are related to the input shape while parameters are not. The default input shape is (1, 3, 1280, 800).

2. Some operators are not counted into FLOPs like GN and custom operators. Refer to mmcv.cnn.
get_model_complexity_info() for details.

3. The FLOPs of two-stage detectors is dependent on the number of proposals.

72 Chapter 4. Useful Tools

https://github.com/sovrasov/flops-counter.pytorch
https://github.com/open-mmlab/mmcv/blob/dev-3.x/mmcv/cnn/utils/flops_counter.py
https://github.com/open-mmlab/mmcv/blob/dev-3.x/mmcv/cnn/utils/flops_counter.py

MMDetection, Release 3.0.0rc0

4.7 Model conversion

4.7.1 MMDetection model to ONNX

We provide a script to convert model to ONNX format. We also support comparing the output results between Pytorch
and ONNX model for verification. More details can refer to mmdeploy

4.7.2 MMDetection 1.x model to MMDetection 2.x

tools/model_converters/upgrade_model_version.py upgrades a previous MMDetection checkpoint to the
new version. Note that this script is not guaranteed to work as some breaking changes are introduced in the new
version. It is recommended to directly use the new checkpoints.

python tools/model_converters/upgrade_model_version.py ${IN_FILE} ${OUT_FILE} [-h] [--
→˓num-classes NUM_CLASSES]

4.7.3 RegNet model to MMDetection

tools/model_converters/regnet2mmdet.py convert keys in pycls pretrained RegNet models to MMDetection
style.

python tools/model_converters/regnet2mmdet.py ${SRC} ${DST} [-h]

4.7.4 Detectron ResNet to Pytorch

tools/model_converters/detectron2pytorch.py converts keys in the original detectron pretrained ResNet
models to PyTorch style.

python tools/model_converters/detectron2pytorch.py ${SRC} ${DST} ${DEPTH} [-h]

4.7.5 Prepare a model for publishing

tools/model_converters/publish_model.py helps users to prepare their model for publishing.

Before you upload a model to AWS, you may want to

1. convert model weights to CPU tensors

2. delete the optimizer states and

3. compute the hash of the checkpoint file and append the hash id to the filename.

python tools/model_converters/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}

E.g.,

python tools/model_converters/publish_model.py work_dirs/faster_rcnn/latest.pth faster_
→˓rcnn_r50_fpn_1x_20190801.pth

The final output filename will be faster_rcnn_r50_fpn_1x_20190801-{hash id}.pth.

4.7. Model conversion 73

https://github.com/onnx/onnx
https://github.com/open-mmlab/mmdeploy

MMDetection, Release 3.0.0rc0

4.8 Dataset Conversion

tools/data_converters/ contains tools to convert the Cityscapes dataset and Pascal VOC dataset to the COCO
format.

python tools/dataset_converters/cityscapes.py ${CITYSCAPES_PATH} [-h] [--img-dir ${IMG_
→˓DIR}] [--gt-dir ${GT_DIR}] [-o ${OUT_DIR}] [--nproc ${NPROC}]
python tools/dataset_converters/pascal_voc.py ${DEVKIT_PATH} [-h] [-o ${OUT_DIR}]

4.9 Dataset Download

tools/misc/download_dataset.py supports downloading datasets such as COCO, VOC, and LVIS.

python tools/misc/download_dataset.py --dataset-name coco2017
python tools/misc/download_dataset.py --dataset-name voc2007
python tools/misc/download_dataset.py --dataset-name lvis

4.10 Benchmark

4.10.1 Robust Detection Benchmark

tools/analysis_tools/test_robustness.py andtools/analysis_tools/robustness_eval.py helps
users to evaluate model robustness. The core idea comes from Benchmarking Robustness in Object Detection:
Autonomous Driving when Winter is Coming. For more information how to evaluate models on corrupted images and
results for a set of standard models please refer to robustness_benchmarking.md.

4.10.2 FPS Benchmark

tools/analysis_tools/benchmark.py helps users to calculate FPS. The FPS value includes model forward and
post-processing. In order to get a more accurate value, currently only supports single GPU distributed startup mode.

python -m torch.distributed.launch --nproc_per_node=1 --master_port=${PORT} tools/
→˓analysis_tools/benchmark.py \
${CONFIG} \
${CHECKPOINT} \
[--repeat-num ${REPEAT_NUM}] \
[--max-iter ${MAX_ITER}] \
[--log-interval ${LOG_INTERVAL}] \
--launcher pytorch

Examples: Assuming that you have already downloaded the Faster R-CNN model checkpoint to the directory
checkpoints/.

python -m torch.distributed.launch --nproc_per_node=1 --master_port=29500 tools/analysis_
→˓tools/benchmark.py \

configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py \
checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
--launcher pytorch

74 Chapter 4. Useful Tools

https://arxiv.org/abs/1907.07484
https://arxiv.org/abs/1907.07484

MMDetection, Release 3.0.0rc0

4.11 Miscellaneous

4.11.1 Evaluating a metric

tools/analysis_tools/eval_metric.py evaluates certain metrics of a pkl result file according to a config file.

python tools/analysis_tools/eval_metric.py ${CONFIG} ${PKL_RESULTS} [-h] [--format-only]␣
→˓[--eval ${EVAL[EVAL ...]}]

[--cfg-options ${CFG_OPTIONS [CFG_OPTIONS ...]}]
[--eval-options ${EVAL_OPTIONS [EVAL_OPTIONS ...]}]

4.11.2 Print the entire config

tools/misc/print_config.py prints the whole config verbatim, expanding all its imports.

python tools/misc/print_config.py ${CONFIG} [-h] [--options ${OPTIONS [OPTIONS...]}]

4.12 Hyper-parameter Optimization

4.12.1 YOLO Anchor Optimization

tools/analysis_tools/optimize_anchors.py provides two method to optimize YOLO anchors.

One is k-means anchor cluster which refers from darknet.

python tools/analysis_tools/optimize_anchors.py ${CONFIG} --algorithm k-means --input-
→˓shape ${INPUT_SHAPE [WIDTH HEIGHT]} --output-dir ${OUTPUT_DIR}

Another is using differential evolution to optimize anchors.

python tools/analysis_tools/optimize_anchors.py ${CONFIG} --algorithm differential_
→˓evolution --input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} --output-dir ${OUTPUT_DIR}

E.g.,

python tools/analysis_tools/optimize_anchors.py configs/yolo/yolov3_d53_8xb8-320-273e_
→˓coco.py --algorithm differential_evolution --input-shape 608 608 --device cuda --
→˓output-dir work_dirs

You will get:

loading annotations into memory...
Done (t=9.70s)
creating index...
index created!
2021-07-19 19:37:20,951 - mmdet - INFO - Collecting bboxes from annotation...
[>>] 117266/117266, 15874.5 task/s,␣
→˓elapsed: 7s, ETA: 0s

2021-07-19 19:37:28,753 - mmdet - INFO - Collected 849902 bboxes.
(continues on next page)

4.11. Miscellaneous 75

https://github.com/AlexeyAB/darknet/blob/master/src/detector.c#L1421

MMDetection, Release 3.0.0rc0

(continued from previous page)

differential_evolution step 1: f(x)= 0.506055
differential_evolution step 2: f(x)= 0.506055
......

differential_evolution step 489: f(x)= 0.386625
2021-07-19 19:46:40,775 - mmdet - INFO Anchor evolution finish. Average IOU: 0.
→˓6133754253387451
2021-07-19 19:46:40,776 - mmdet - INFO Anchor differential evolution result:[[10, 12],␣
→˓[15, 30], [32, 22], [29, 59], [61, 46], [57, 116], [112, 89], [154, 198], [349, 336]]
2021-07-19 19:46:40,798 - mmdet - INFO Result saved in work_dirs/anchor_optimize_result.
→˓json

4.13 Confusion Matrix

A confusion matrix is a summary of prediction results.

tools/analysis_tools/confusion_matrix.py can analyze the prediction results and plot a confusion matrix
table.

First, run tools/test.py to save the .pkl detection results.

Then, run

python tools/analysis_tools/confusion_matrix.py ${CONFIG} ${DETECTION_RESULTS} ${SAVE_
→˓DIR} --show

And you will get a confusion matrix like this:

76 Chapter 4. Useful Tools

MMDetection, Release 3.0.0rc0

4.14 Useful Hooks

MMDetection and MMEngine provide users with various useful hooks including log hooks, NumClassCheckHook,
etc. This tutorial introduces the functionalities and usages of hooks implemented in MMDetection. For using hooks in
MMEngine, please read the API documentation in MMEngine.

4.14.1 CheckInvalidLossHook

4.14.2 NumClassCheckHook

4.14.3 MemoryProfilerHook

Memory profiler hook records memory information including virtual memory, swap memory, and the memory of the
current process. This hook helps grasp the memory usage of the system and discover potential memory leak bugs.
To use this hook, users should install memory_profiler and psutil by pip install memory_profiler psutil
first.

4.14. Useful Hooks 77

https://github.com/open-mmlab/mmengine/tree/main/docs/en/tutorials/hook.md

MMDetection, Release 3.0.0rc0

Usage

To use this hook, users should add the following code to the config file.

custom_hooks = [
dict(type='MemoryProfilerHook', interval=50)

]

Result

During training, you can see the messages in the log recorded by MemoryProfilerHook as below. The system has
250 GB (246360 MB + 9407 MB) of memory and 8 GB (5740 MB + 2452 MB) of swap memory in total. Currently
9407 MB (4.4%) of memory and 5740 MB (29.9%) of swap memory were consumed. And the current training process
consumed 5434 MB of memory.

2022-04-21 08:49:56,881 - mmengine - INFO - Memory information available_memory: 246360␣
→˓MB, used_memory: 9407 MB, memory_utilization: 4.4 %, available_swap_memory: 5740 MB,␣
→˓used_swap_memory: 2452 MB, swap_memory_utilization: 29.9 %, current_process_memory:␣
→˓5434 MB

4.14.4 SetEpochInfoHook

4.14.5 SyncNormHook

4.14.6 SyncRandomSizeHook

4.14.7 YOLOXLrUpdaterHook

4.14.8 YOLOXModeSwitchHook

4.14.9 How to implement a custom hook

In general, there are 20 points where hooks can be inserted from the beginning to the end of model training. The users
can implement custom hooks and insert them at different points in the process of training to do what they want.

• global points: before_run, after_run

• points in training: before_train, before_train_epoch, before_train_iter, after_train_iter,
after_train_epoch, after_train

• points in validation: before_val, before_val_epoch, before_val_iter, after_val_iter,
after_val_epoch, after_val

• points at testing: before_test, before_test_epoch, before_test_iter, after_test_iter,
after_test_epoch, after_test

• other points: before_save_checkpoint, after_save_checkpoint

For example, users can implement a hook to check loss and terminate training when loss goes NaN. To achieve that,
there are three steps to go:

1. Implement a new hook that inherits the Hook class in MMEngine, and implement after_train_iter method
which checks whether loss goes NaN after every n training iterations.

78 Chapter 4. Useful Tools

MMDetection, Release 3.0.0rc0

2. The implemented hook should be registered in HOOKS by @HOOKS.register_module() as shown in the code
below.

3. Add custom_hooks = [dict(type='MemoryProfilerHook', interval=50)] in the config file.

from typing import Optional

import torch
from mmengine.hooks import Hook
from mmengine.runner import Runner

from mmdet.registry import HOOKS

@HOOKS.register_module()
class CheckInvalidLossHook(Hook):

"""Check invalid loss hook.

This hook will regularly check whether the loss is valid
during training.

Args:
interval (int): Checking interval (every k iterations).

Default: 50.
"""

def __init__(self, interval: int = 50) -> None:
self.interval = interval

def after_train_iter(self,
runner: Runner,
batch_idx: int,
data_batch: Optional[dict] = None,
outputs: Optional[dict] = None) -> None:

"""Regularly check whether the loss is valid every n iterations.

Args:
runner (:obj:`Runner`): The runner of the training process.
batch_idx (int): The index of the current batch in the train loop.
data_batch (dict, Optional): Data from dataloader.

Defaults to None.
outputs (dict, Optional): Outputs from model. Defaults to None.

"""
if self.every_n_train_iters(runner, self.interval):

assert torch.isfinite(outputs['loss']), \
runner.logger.info('loss become infinite or NaN!')

Please read customize_runtime for more about implementing a custom hook.

4.14. Useful Hooks 79

https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/advanced_guides/customize_runtime.md

MMDetection, Release 3.0.0rc0

4.15 Visualization

4.16 Corruption Benchmarking

4.16.1 Introduction

We provide tools to test object detection and instance segmentation models on the image corruption benchmark defined
in Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming. This page provides
basic tutorials how to use the benchmark.

@article{michaelis2019winter,
title={Benchmarking Robustness in Object Detection:
Autonomous Driving when Winter is Coming},

author={Michaelis, Claudio and Mitzkus, Benjamin and
Geirhos, Robert and Rusak, Evgenia and
Bringmann, Oliver and Ecker, Alexander S. and
Bethge, Matthias and Brendel, Wieland},

journal={arXiv:1907.07484},
year={2019}

}

4.16.2 About the benchmark

To submit results to the benchmark please visit the benchmark homepage

The benchmark is modelled after the imagenet-c benchmark which was originally published in Benchmarking Neural
Network Robustness to Common Corruptions and Perturbations (ICLR 2019) by Dan Hendrycks and Thomas Diet-
terich.

The image corruption functions are included in this library but can be installed separately using:

80 Chapter 4. Useful Tools

https://arxiv.org/abs/1907.07484
https://github.com/bethgelab/robust-detection-benchmark
https://github.com/hendrycks/robustness
https://arxiv.org/abs/1903.12261
https://arxiv.org/abs/1903.12261

MMDetection, Release 3.0.0rc0

pip install imagecorruptions

Compared to imagenet-c a few changes had to be made to handle images of arbitrary size and greyscale images. We also
modified the ‘motion blur’ and ‘snow’ corruptions to remove dependency from a linux specific library, which would
have to be installed separately otherwise. For details please refer to the imagecorruptions repository.

4.16.3 Inference with pretrained models

We provide a testing script to evaluate a models performance on any combination of the corruptions provided in the
benchmark.

Test a dataset

• [x] single GPU testing

• [] multiple GPU testing

• [] visualize detection results

You can use the following commands to test a models performance under the 15 corruptions used in the benchmark.

single-gpu testing
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out $
→˓{RESULT_FILE}] [--eval ${EVAL_METRICS}]

Alternatively different group of corruptions can be selected.

noise
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out $
→˓{RESULT_FILE}] [--eval ${EVAL_METRICS}] --corruptions noise

blur
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out $
→˓{RESULT_FILE}] [--eval ${EVAL_METRICS}] --corruptions blur

wetaher
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out $
→˓{RESULT_FILE}] [--eval ${EVAL_METRICS}] --corruptions weather

digital
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out $
→˓{RESULT_FILE}] [--eval ${EVAL_METRICS}] --corruptions digital

Or a costom set of corruptions e.g.:

gaussian noise, zoom blur and snow
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out $
→˓{RESULT_FILE}] [--eval ${EVAL_METRICS}] --corruptions gaussian_noise zoom_blur snow

Finally the corruption severities to evaluate can be chosen. Severity 0 corresponds to clean data and the effect increases
from 1 to 5.

4.16. Corruption Benchmarking 81

https://github.com/bethgelab/imagecorruptions

MMDetection, Release 3.0.0rc0

severity 1
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out $
→˓{RESULT_FILE}] [--eval ${EVAL_METRICS}] --severities 1

severities 0,2,4
python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out $
→˓{RESULT_FILE}] [--eval ${EVAL_METRICS}] --severities 0 2 4

4.16.4 Results for modelzoo models

The results on COCO 2017val are shown in the below table.

Results may vary slightly due to the stochastic application of the corruptions.

82 Chapter 4. Useful Tools

CHAPTER

FIVE

BASIC CONCEPTS

5.1 Data Flow

5.2 Structures

5.3 Models

5.4 Datasets

5.5 Data Transforms

5.5.1 Design of Data transforms pipeline

Following typical conventions, we use Dataset and DataLoader for data loading with multiple workers. Dataset
returns a dict of data items corresponding the arguments of models’ forward method.

The data transforms pipeline and the dataset is decomposed. Usually a dataset defines how to process the annotations
and a data transforms pipeline defines all the steps to prepare a data dict. A pipeline consists of a sequence of data
transforms. Each operation takes a dict as input and also output a dict for the next transform.

We present a classical pipeline in the following figure. The blue blocks are pipeline operations. With the pipeline going
on, each operator can add new keys (marked as green) to the result dict or update the existing keys (marked as orange).

Here is a pipeline example for Faster R-CNN.

83

MMDetection, Release 3.0.0rc0

train_pipeline = [# Training data processing pipeline
dict(type='LoadImageFromFile'), # First pipeline to load images from file path
dict(

type='LoadAnnotations', # Second pipeline to load annotations for current image
with_bbox=True), # Whether to use bounding box, True for detection

dict(
type='Resize', # Pipeline that resize the images and their annotations
scale=(1333, 800), # The largest scale of image
keep_ratio=True # Whether to keep the ratio between height and width
),

dict(
type='RandomFlip', # Augmentation pipeline that flip the images and their␣

→˓annotations
prob=0.5), # The probability to flip

dict(type='PackDetInputs') # Pipeline that formats the annotation data and decides␣
→˓which keys in the data should be packed into data_samples
]
test_pipeline = [# Testing data processing pipeline

dict(type='LoadImageFromFile', file_client_args=file_client_args), # First pipeline␣
→˓to load images from file path

dict(type='Resize', scale=(1333, 800), keep_ratio=True), # Pipeline that resize the␣
→˓images

dict(
type='PackDetInputs', # Pipeline that formats the annotation data and decides␣

→˓which keys in the data should be packed into data_samples
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',

'scale_factor'))
]

5.6 Evaluation

5.7 Engine

5.8 Conventions

Please check the following conventions if you would like to modify MMDetection as your own project.

5.8.1 Loss

In MMDetection, a dict containing losses and metrics will be returned by model(**data).

For example, in bbox head,

class BBoxHead(nn.Module):
...
def loss(self, ...):

losses = dict()
classification loss
losses['loss_cls'] = self.loss_cls(...)

(continues on next page)

84 Chapter 5. Basic Concepts

MMDetection, Release 3.0.0rc0

(continued from previous page)

classification accuracy
losses['acc'] = accuracy(...)
bbox regression loss
losses['loss_bbox'] = self.loss_bbox(...)
return losses

bbox_head.loss() will be called during model forward. The returned dict contains 'loss_bbox', 'loss_cls',
'acc' . Only 'loss_bbox', 'loss_cls' will be used during back propagation, 'acc' will only be used as a metric
to monitor training process.

By default, only values whose keys contain 'loss' will be back propagated. This behavior could be changed by
modifying BaseDetector.train_step().

5.8.2 Empty Proposals

In MMDetection, We have added special handling and unit test for empty proposals of two-stage. We need to deal with
the empty proposals of the entire batch and single image at the same time. For example, in CascadeRoIHead,

simple_test method
...
There is no proposal in the whole batch
if rois.shape[0] == 0:

bbox_results = [[
np.zeros((0, 5), dtype=np.float32)
for _ in range(self.bbox_head[-1].num_classes)

]] * num_imgs
if self.with_mask:

mask_classes = self.mask_head[-1].num_classes
segm_results = [[[] for _ in range(mask_classes)]

for _ in range(num_imgs)]
results = list(zip(bbox_results, segm_results))

else:
results = bbox_results

return results
...

There is no proposal in the single image
for i in range(self.num_stages):

...
if i < self.num_stages - 1:

for j in range(num_imgs):
Handle empty proposal
if rois[j].shape[0] > 0:

bbox_label = cls_score[j][:, :-1].argmax(dim=1)
refine_roi = self.bbox_head[i].regress_by_class(

rois[j], bbox_label, bbox_pred[j], img_metas[j])
refine_roi_list.append(refine_roi)

If you have customized RoIHead, you can refer to the above method to deal with empty proposals.

5.8. Conventions 85

MMDetection, Release 3.0.0rc0

5.8.3 Coco Panoptic Dataset

In MMDetection, we have supported COCO Panoptic dataset. We clarify a few conventions about the implementation
of CocoPanopticDataset here.

1. For mmdet<=2.16.0, the range of foreground and background labels in semantic segmentation are different from
the default setting of MMDetection. The label 0 stands for VOID label and the category labels start from 1.
Since mmdet=2.17.0, the category labels of semantic segmentation start from 0 and label 255 stands for VOID
for consistency with labels of bounding boxes. To achieve that, the Pad pipeline supports setting the padding
value for seg.

2. In the evaluation, the panoptic result is a map with the same shape as the original image. Each value in the result
map has the format of instance_id * INSTANCE_OFFSET + category_id.

86 Chapter 5. Basic Concepts

CHAPTER

SIX

COMPONENT CUSTOMIZATION

6.1 Customize Models

We basically categorize model components into 5 types.

• backbone: usually an FCN network to extract feature maps, e.g., ResNet, MobileNet.

• neck: the component between backbones and heads, e.g., FPN, PAFPN.

• head: the component for specific tasks, e.g., bbox prediction and mask prediction.

• roi extractor: the part for extracting RoI features from feature maps, e.g., RoI Align.

• loss: the component in head for calculating losses, e.g., FocalLoss, L1Loss, and GHMLoss.

6.1.1 Develop new components

Add a new backbone

Here we show how to develop new components with an example of MobileNet.

1. Define a new backbone (e.g. MobileNet)

Create a new file mmdet/models/backbones/mobilenet.py.

import torch.nn as nn

from mmdet.registry import MODELS

@MODELS.register_module()
class MobileNet(nn.Module):

def __init__(self, arg1, arg2):
pass

def forward(self, x): # should return a tuple
pass

87

MMDetection, Release 3.0.0rc0

2. Import the module

You can either add the following line to mmdet/models/backbones/__init__.py

from .mobilenet import MobileNet

or alternatively add

custom_imports = dict(
imports=['mmdet.models.backbones.mobilenet'],
allow_failed_imports=False)

to the config file to avoid modifying the original code.

3. Use the backbone in your config file

model = dict(
...
backbone=dict(

type='MobileNet',
arg1=xxx,
arg2=xxx),

...

Add new necks

1. Define a neck (e.g. PAFPN)

Create a new file mmdet/models/necks/pafpn.py.

import torch.nn as nn

from mmdet.registry import MODELS

@MODELS.register_module()
class PAFPN(nn.Module):

def __init__(self,
in_channels,
out_channels,
num_outs,
start_level=0,
end_level=-1,
add_extra_convs=False):

pass

def forward(self, inputs):
implementation is ignored
pass

88 Chapter 6. Component Customization

MMDetection, Release 3.0.0rc0

2. Import the module

You can either add the following line to mmdet/models/necks/__init__.py,

from .pafpn import PAFPN

or alternatively add

custom_imports = dict(
imports=['mmdet.models.necks.pafpn'],
allow_failed_imports=False)

to the config file and avoid modifying the original code.

3. Modify the config file

neck=dict(
type='PAFPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5)

Add new heads

Here we show how to develop a new head with the example of Double Head R-CNN as the following.

First, add a new bbox head in mmdet/models/roi_heads/bbox_heads/double_bbox_head.py. Double Head R-
CNN implements a new bbox head for object detection. To implement a bbox head, basically we need to implement
three functions of the new module as the following.

from typing import Tuple

import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule, ModuleList
from torch import Tensor

from mmdet.models.backbones.resnet import Bottleneck
from mmdet.registry import MODELS
from mmdet.utils import ConfigType, MultiConfig, OptConfigType, OptMultiConfig
from .bbox_head import BBoxHead

@MODELS.register_module()
class DoubleConvFCBBoxHead(BBoxHead):

r"""Bbox head used in Double-Head R-CNN

.. code-block:: none

/-> cls
/-> shared convs ->

\-> reg
(continues on next page)

6.1. Customize Models 89

https://arxiv.org/abs/1904.06493

MMDetection, Release 3.0.0rc0

(continued from previous page)

roi features
/-> cls

\-> shared fc ->
\-> reg

""" # noqa: W605

def __init__(self,
num_convs: int = 0,
num_fcs: int = 0,
conv_out_channels: int = 1024,
fc_out_channels: int = 1024,
conv_cfg: OptConfigType = None,
norm_cfg: ConfigType = dict(type='BN'),
init_cfg: MultiConfig = dict(

type='Normal',
override=[

dict(type='Normal', name='fc_cls', std=0.01),
dict(type='Normal', name='fc_reg', std=0.001),
dict(

type='Xavier',
name='fc_branch',
distribution='uniform')

]),
**kwargs) -> None:

kwargs.setdefault('with_avg_pool', True)
super().__init__(init_cfg=init_cfg, **kwargs)

def forward(self, x_cls: Tensor, x_reg: Tensor) -> Tuple[Tensor]:

Second, implement a new RoI Head if it is necessary. We plan to inherit the new DoubleHeadRoIHead from
StandardRoIHead. We can find that a StandardRoIHead already implements the following functions.

from typing import List, Optional, Tuple

import torch
from torch import Tensor

from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures import DetDataSample
from mmdet.structures.bbox import bbox2roi
from mmdet.utils import ConfigType, InstanceList
from ..task_modules.samplers import SamplingResult
from ..utils import empty_instances, unpack_gt_instances
from .base_roi_head import BaseRoIHead

@MODELS.register_module()
class StandardRoIHead(BaseRoIHead):

"""Simplest base roi head including one bbox head and one mask head."""

def init_assigner_sampler(self) -> None:
(continues on next page)

90 Chapter 6. Component Customization

MMDetection, Release 3.0.0rc0

(continued from previous page)

def init_bbox_head(self, bbox_roi_extractor: ConfigType,
bbox_head: ConfigType) -> None:

def init_mask_head(self, mask_roi_extractor: ConfigType,
mask_head: ConfigType) -> None:

def forward(self, x: Tuple[Tensor],
rpn_results_list: InstanceList) -> tuple:

def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList,
batch_data_samples: List[DetDataSample]) -> dict:

def _bbox_forward(self, x: Tuple[Tensor], rois: Tensor) -> dict:

def bbox_loss(self, x: Tuple[Tensor],
sampling_results: List[SamplingResult]) -> dict:

def mask_loss(self, x: Tuple[Tensor],
sampling_results: List[SamplingResult], bbox_feats: Tensor,
batch_gt_instances: InstanceList) -> dict:

def _mask_forward(self,
x: Tuple[Tensor],
rois: Tensor = None,
pos_inds: Optional[Tensor] = None,
bbox_feats: Optional[Tensor] = None) -> dict:

def predict_bbox(self,
x: Tuple[Tensor],
batch_img_metas: List[dict],
rpn_results_list: InstanceList,
rcnn_test_cfg: ConfigType,
rescale: bool = False) -> InstanceList:

def predict_mask(self,
x: Tuple[Tensor],
batch_img_metas: List[dict],
results_list: InstanceList,
rescale: bool = False) -> InstanceList:

Double Head’s modification is mainly in the bbox_forward logic, and it inherits other logics from the
StandardRoIHead. In the mmdet/models/roi_heads/double_roi_head.py, we implement the new RoI Head
as the following:

from typing import Tuple

from torch import Tensor

from mmdet.registry import MODELS
from .standard_roi_head import StandardRoIHead

(continues on next page)

6.1. Customize Models 91

MMDetection, Release 3.0.0rc0

(continued from previous page)

@MODELS.register_module()
class DoubleHeadRoIHead(StandardRoIHead):

"""RoI head for `Double Head RCNN <https://arxiv.org/abs/1904.06493>`_.

Args:
reg_roi_scale_factor (float): The scale factor to extend the rois

used to extract the regression features.
"""

def __init__(self, reg_roi_scale_factor: float, **kwargs):
super().__init__(**kwargs)
self.reg_roi_scale_factor = reg_roi_scale_factor

def _bbox_forward(self, x: Tuple[Tensor], rois: Tensor) -> dict:
"""Box head forward function used in both training and testing.

Args:
x (tuple[Tensor]): List of multi-level img features.
rois (Tensor): RoIs with the shape (n, 5) where the first

column indicates batch id of each RoI.

Returns:
dict[str, Tensor]: Usually returns a dictionary with keys:

- `cls_score` (Tensor): Classification scores.
- `bbox_pred` (Tensor): Box energies / deltas.
- `bbox_feats` (Tensor): Extract bbox RoI features.

"""
bbox_cls_feats = self.bbox_roi_extractor(

x[:self.bbox_roi_extractor.num_inputs], rois)
bbox_reg_feats = self.bbox_roi_extractor(

x[:self.bbox_roi_extractor.num_inputs],
rois,
roi_scale_factor=self.reg_roi_scale_factor)

if self.with_shared_head:
bbox_cls_feats = self.shared_head(bbox_cls_feats)
bbox_reg_feats = self.shared_head(bbox_reg_feats)

cls_score, bbox_pred = self.bbox_head(bbox_cls_feats, bbox_reg_feats)

bbox_results = dict(
cls_score=cls_score,
bbox_pred=bbox_pred,
bbox_feats=bbox_cls_feats)

return bbox_results

Last, the users need to add the module in mmdet/models/bbox_heads/__init__.py and mmdet/models/
roi_heads/__init__.py thus the corresponding registry could find and load them.

Alternatively, the users can add

92 Chapter 6. Component Customization

MMDetection, Release 3.0.0rc0

custom_imports=dict(
imports=['mmdet.models.roi_heads.double_roi_head', 'mmdet.models.roi_heads.bbox_

→˓heads.double_bbox_head'])

to the config file and achieve the same goal.

The config file of Double Head R-CNN is as the following

base = '../faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py'
model = dict(

roi_head=dict(
type='DoubleHeadRoIHead',
reg_roi_scale_factor=1.3,
bbox_head=dict(

delete=True,
type='DoubleConvFCBBoxHead',
num_convs=4,
num_fcs=2,
in_channels=256,
conv_out_channels=1024,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=80,
bbox_coder=dict(

type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2]),

reg_class_agnostic=False,
loss_cls=dict(

type='CrossEntropyLoss', use_sigmoid=False, loss_weight=2.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=2.0))))

Since MMDetection 2.0, the config system supports to inherit configs such that the users can focus on the modifica-
tion. The Double Head R-CNN mainly uses a new DoubleHeadRoIHead and a new DoubleConvFCBBoxHead , the
arguments are set according to the __init__ function of each module.

Add new loss

Assume you want to add a new loss as MyLoss, for bounding box regression. To add a new loss function, the users
need implement it in mmdet/models/losses/my_loss.py. The decorator weighted_loss enable the loss to be
weighted for each element.

import torch
import torch.nn as nn

from mmdet.registry import MODELS
from .utils import weighted_loss

@weighted_loss
def my_loss(pred, target):

assert pred.size() == target.size() and target.numel() > 0
loss = torch.abs(pred - target)

(continues on next page)

6.1. Customize Models 93

MMDetection, Release 3.0.0rc0

(continued from previous page)

return loss

@MODELS.register_module()
class MyLoss(nn.Module):

def __init__(self, reduction='mean', loss_weight=1.0):
super(MyLoss, self).__init__()
self.reduction = reduction
self.loss_weight = loss_weight

def forward(self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None):

assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (

reduction_override if reduction_override else self.reduction)
loss_bbox = self.loss_weight * my_loss(

pred, target, weight, reduction=reduction, avg_factor=avg_factor)
return loss_bbox

Then the users need to add it in the mmdet/models/losses/__init__.py.

from .my_loss import MyLoss, my_loss

Alternatively, you can add

custom_imports=dict(
imports=['mmdet.models.losses.my_loss'])

to the config file and achieve the same goal.

To use it, modify the loss_xxx field. Since MyLoss is for regression, you need to modify the loss_bbox field in the
head.

loss_bbox=dict(type='MyLoss', loss_weight=1.0))

6.2 Customize Losses

MMDetection provides users with different loss functions. But the default configuration may be not applicable for
different datasets or models, so users may want to modify a specific loss to adapt the new situation.

This tutorial first elaborate the computation pipeline of losses, then give some instructions about how to modify each
step. The modification can be categorized as tweaking and weighting.

94 Chapter 6. Component Customization

MMDetection, Release 3.0.0rc0

6.2.1 Computation pipeline of a loss

Given the input prediction and target, as well as the weights, a loss function maps the input tensor to the final loss scalar.
The mapping can be divided into five steps:

1. Set the sampling method to sample positive and negative samples.

2. Get element-wise or sample-wise loss by the loss kernel function.

3. Weighting the loss with a weight tensor element-wisely.

4. Reduce the loss tensor to a scalar.

5. Weighting the loss with a scalar.

6.2.2 Set sampling method (step 1)

For some loss functions, sampling strategies are needed to avoid imbalance between positive and negative samples.

For example, when using CrossEntropyLoss in RPN head, we need to set RandomSampler in train_cfg

train_cfg=dict(
rpn=dict(

sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False))

For some other losses which have positive and negative sample balance mechanism such as Focal Loss, GHMC, and
QualityFocalLoss, the sampler is no more necessary.

6.2.3 Tweaking loss

Tweaking a loss is more related with step 2, 4, 5, and most modifications can be specified in the config. Here we take
Focal Loss (FL) as an example. The following code sniper are the construction method and config of FL respectively,
they are actually one to one correspondence.

@LOSSES.register_module()
class FocalLoss(nn.Module):

def __init__(self,
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
reduction='mean',
loss_weight=1.0):

loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0)

6.2. Customize Losses 95

https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/losses/focal_loss.py

MMDetection, Release 3.0.0rc0

Tweaking hyper-parameters (step 2)

gamma and beta are two hyper-parameters in the Focal Loss. Say if we want to change the value of gamma to be 1.5
and alpha to be 0.5, then we can specify them in the config as follows:

loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=1.5,
alpha=0.5,
loss_weight=1.0)

Tweaking the way of reduction (step 3)

The default way of reduction is mean for FL. Say if we want to change the reduction from mean to sum, we can specify
it in the config as follows:

loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0,
reduction='sum')

Tweaking loss weight (step 5)

The loss weight here is a scalar which controls the weight of different losses in multi-task learning, e.g. classification
loss and regression loss. Say if we want to change to loss weight of classification loss to be 0.5, we can specify it in
the config as follows:

loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=0.5)

6.2.4 Weighting loss (step 3)

Weighting loss means we re-weight the loss element-wisely. To be more specific, we multiply the loss tensor with a
weight tensor which has the same shape. As a result, different entries of the loss can be scaled differently, and so called
element-wisely. The loss weight varies across different models and highly context related, but overall there are two
kinds of loss weights, label_weights for classification loss and bbox_weights for bbox regression loss. You can
find them in the get_targetmethod of the corresponding head. Here we take ATSSHead as an example, which inherit
AnchorHead but overwrite its get_targets method which yields different label_weights and bbox_weights.

class ATSSHead(AnchorHead):

...
(continues on next page)

96 Chapter 6. Component Customization

https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/atss_head.py#L322
https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/anchor_head.py

MMDetection, Release 3.0.0rc0

(continued from previous page)

def get_targets(self,
anchor_list,
valid_flag_list,
gt_bboxes_list,
img_metas,
gt_bboxes_ignore_list=None,
gt_labels_list=None,
label_channels=1,
unmap_outputs=True):

6.3 Customize Datasets

6.3.1 Support new data format

To support a new data format, you can either convert them to existing formats (COCO format or PASCAL format) or
directly convert them to the middle format. You could also choose to convert them offline (before training by a script)
or online (implement a new dataset and do the conversion at training). In MMDetection, we recommend to convert the
data into COCO formats and do the conversion offline, thus you only need to modify the config’s data annotation paths
and classes after the conversion of your data.

Reorganize new data formats to existing format

The simplest way is to convert your dataset to existing dataset formats (COCO or PASCAL VOC).

The annotation JSON files in COCO format has the following necessary keys:

'images': [
{

'file_name': 'COCO_val2014_000000001268.jpg',
'height': 427,
'width': 640,
'id': 1268

},
...

],

'annotations': [
{

'segmentation': [[192.81,
247.09,
...
219.03,
249.06]], # If you have mask labels, and it is in polygon XY point␣

→˓coordinate format, you need to ensure that at least 3 point coordinates are included.␣
→˓Otherwise, it is an invalid polygon.

'area': 1035.749,
'iscrowd': 0,
'image_id': 1268,

(continues on next page)

6.3. Customize Datasets 97

MMDetection, Release 3.0.0rc0

(continued from previous page)

'bbox': [192.81, 224.8, 74.73, 33.43],
'category_id': 16,
'id': 42986

},
...

],

'categories': [
{'id': 0, 'name': 'car'},

]

There are three necessary keys in the JSON file:

• images: contains a list of images with their information like file_name, height, width, and id.

• annotations: contains the list of instance annotations.

• categories: contains the list of categories names and their ID.

After the data pre-processing, there are two steps for users to train the customized new dataset with existing format
(e.g. COCO format):

1. Modify the config file for using the customized dataset.

2. Check the annotations of the customized dataset.

Here we give an example to show the above two steps, which uses a customized dataset of 5 classes with COCO format
to train an existing Cascade Mask R-CNN R50-FPN detector.

1. Modify the config file for using the customized dataset

There are two aspects involved in the modification of config file:

1. The data field. Specifically, you need to explicitly add the metainfo=dict(CLASSES=classes) fields in
train_dataloader.dataset, val_dataloader.dataset and test_dataloader.dataset and classes
must be a tuple type.

2. The num_classes field in the model part. Explicitly over-write all the num_classes from default value (e.g.
80 in COCO) to your classes number.

In configs/my_custom_config.py:

the new config inherits the base configs to highlight the necessary modification
base = './cascade_mask_rcnn_r50_fpn_1x_coco.py'

1. dataset settings
dataset_type = 'CocoDataset'
classes = ('a', 'b', 'c', 'd', 'e')
data_root='path/to/your/'

train_dataloader = dict(
batch_size=2,
num_workers=2,
dataset=dict(

type=dataset_type,
(continues on next page)

98 Chapter 6. Component Customization

MMDetection, Release 3.0.0rc0

(continued from previous page)

explicitly add your class names to the field `metainfo`
metainfo=dict(CLASSES=classes),
data_root=data_root,
ann_file='train/annotation_data',
data_prefix=dict(img='train/image_data')
)

)

val_dataloader = dict(
batch_size=1,
num_workers=2,
dataset=dict(

type=dataset_type,
test_mode=True,
explicitly add your class names to the field `metainfo`
metainfo=dict(CLASSES=classes),
data_root=data_root,
ann_file='val/annotation_data',
data_prefix=dict(img='val/image_data')
)

)

test_dataloader = dict(
batch_size=1,
num_workers=2,
dataset=dict(

type=dataset_type,
test_mode=True,
explicitly add your class names to the field `metainfo`
metainfo=dict(CLASSES=classes),
data_root=data_root,
ann_file='test/annotation_data',
data_prefix=dict(img='test/image_data')
)

)

2. model settings

explicitly over-write all the `num_classes` field from default 80 to 5.
model = dict(

roi_head=dict(
bbox_head=[

dict(
type='Shared2FCBBoxHead',
explicitly over-write all the `num_classes` field from default 80 to 5.
num_classes=5),

dict(
type='Shared2FCBBoxHead',
explicitly over-write all the `num_classes` field from default 80 to 5.
num_classes=5),

dict(
type='Shared2FCBBoxHead',

(continues on next page)

6.3. Customize Datasets 99

MMDetection, Release 3.0.0rc0

(continued from previous page)

explicitly over-write all the `num_classes` field from default 80 to 5.
num_classes=5)],

explicitly over-write all the `num_classes` field from default 80 to 5.
mask_head=dict(num_classes=5)))

2. Check the annotations of the customized dataset

Assuming your customized dataset is COCO format, make sure you have the correct annotations in the customized
dataset:

1. The length for categories field in annotations should exactly equal the tuple length of classes fields in your
config, meaning the number of classes (e.g. 5 in this example).

2. The classes fields in your config file should have exactly the same elements and the same order with the name
in categories of annotations. MMDetection automatically maps the uncontinuous id in categories to the
continuous label indices, so the string order of name in categories field affects the order of label indices.
Meanwhile, the string order of classes in config affects the label text during visualization of predicted bounding
boxes.

3. The category_id in annotations field should be valid, i.e., all values in category_id should belong to id
in categories.

Here is a valid example of annotations:

'annotations': [
{

'segmentation': [[192.81,
247.09,
...
219.03,
249.06]], # if you have mask labels

'area': 1035.749,
'iscrowd': 0,
'image_id': 1268,
'bbox': [192.81, 224.8, 74.73, 33.43],
'category_id': 16,
'id': 42986

},
...

],

MMDetection automatically maps the uncontinuous `id` to the continuous label indices.
'categories': [

{'id': 1, 'name': 'a'}, {'id': 3, 'name': 'b'}, {'id': 4, 'name': 'c'}, {'id': 16,
→˓'name': 'd'}, {'id': 17, 'name': 'e'},
]

We use this way to support CityScapes dataset. The script is in cityscapes.py and we also provide the finetuning configs.

Note

1. For instance segmentation datasets, MMDetection only supports evaluating mask AP of dataset in COCO
format for now.

100 Chapter 6. Component Customization

https://github.com/open-mmlab/mmdetection/blob/3.x/tools/dataset_converters/cityscapes.py
https://github.com/open-mmlab/mmdetection/blob/3.x/configs/cityscapes

MMDetection, Release 3.0.0rc0

2. It is recommended to convert the data offline before training, thus you can still use CocoDataset and only need
to modify the path of annotations and the training classes.

Reorganize new data format to middle format

It is also fine if you do not want to convert the annotation format to COCO or PASCAL format. Actually, we define a
simple annotation format in MMEninge’s BaseDataset and all existing datasets are processed to be compatible with it,
either online or offline.

The annotation of the dataset must be in json or yaml, yml or pickle, pkl format; the dictionary stored in the
annotation file must contain two fields metainfo and data_list. The metainfo is a dictionary, which contains the
metadata of the dataset, such as class information; data_list is a list, each element in the list is a dictionary, the
dictionary defines the raw data of one image, and each raw data contains a or several training/testing samples.

Here is an example.

{
'metainfo':

{
'classes': ('person', 'bicycle', 'car', 'motorcycle'),
...

},
'data_list':

[
{

"img_path": "xxx/xxx_1.jpg",
"height": 604,
"width": 640,
"instances":
[
{
"bbox": [0, 0, 10, 20],
"bbox_label": 1,
"ignore_flag": 0

},
{
"bbox": [10, 10, 110, 120],
"bbox_label": 2,
"ignore_flag": 0

}
]

},
{

"img_path": "xxx/xxx_2.jpg",
"height": 320,
"width": 460,
"instances":
[
{
"bbox": [10, 0, 20, 20],
"bbox_label": 3,
"ignore_flag": 1,

}
]

(continues on next page)

6.3. Customize Datasets 101

https://github.com/open-mmlab/mmengine/blob/main/mmengine/dataset/base_dataset.py#L116

MMDetection, Release 3.0.0rc0

(continued from previous page)

},
...

]
}

Some datasets may provide annotations like crowd/difficult/ignored bboxes, we use ignore_flagto cover them.

After obtaining the above standard data annotation format, you can directly use BaseDetDataset of MMDetection in
the configuration , without conversion.

An example of customized dataset

Assume the annotation is in a new format in text files. The bounding boxes annotations are stored in text file
annotation.txt as the following

#
000001.jpg
1280 720
2
10 20 40 60 1
20 40 50 60 2
#
000002.jpg
1280 720
3
50 20 40 60 2
20 40 30 45 2
30 40 50 60 3

We can create a new dataset in mmdet/datasets/my_dataset.py to load the data.

import mmengine

from mmdet.base_det_dataset import BaseDetDataset
from mmdet.registry import DATASETS

@DATASETS.register_module()
class MyDataset(BaseDetDataset):

METAINFO = {
'CLASSES': ('person', 'bicycle', 'car', 'motorcycle'),
'PALETTE': [(220, 20, 60), (119, 11, 32), (0, 0, 142), (0, 0, 230)]

}

def load_data_list(self, ann_file):
ann_list = mmengine.list_from_file(ann_file)

data_infos = []
for i, ann_line in enumerate(ann_list):

if ann_line != '#':
continue

(continues on next page)

102 Chapter 6. Component Customization

https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/datasets/base_det_dataset.py#L13

MMDetection, Release 3.0.0rc0

(continued from previous page)

img_shape = ann_list[i + 2].split(' ')
width = int(img_shape[0])
height = int(img_shape[1])
bbox_number = int(ann_list[i + 3])

instances = []
for anns in ann_list[i + 4:i + 4 + bbox_number]:

instance = {}
instance['bbox'] = [float(ann) for ann in anns.split(' ')[:4]]
instance['bbox_label']=int(anns[4])

instances.append(instance)

data_infos.append(
dict(

img_path=ann_list[i + 1],
img_id=i,
width=width,
height=height,
instances=instances

))

return data_infos

Then in the config, to use MyDataset you can modify the config as the following

dataset_A_train = dict(
type='MyDataset',
ann_file = 'image_list.txt',
pipeline=train_pipeline

)

6.3.2 Customize datasets by dataset wrappers

MMEngine also supports many dataset wrappers to mix the dataset or modify the dataset distribution for training.
Currently it supports to three dataset wrappers as below:

• RepeatDataset: simply repeat the whole dataset.

• ClassBalancedDataset: repeat dataset in a class balanced manner.

• ConcatDataset: concat datasets.

For detailed usage, see MMEngine Dataset Wrapper.

6.3. Customize Datasets 103

MMDetection, Release 3.0.0rc0

6.3.3 Modify Dataset Classes

With existing dataset types, we can modify the metainfo of them to train subset of the annotations. For example, if you
want to train only three classes of the current dataset, you can modify the classes of dataset. The dataset will filter out
the ground truth boxes of other classes automatically.

classes = ('person', 'bicycle', 'car')
train_dataloader = dict(

dataset=dict(
metainfo=dict(CLASSES=classes))

)
val_dataloader = dict(

dataset=dict(
metainfo=dict(CLASSES=classes))

)
test_dataloader = dict(

dataset=dict(
metainfo=dict(CLASSES=classes))

)

Note:

• Before MMDetection v2.5.0, the dataset will filter out the empty GT images automatically if the classes are set
and there is no way to disable that through config. This is an undesirable behavior and introduces confusion be-
cause if the classes are not set, the dataset only filter the empty GT images when filter_empty_gt=True and
test_mode=False. After MMDetection v2.5.0, we decouple the image filtering process and the classes modifi-
cation, i.e., the dataset will only filter empty GT images when filter_cfg=dict(filter_empty_gt=True)
and test_mode=False, no matter whether the classes are set. Thus, setting the classes only influences the
annotations of classes used for training and users could decide whether to filter empty GT images by themselves.

• When directly using BaseDataset in MMEngine or BaseDetDataset in MMDetection, users cannot filter
images without GT by modifying the configuration, but it can be solved in an offline way.

• Please remember to modify the num_classes in the head when specifying classes in dataset. We implemented
NumClassCheckHook to check whether the numbers are consistent since v2.9.0(after PR#4508).

6.3.4 COCO Panoptic Dataset

Now we support COCO Panoptic Dataset, the format of panoptic annotations is different from COCO format. Both the
foreground and the background will exist in the annotation file. The annotation json files in COCO Panoptic format
has the following necessary keys:

'images': [
{

'file_name': '000000001268.jpg',
'height': 427,
'width': 640,
'id': 1268

},
...

]

'annotations': [
{

(continues on next page)

104 Chapter 6. Component Customization

https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/engine/hooks/num_class_check_hook.py

MMDetection, Release 3.0.0rc0

(continued from previous page)

'filename': '000000001268.jpg',
'image_id': 1268,
'segments_info': [

{
'id':8345037, # One-to-one correspondence with the id in the annotation␣

→˓map.
'category_id': 51,
'iscrowd': 0,
'bbox': (x1, y1, w, h), # The bbox of the background is the outer␣

→˓rectangle of its mask.
'area': 24315

},
...

]
},
...

]

'categories': [# including both foreground categories and background categories
{'id': 0, 'name': 'person'},
...

]

Moreover, the seg must be set to the path of the panoptic annotation images.

dataset_type = 'CocoPanopticDataset'
data_root='path/to/your/'

train_dataloader = dict(
dataset=dict(

type=dataset_type,
data_root=data_root,
data_prefix=dict(

img='train/image_data/', seg='train/panoptic/image_annotation_data/')
)

)
val_dataloader = dict(

dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(

img='val/image_data/', seg='val/panoptic/image_annotation_data/')
)

)
test_dataloader = dict(

dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(

img='test/image_data/', seg='test/panoptic/image_annotation_data/')
)

)

6.3. Customize Datasets 105

MMDetection, Release 3.0.0rc0

6.4 Customize Data Pipelines

1. Write a new transform in a file, e.g., in my_pipeline.py. It takes a dict as input and returns a dict.

import random
from mmcv.transforms import BaseTransform
from mmdet.registry import TRANSFORMS

@TRANSFORMS.register_module()
class MyTransform(BaseTransform):

"""Add your transform

Args:
p (float): Probability of shifts. Default 0.5.

"""

def __init__(self, prob=0.5):
self.prob = prob

def transform(self, results):
if random.random() > self.prob:

results['dummy'] = True
return results

2. Import and use the pipeline in your config file. Make sure the import is relative to where your train script is
located.

custom_imports = dict(imports=['path.to.my_pipeline'], allow_failed_imports=False)

train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='MyTransform', prob=0.2),
dict(type='PackDetInputs')

]

3. Visualize the output of your transforms pipeline

To visualize the output of your transforms pipeline, tools/misc/browse_dataset.py can help the user to
browse a detection dataset (both images and bounding box annotations) visually, or save the image to a designated
directory. More detials can refer to visualization documentation

106 Chapter 6. Component Customization

MMDetection, Release 3.0.0rc0

6.5 Customize Runtime Settings

6.5.1 Customize optimization settings

Optimization related configuration is now all managed by optim_wrapperwhich usually has three fields: optimizer,
paramwise_cfg, clip_grad, refer to OptimWrapper for more detail. See the example below, where Adamw is used
as an optimizer, the learning rate of the backbone is reduced by a factor of 10, and gradient clipping is added.

optim_wrapper = dict(
type='OptimWrapper',
optimizer
optimizer=dict(

type='AdamW',
lr=0.0001,
weight_decay=0.05,
eps=1e-8,
betas=(0.9, 0.999)),

Parameter-level learning rate and weight decay settings
paramwise_cfg=dict(

custom_keys={
'backbone': dict(lr_mult=0.1, decay_mult=1.0),

},
norm_decay_mult=0.0),

gradient clipping
clip_grad=dict(max_norm=0.01, norm_type=2))

Customize optimizer supported by Pytorch

We already support to use all the optimizers implemented by PyTorch, and the only modification is to change the
optimizer field in optim_wrapper field of config files. For example, if you want to use ADAM (note that the perfor-
mance could drop a lot), the modification could be as the following.

optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='Adam', lr=0.0003, weight_decay=0.0001))

To modify the learning rate of the model, the users only need to modify the lr in optimizer. The users can directly
set arguments following the API doc of PyTorch.

Customize self-implemented optimizer

1. Define a new optimizer

A customized optimizer could be defined as following.

Assume you want to add a optimizer named MyOptimizer, which has arguments a, b, and c. You need to create a
new directory named mmdet/engine/optimizers. And then implement the new optimizer in a file, e.g., in mmdet/
engine/optimizers/my_optimizer.py:

6.5. Customize Runtime Settings 107

https://mmengine.readthedocs.io/en/latest/tutorials/optim_wrapper.md
https://pytorch.org/docs/stable/optim.html?highlight=optim#module-torch.optim

MMDetection, Release 3.0.0rc0

from mmdet.registry import OPTIMIZERS
from torch.optim import Optimizer

@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):

def __init__(self, a, b, c)

2. Add the optimizer to registry

To find the above module defined above, this module should be imported into the main namespace at first. There are
two options to achieve it.

• Modify mmdet/engine/optimizers/__init__.py to import it.

The newly defined module should be imported in mmdet/engine/optimizers/__init__.py so that the reg-
istry will find the new module and add it:

from .my_optimizer import MyOptimizer

• Use custom_imports in the config to manually import it

custom_imports = dict(imports=['mmdet.engine.optimizers.my_optimizer'], allow_failed_
→˓imports=False)

The module mmdet.engine.optimizers.my_optimizer will be imported at the beginning of the program and the
class MyOptimizer is then automatically registered. Note that only the package containing the class MyOptimizer
should be imported. mmdet.engine.optimizers.my_optimizer.MyOptimizer cannot be imported directly.

Actually users can use a totally different file directory structure using this importing method, as long as the module
root can be located in PYTHONPATH.

3. Specify the optimizer in the config file

Then you can use MyOptimizer in optimizer field in optim_wrapper field of config files. In the configs, the
optimizers are defined by the field optimizer like the following:

optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))

To use your own optimizer, the field can be changed to

optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='MyOptimizer', a=a_value, b=b_value, c=c_value))

108 Chapter 6. Component Customization

MMDetection, Release 3.0.0rc0

Customize optimizer wrapper constructor

Some models may have some parameter-specific settings for optimization, e.g. weight decay for BatchNorm layers.
The users can do those fine-grained parameter tuning through customizing optimizer wrapper constructor.

from mmengine.optim import DefaultOptiWrapperConstructor

from mmdet.registry import OPTIM_WRAPPER_CONSTRUCTORS
from .my_optimizer import MyOptimizer

@OPTIM_WRAPPER_CONSTRUCTORS.register_module()
class MyOptimizerWrapperConstructor(DefaultOptimWrapperConstructor):

def __init__(self,
optim_wrapper_cfg: dict,
paramwise_cfg: Optional[dict] = None):

def __call__(self, model: nn.Module) -> OptimWrapper:

return optim_wrapper

The default optimizer wrapper constructor is implemented here, which could also serve as a template for the new
optimizer wrapper constructor.

Additional settings

Tricks not implemented by the optimizer should be implemented through optimizer wrapper constructor (e.g., set
parameter-wise learning rates) or hooks. We list some common settings that could stabilize the training or accelerate
the training. Feel free to create PR, issue for more settings.

• Use gradient clip to stabilize training: Some models need gradient clip to clip the gradients to stabilize the
training process. An example is as below:

optim_wrapper = dict(
delete=True, clip_grad=dict(max_norm=35, norm_type=2))

If your config inherits the base config which already sets the optim_wrapper, you might need _delete_=True
to override the unnecessary settings. See the config documentation for more details.

• Use momentum schedule to accelerate model convergence: We support momentum scheduler to modify
model’s momentum according to learning rate, which could make the model converge in a faster way. Mo-
mentum scheduler is usually used with LR scheduler, for example, the following config is used in 3D detection
to accelerate convergence. For more details, please refer to the implementation of CosineAnnealingLR and
CosineAnnealingMomentum.

param_scheduler = [
learning rate scheduler
During the first 8 epochs, learning rate increases from 0 to lr * 10
during the next 12 epochs, learning rate decreases from lr * 10 to lr * 1e-4
dict(

type='CosineAnnealingLR',
T_max=8,

(continues on next page)

6.5. Customize Runtime Settings 109

https://github.com/open-mmlab/mmengine/blob/main/mmengine/optim/optimizer/default_constructor.py#L18
https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/configs/_base_/schedules/cyclic-20e.py
https://github.com/open-mmlab/mmengine/blob/main/mmengine/optim/scheduler/lr_scheduler.py#L43
https://github.com/open-mmlab/mmengine/blob/main/mmengine/optim/scheduler/momentum_scheduler.py#L71

MMDetection, Release 3.0.0rc0

(continued from previous page)

eta_min=lr * 10,
begin=0,
end=8,
by_epoch=True,
convert_to_iter_based=True),

dict(
type='CosineAnnealingLR',
T_max=12,
eta_min=lr * 1e-4,
begin=8,
end=20,
by_epoch=True,
convert_to_iter_based=True),

momentum scheduler
During the first 8 epochs, momentum increases from 0 to 0.85 / 0.95
during the next 12 epochs, momentum increases from 0.85 / 0.95 to 1
dict(

type='CosineAnnealingMomentum',
T_max=8,
eta_min=0.85 / 0.95,
begin=0,
end=8,
by_epoch=True,
convert_to_iter_based=True),

dict(
type='CosineAnnealingMomentum',
T_max=12,
eta_min=1,
begin=8,
end=20,
by_epoch=True,
convert_to_iter_based=True)

]

6.5.2 Customize training schedules

By default we use step learning rate with 1x schedule, this calls MultiStepLR in MMEngine. We support many other
learning rate schedule here, such as CosineAnnealingLR and PolyLR schedule. Here are some examples

• Poly schedule:

param_scheduler = [
dict(

type='PolyLR',
power=0.9,
eta_min=1e-4,
begin=0,
end=8,
by_epoch=True)]

• ConsineAnnealing schedule:

110 Chapter 6. Component Customization

https://github.com/open-mmlab/mmengine/blob/main/mmengine/optim/scheduler/lr_scheduler.py#L139
https://github.com/open-mmlab/mmengine/blob/main/mmengine/optim/scheduler/lr_scheduler.py

MMDetection, Release 3.0.0rc0

param_scheduler = [
dict(

type='CosineAnnealingLR',
T_max=8,
eta_min=lr * 1e-5,
begin=0,
end=8,
by_epoch=True)]

6.5.3 Customize train loop

By default, EpochBasedTrainLoop is used in train_cfg and validation is done after every train epoch, as follows.

train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_begin=1, val_interval=1)

Actually, both IterBasedTrainLoop and EpochBasedTrainLoop support dynamical interval, see the following ex-
ample.

Before 365001th iteration, we do evaluation every 5000 iterations.
After 365000th iteration, we do evaluation every 368750 iteraions,
which means that we do evaluation at the end of training.

interval = 5000
max_iters = 368750
dynamic_intervals = [(max_iters // interval * interval + 1, max_iters)]
train_cfg = dict(

type='IterBasedTrainLoop',
max_iters=max_iters,
val_interval=interval,
dynamic_intervals=dynamic_intervals)

6.5.4 Customize hooks

Customize self-implemented hooks

1. Implement a new hook

MMEngine provides many useful hooks, but there are some occasions when the users might need to implement a new
hook. MMDetection supports customized hooks in training in v3.0 . Thus the users could implement a hook directly
in mmdet or their mmdet-based codebases and use the hook by only modifying the config in training. Here we give an
example of creating a new hook in mmdet and using it in training.

from mmengine.hooks import Hook
from mmdet.registry import HOOKS

@HOOKS.register_module()
class MyHook(Hook):

(continues on next page)

6.5. Customize Runtime Settings 111

https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/loops.py#L183%5D
https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/loops.py#L18
https://mmengine.readthedocs.io/en/latest/tutorials/hooks.html

MMDetection, Release 3.0.0rc0

(continued from previous page)

def __init__(self, a, b):

def before_run(self, runner) -> None:

def after_run(self, runner) -> None:

def before_train(self, runner) -> None:

def after_train(self, runner) -> None:

def before_train_epoch(self, runner) -> None:

def after_train_epoch(self, runner) -> None:

def before_train_iter(self,
runner,
batch_idx: int,
data_batch: DATA_BATCH = None) -> None:

def after_train_iter(self,
runner,
batch_idx: int,
data_batch: DATA_BATCH = None,
outputs: Optional[dict] = None) -> None:

Depending on the functionality of the hook, the users need to specify what the hook will do at each stage of the train-
ing in before_run, after_run, before_train, after_train , before_train_epoch, after_train_epoch,
before_train_iter, and after_train_iter. There are more points where hooks can be inserted, refer to base
hook class for more detail.

2. Register the new hook

Then we need to make MyHook imported. Assuming the file is in mmdet/engine/hooks/my_hook.py there are two
ways to do that:

• Modify mmdet/engine/hooks/__init__.py to import it.

The newly defined module should be imported in mmdet/engine/hooks/__init__.py so that the registry will
find the new module and add it:

from .my_hook import MyHook

• Use custom_imports in the config to manually import it

custom_imports = dict(imports=['mmdet.engine.hooks.my_hook'], allow_failed_imports=False)

112 Chapter 6. Component Customization

https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/hook.py#L9
https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/hook.py#L9

MMDetection, Release 3.0.0rc0

3. Modify the config

custom_hooks = [
dict(type='MyHook', a=a_value, b=b_value)

]

You can also set the priority of the hook by adding key priority to 'NORMAL' or 'HIGHEST' as below

custom_hooks = [
dict(type='MyHook', a=a_value, b=b_value, priority='NORMAL')

]

By default the hook’s priority is set as NORMAL during registration.

Use hooks implemented in MMDetection

If the hook is already implemented in MMDectection, you can directly modify the config to use the hook as below

Example: NumClassCheckHook

We implement a customized hook named NumClassCheckHook to check whether the num_classes in head matches
the length of CLASSES in dataset.

We set it in default_runtime.py.

custom_hooks = [dict(type='NumClassCheckHook')]

Modify default runtime hooks

There are some common hooks that are registered through default_hooks, they are

• IterTimerHook: A hook that logs ‘data_time’ for loading data and ‘time’ for a model train step.

• LoggerHook: A hook that Collect logs from different components of Runner and write them to terminal, JSON
file, tensorboard and wandb .etc.

• ParamSchedulerHook: A hook to update some hyper-parameters in optimizer, e.g., learning rate and momen-
tum.

• CheckpointHook: A hook that saves checkpoints periodically.

• DistSamplerSeedHook: A hook that sets the seed for sampler and batch_sampler.

• DetVisualizationHook: A hook used to visualize validation and testing process prediction results.

IterTimerHook, ParamSchedulerHook and DistSamplerSeedHook are simple and no need to be modified usually,
so here we reveals how what we can do with LoggerHook, CheckpointHook and DetVisualizationHook.

6.5. Customize Runtime Settings 113

https://github.com/open-mmlab/mmdetection/blob/dev-3.x/mmdet/engine/hooks/num_class_check_hook.py
https://github.com/open-mmlab/mmdetection/blob/dev-3.x/configs/_base_/default_runtime.py

MMDetection, Release 3.0.0rc0

CheckpointHook

Except saving checkpoints periodically, CheckpointHook provides other options such as max_keep_ckpts,
save_optimizer and etc. The users could set max_keep_ckpts to only save small number of checkpoints or de-
cide whether to store state dict of optimizer by save_optimizer. More details of the arguments are here

default_hooks = dict(
checkpoint=dict(

type='CheckpointHook',
interval=1,
max_keep_ckpts=3,
save_optimizer=True))

LoggerHook

The LoggerHook enables to set intervals. And the detail usages can be found in the docstring.

default_hooks = dict(logger=dict(type='LoggerHook', interval=50))

DetVisualizationHook

DetVisualizationHook use DetLocalVisualizer to visualize prediction results, and DetLocalVisualizer cur-
rent supports different backends, e.g., TensorboardVisBackend and WandbVisBackend (see docstring for more
detail). The users could add multi backbends to do visualization, as follows.

default_hooks = dict(
visualization=dict(type='DetVisualizationHook', draw=True))

vis_backends = [dict(type='LocalVisBackend'),
dict(type='TensorboardVisBackend')]

visualizer = dict(
type='DetLocalVisualizer', vis_backends=vis_backends, name='visualizer')

114 Chapter 6. Component Customization

https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/checkpoint_hook.py#L19
https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/checkpoint_hook.py#L19
https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/logger_hook.py#L18
https://github.com/open-mmlab/mmengine/blob/main/mmengine/visualization/vis_backend.py

CHAPTER

SEVEN

HOW TO

This tutorial collects answers to any How to xxx with MMDetection. Feel free to update this doc if you meet new
questions about How to and find the answers!

7.1 Use backbone network through MMClassification

The model registry in MMDet, MMCls, MMSeg all inherit from the root registry in MMEngine. This allows these
repositories to directly use the modules already implemented by each other. Therefore, users can use backbone networks
from MMClassification in MMDetection without implementing a network that already exists in MMClassification.

7.1.1 Use backbone network implemented in MMClassification

Suppose you want to use MobileNetV3-small as the backbone network of RetinaNet, the example config is as the
following.

base = [
'../_base_/models/retinanet_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'

]
please install mmcls>=1.0.0rc0
import mmcls.models to trigger register_module in mmcls
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
pretrained = 'https://download.openmmlab.com/mmclassification/v0/mobilenet_v3/convert/
→˓mobilenet_v3_small-8427ecf0.pth'
model = dict(

backbone=dict(
delete=True, # Delete the backbone field in _base_
type='mmcls.MobileNetV3', # Using MobileNetV3 from mmcls
arch='small',
out_indices=(3, 8, 11), # Modify out_indices
init_cfg=dict(

type='Pretrained',
checkpoint=pretrained,
prefix='backbone.')), # The pre-trained weights of backbone network in MMCls␣

→˓have prefix='backbone.'. The prefix in the keys will be removed so that these weights␣
→˓can be normally loaded.
Modify in_channels
neck=dict(in_channels=[24, 48, 96], start_level=0))

115

MMDetection, Release 3.0.0rc0

7.1.2 Use backbone network in TIMM through MMClassification

MMClassification also provides a wrapper for the PyTorch Image Models (timm) backbone network, users can directly
use the backbone network in timm through MMClassification. Suppose you want to use EfficientNet-B1 as the backbone
network of RetinaNet, the example config is as the following.

https://github.com/open-mmlab/mmdetection/blob/dev-3.x/configs/timm_example/retinanet_
→˓timm-efficientnet-b1_fpn_1x_coco.py

base = [
'../_base_/models/retinanet_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'

]

please install mmcls>=1.0.0rc0
import mmcls.models to trigger register_module in mmcls
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
model = dict(

backbone=dict(
delete=True, # Delete the backbone field in _base_
type='mmcls.TIMMBackbone', # Using timm from mmcls
model_name='efficientnet_b1',
features_only=True,
pretrained=True,
out_indices=(1, 2, 3, 4)), # Modify out_indices

neck=dict(in_channels=[24, 40, 112, 320])) # Modify in_channels

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)

type='mmcls.TIMMBackbone' means use the TIMMBackbone class from MMClassification in MMDetection, and
the model used is EfficientNet-B1, where mmcls means the MMClassification repo and TIMMBackbone means the
TIMMBackbone wrapper implemented in MMClassification.

For the principle of the Hierarchy Registry, please refer to the MMEngine document. For how to use other backbones
in MMClassification, you can refer to the MMClassification document.

7.2 Use Mosaic augmentation

If you want to use Mosaic in training, please make sure that you use MultiImageMixDataset at the same time. Taking
the ‘Faster R-CNN’ algorithm as an example, you should modify the values of train_pipeline and train_dataset
in the config as below:

Open configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py directly and add the following␣
→˓fields
data_root = 'data/coco/'
dataset_type = 'CocoDataset'
img_scale=(1333, 800)

train_pipeline = [
dict(type='Mosaic', img_scale=img_scale, pad_val=114.0),
dict(

(continues on next page)

116 Chapter 7. How to

https://github.com/open-mmlab/mmdetection/blob/dev-3.x/configs/timm_example/retinanet_timm-efficientnet-b1_fpn_1x_coco.py
https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/config.md
https://github.com/open-mmlab/mmclassification/blob/dev-1.x/docs/en/tutorials/config.md

MMDetection, Release 3.0.0rc0

(continued from previous page)

type='RandomAffine',
scaling_ratio_range=(0.1, 2),
border=(-img_scale[0] // 2, -img_scale[1] // 2)), # The image will be enlarged␣

→˓by 4 times after Mosaic processing,so we use affine transformation to restore the␣
→˓image size.

dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs')

]

train_dataset = dict(
delete = True, # remove unnecessary Settings
type='MultiImageMixDataset',
dataset=dict(

type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
pipeline=[

dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True)

],
filter_empty_gt=False,

),
pipeline=train_pipeline
)

data = dict(
train=train_dataset
)

7.3 Unfreeze backbone network after freezing the backbone in the
config

If you have freezed the backbone network in the config and want to unfreeze it after some epoches, you can write a
hook function to do it. Taking the Faster R-CNN with the resnet backbone as an example, you can freeze one stage of
the backbone network and add a custom_hooks in the config as below:

base = [
'../_base_/models/faster-rcnn_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'

]
model = dict(

freeze one stage of the backbone network.
backbone=dict(frozen_stages=1),

)
custom_hooks = [dict(type="UnfreezeBackboneEpochBasedHook", unfreeze_epoch=1)]

Meanwhile write the hook class UnfreezeBackboneEpochBasedHook in mmdet/core/hook/
unfreeze_backbone_epoch_based_hook.py

7.3. Unfreeze backbone network after freezing the backbone in the config 117

MMDetection, Release 3.0.0rc0

from mmengine.model import is_model_wrapper
from mmengine.hooks import Hook
from mmdet.registry import HOOKS

@HOOKS.register_module()
class UnfreezeBackboneEpochBasedHook(Hook):

"""Unfreeze backbone network Hook.

Args:
unfreeze_epoch (int): The epoch unfreezing the backbone network.

"""

def __init__(self, unfreeze_epoch=1):
self.unfreeze_epoch = unfreeze_epoch

def before_train_epoch(self, runner):
Unfreeze the backbone network.
Only valid for resnet.
if runner.epoch == self.unfreeze_epoch:

model = runner.model
if is_model_wrapper(model):

model = model.module
backbone = model.backbone
if backbone.frozen_stages >= 0:

if backbone.deep_stem:
backbone.stem.train()
for param in backbone.stem.parameters():

param.requires_grad = True
else:

backbone.norm1.train()
for m in [backbone.conv1, backbone.norm1]:

for param in m.parameters():
param.requires_grad = True

for i in range(1, backbone.frozen_stages + 1):
m = getattr(backbone, f'layer{i}')
m.train()
for param in m.parameters():

param.requires_grad = True

7.4 Get the channels of a new backbone

If you want to get the channels of a new backbone, you can build this backbone alone and input a pseudo image to get
each stage output.

Take ResNet as an example:

from mmdet.models import ResNet
import torch
self = ResNet(depth=18)

(continues on next page)

118 Chapter 7. How to

MMDetection, Release 3.0.0rc0

(continued from previous page)

self.eval()
inputs = torch.rand(1, 3, 32, 32)
level_outputs = self.forward(inputs)
for level_out in level_outputs:

print(tuple(level_out.shape))

Output of the above script is as below:

(1, 64, 8, 8)
(1, 128, 4, 4)
(1, 256, 2, 2)
(1, 512, 1, 1)

Users can get the channels of the new backbone by Replacing the ResNet(depth=18) in this script with their cus-
tomized backbone.

7.4. Get the channels of a new backbone 119

MMDetection, Release 3.0.0rc0

120 Chapter 7. How to

CHAPTER

EIGHT

MIGRATION

121

MMDetection, Release 3.0.0rc0

122 Chapter 8. Migration

CHAPTER

NINE

MMDET.APIS

123

MMDetection, Release 3.0.0rc0

124 Chapter 9. mmdet.apis

CHAPTER

TEN

MMDET.DATASETS

10.1 datasets

10.2 api_wrappers

10.3 samplers

10.4 transforms

125

MMDetection, Release 3.0.0rc0

126 Chapter 10. mmdet.datasets

CHAPTER

ELEVEN

MMDET.ENGINE

11.1 hooks

11.2 optimizers

11.3 runner

11.4 schedulers

127

MMDetection, Release 3.0.0rc0

128 Chapter 11. mmdet.engine

CHAPTER

TWELVE

MMDET.EVALUATION

12.1 functional

12.2 metrics

129

MMDetection, Release 3.0.0rc0

130 Chapter 12. mmdet.evaluation

CHAPTER

THIRTEEN

MMDET.MODELS

13.1 backbones

13.2 data_preprocessors

13.3 dense_heads

13.4 detectors

13.5 layers

13.6 losses

13.7 necks

13.8 roi_heads

13.9 seg_heads

13.10 task_modules

13.11 test_time_augs

13.12 utils

131

MMDetection, Release 3.0.0rc0

132 Chapter 13. mmdet.models

CHAPTER

FOURTEEN

MMDET.STRUCTURES

14.1 bbox

14.2 mask

133

MMDetection, Release 3.0.0rc0

134 Chapter 14. mmdet.structures

CHAPTER

FIFTEEN

MMDET.TESTING

135

MMDetection, Release 3.0.0rc0

136 Chapter 15. mmdet.testing

CHAPTER

SIXTEEN

MMDET.VISULIZATION

137

MMDetection, Release 3.0.0rc0

138 Chapter 16. mmdet.visulization

CHAPTER

SEVENTEEN

MMDET.UTILS

139

MMDetection, Release 3.0.0rc0

140 Chapter 17. mmdet.utils

CHAPTER

EIGHTEEN

BENCHMARK AND MODEL ZOO

18.1 Mirror sites

We only use aliyun to maintain the model zoo since MMDetection V2.0. The model zoo of V1.x has been deprecated.

18.2 Common settings

• All models were trained on coco_2017_train, and tested on the coco_2017_val.

• We use distributed training.

• All pytorch-style pretrained backbones on ImageNet are from PyTorch model zoo, caffe-style pretrained back-
bones are converted from the newly released model from detectron2.

• For fair comparison with other codebases, we report the GPU memory as the maximum value of torch.cuda.
max_memory_allocated() for all 8 GPUs. Note that this value is usually less than what nvidia-smi shows.

• We report the inference time as the total time of network forwarding and post-processing, excluding the data
loading time. Results are obtained with the script benchmark.py which computes the average time on 2000
images.

18.3 ImageNet Pretrained Models

It is common to initialize from backbone models pre-trained on ImageNet classification task. All pre-trained model
links can be found at open_mmlab. According to img_norm_cfg and source of weight, we can divide all the ImageNet
pre-trained model weights into some cases:

• TorchVision: Corresponding to torchvision weight, including ResNet50, ResNet101. The img_norm_cfg is
dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True).

• Pycls: Corresponding to pycls weight, including RegNetX. The img_norm_cfg is dict(mean=[103.530,
116.280, 123.675], std=[57.375, 57.12, 58.395], to_rgb=False).

• MSRA styles: Corresponding to MSRA weights, including ResNet50_Caffe and ResNet101_Caffe.
The img_norm_cfg is dict(mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0],
to_rgb=False).

• Caffe2 styles: Currently only contains ResNext101_32x8d. The img_norm_cfg is dict(mean=[103.530,
116.280, 123.675], std=[57.375, 57.120, 58.395], to_rgb=False).

141

https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/benchmark.py
https://github.com/open-mmlab/mmcv/blob/master/mmcv/model_zoo/open_mmlab.json
https://github.com/facebookresearch/pycls
https://github.com/KaimingHe/deep-residual-networks

MMDetection, Release 3.0.0rc0

• Other styles: E.g SSD which corresponds to img_norm_cfg is dict(mean=[123.675, 116.28, 103.53],
std=[1, 1, 1], to_rgb=True) and YOLOv3 which corresponds to img_norm_cfg is dict(mean=[0, 0,
0], std=[255., 255., 255.], to_rgb=True).

The detailed table of the commonly used backbone models in MMDetection is listed below :

18.4 Baselines

18.4.1 RPN

Please refer to RPN for details.

18.4.2 Faster R-CNN

Please refer to Faster R-CNN for details.

18.4.3 Mask R-CNN

Please refer to Mask R-CNN for details.

18.4.4 Fast R-CNN (with pre-computed proposals)

Please refer to Fast R-CNN for details.

18.4.5 RetinaNet

Please refer to RetinaNet for details.

18.4.6 Cascade R-CNN and Cascade Mask R-CNN

Please refer to Cascade R-CNN for details.

18.4.7 Hybrid Task Cascade (HTC)

Please refer to HTC for details.

18.4.8 SSD

Please refer to SSD for details.

142 Chapter 18. Benchmark and Model Zoo

https://github.com/open-mmlab/mmdetection/blob/master/configs/rpn
https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn
https://github.com/open-mmlab/mmdetection/blob/master/configs/mask_rcnn
https://github.com/open-mmlab/mmdetection/blob/master/configs/fast_rcnn
https://github.com/open-mmlab/mmdetection/blob/master/configs/retinanet
https://github.com/open-mmlab/mmdetection/blob/master/configs/cascade_rcnn
https://github.com/open-mmlab/mmdetection/blob/master/configs/htc
https://github.com/open-mmlab/mmdetection/blob/master/configs/ssd

MMDetection, Release 3.0.0rc0

18.4.9 Group Normalization (GN)

Please refer to Group Normalization for details.

18.4.10 Weight Standardization

Please refer to Weight Standardization for details.

18.4.11 Deformable Convolution v2

Please refer to Deformable Convolutional Networks for details.

18.4.12 CARAFE: Content-Aware ReAssembly of FEatures

Please refer to CARAFE for details.

18.4.13 Instaboost

Please refer to Instaboost for details.

18.4.14 Libra R-CNN

Please refer to Libra R-CNN for details.

18.4.15 Guided Anchoring

Please refer to Guided Anchoring for details.

18.4.16 FCOS

Please refer to FCOS for details.

18.4.17 FoveaBox

Please refer to FoveaBox for details.

18.4.18 RepPoints

Please refer to RepPoints for details.

18.4. Baselines 143

https://github.com/open-mmlab/mmdetection/blob/master/configs/gn
https://github.com/open-mmlab/mmdetection/blob/master/configs/gn+ws
https://github.com/open-mmlab/mmdetection/blob/master/configs/dcn
https://github.com/open-mmlab/mmdetection/blob/master/configs/carafe
https://github.com/open-mmlab/mmdetection/blob/master/configs/instaboost
https://github.com/open-mmlab/mmdetection/blob/master/configs/libra_rcnn
https://github.com/open-mmlab/mmdetection/blob/master/configs/guided_anchoring
https://github.com/open-mmlab/mmdetection/blob/master/configs/fcos
https://github.com/open-mmlab/mmdetection/blob/master/configs/foveabox
https://github.com/open-mmlab/mmdetection/blob/master/configs/reppoints

MMDetection, Release 3.0.0rc0

18.4.19 FreeAnchor

Please refer to FreeAnchor for details.

18.4.20 Grid R-CNN (plus)

Please refer to Grid R-CNN for details.

18.4.21 GHM

Please refer to GHM for details.

18.4.22 GCNet

Please refer to GCNet for details.

18.4.23 HRNet

Please refer to HRNet for details.

18.4.24 Mask Scoring R-CNN

Please refer to Mask Scoring R-CNN for details.

18.4.25 Train from Scratch

Please refer to Rethinking ImageNet Pre-training for details.

18.4.26 NAS-FPN

Please refer to NAS-FPN for details.

18.4.27 ATSS

Please refer to ATSS for details.

18.4.28 FSAF

Please refer to FSAF for details.

144 Chapter 18. Benchmark and Model Zoo

https://github.com/open-mmlab/mmdetection/blob/master/configs/free_anchor
https://github.com/open-mmlab/mmdetection/blob/master/configs/grid_rcnn
https://github.com/open-mmlab/mmdetection/blob/master/configs/ghm
https://github.com/open-mmlab/mmdetection/blob/master/configs/gcnet
https://github.com/open-mmlab/mmdetection/blob/master/configs/hrnet
https://github.com/open-mmlab/mmdetection/blob/master/configs/ms_rcnn
https://github.com/open-mmlab/mmdetection/blob/master/configs/scratch
https://github.com/open-mmlab/mmdetection/blob/master/configs/nas_fpn
https://github.com/open-mmlab/mmdetection/blob/master/configs/atss
https://github.com/open-mmlab/mmdetection/blob/master/configs/fsaf

MMDetection, Release 3.0.0rc0

18.4.29 RegNetX

Please refer to RegNet for details.

18.4.30 Res2Net

Please refer to Res2Net for details.

18.4.31 GRoIE

Please refer to GRoIE for details.

18.4.32 Dynamic R-CNN

Please refer to Dynamic R-CNN for details.

18.4.33 PointRend

Please refer to PointRend for details.

18.4.34 DetectoRS

Please refer to DetectoRS for details.

18.4.35 Generalized Focal Loss

Please refer to Generalized Focal Loss for details.

18.4.36 CornerNet

Please refer to CornerNet for details.

18.4.37 YOLOv3

Please refer to YOLOv3 for details.

18.4.38 PAA

Please refer to PAA for details.

18.4. Baselines 145

https://github.com/open-mmlab/mmdetection/blob/master/configs/regnet
https://github.com/open-mmlab/mmdetection/blob/master/configs/res2net
https://github.com/open-mmlab/mmdetection/blob/master/configs/groie
https://github.com/open-mmlab/mmdetection/blob/master/configs/dynamic_rcnn
https://github.com/open-mmlab/mmdetection/blob/master/configs/point_rend
https://github.com/open-mmlab/mmdetection/blob/master/configs/detectors
https://github.com/open-mmlab/mmdetection/blob/master/configs/gfl
https://github.com/open-mmlab/mmdetection/blob/master/configs/cornernet
https://github.com/open-mmlab/mmdetection/blob/master/configs/yolo
https://github.com/open-mmlab/mmdetection/blob/master/configs/paa

MMDetection, Release 3.0.0rc0

18.4.39 SABL

Please refer to SABL for details.

18.4.40 CentripetalNet

Please refer to CentripetalNet for details.

18.4.41 ResNeSt

Please refer to ResNeSt for details.

18.4.42 DETR

Please refer to DETR for details.

18.4.43 Deformable DETR

Please refer to Deformable DETR for details.

18.4.44 AutoAssign

Please refer to AutoAssign for details.

18.4.45 YOLOF

Please refer to YOLOF for details.

18.4.46 Seesaw Loss

Please refer to Seesaw Loss for details.

18.4.47 CenterNet

Please refer to CenterNet for details.

18.4.48 YOLOX

Please refer to YOLOX for details.

146 Chapter 18. Benchmark and Model Zoo

https://github.com/open-mmlab/mmdetection/blob/master/configs/sabl
https://github.com/open-mmlab/mmdetection/blob/master/configs/centripetalnet
https://github.com/open-mmlab/mmdetection/blob/master/configs/resnest
https://github.com/open-mmlab/mmdetection/blob/master/configs/detr
https://github.com/open-mmlab/mmdetection/blob/master/configs/deformable_detr
https://github.com/open-mmlab/mmdetection/blob/master/configs/autoassign
https://github.com/open-mmlab/mmdetection/blob/master/configs/yolof
https://github.com/open-mmlab/mmdetection/blob/master/configs/seesaw_loss
https://github.com/open-mmlab/mmdetection/blob/master/configs/centernet
https://github.com/open-mmlab/mmdetection/blob/master/configs/yolox

MMDetection, Release 3.0.0rc0

18.4.49 PVT

Please refer to PVT for details.

18.4.50 SOLO

Please refer to SOLO for details.

18.4.51 QueryInst

Please refer to QueryInst for details.

18.4.52 PanopticFPN

Please refer to PanopticFPN for details.

18.4.53 MaskFormer

Please refer to MaskFormer for details.

18.4.54 DyHead

Please refer to DyHead for details.

18.4.55 Mask2Former

Please refer to Mask2Former for details.

18.4.56 Efficientnet

Please refer to Efficientnet for details.

18.4.57 Other datasets

We also benchmark some methods on PASCAL VOC, Cityscapes, OpenImages and WIDER FACE.

18.4.58 Pre-trained Models

We also train Faster R-CNN and Mask R-CNN using ResNet-50 and RegNetX-3.2G with multi-scale training and longer
schedules. These models serve as strong pre-trained models for downstream tasks for convenience.

18.4. Baselines 147

https://github.com/open-mmlab/mmdetection/blob/master/configs/pvt
https://github.com/open-mmlab/mmdetection/blob/master/configs/solo
https://github.com/open-mmlab/mmdetection/blob/master/configs/queryinst
https://github.com/open-mmlab/mmdetection/blob/master/configs/panoptic_fpn
https://github.com/open-mmlab/mmdetection/blob/master/configs/maskformer
https://github.com/open-mmlab/mmdetection/blob/master/configs/dyhead
https://github.com/open-mmlab/mmdetection/blob/master/configs/mask2former
https://github.com/open-mmlab/mmdetection/blob/master/configs/efficientnet
https://github.com/open-mmlab/mmdetection/blob/master/configs/pascal_voc
https://github.com/open-mmlab/mmdetection/blob/master/configs/cityscapes
https://github.com/open-mmlab/mmdetection/blob/master/configs/openimages
https://github.com/open-mmlab/mmdetection/blob/master/configs/wider_face
https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn
https://github.com/open-mmlab/mmdetection/blob/master/configs/mask_rcnn
https://github.com/open-mmlab/mmdetection/blob/master/configs/regnet

MMDetection, Release 3.0.0rc0

18.5 Speed benchmark

18.5.1 Training Speed benchmark

We provide analyze_logs.py to get average time of iteration in training. You can find examples in Log Analysis.

We compare the training speed of Mask R-CNN with some other popular frameworks (The data is copied from detec-
tron2). For mmdetection, we benchmark with mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py, which should have the
same setting with mask_rcnn_R_50_FPN_noaug_1x.yaml of detectron2. We also provide the checkpoint and training
log for reference. The throughput is computed as the average throughput in iterations 100-500 to skip GPU warmup
time.

18.5.2 Inference Speed Benchmark

We provide benchmark.py to benchmark the inference latency. The script benchmarkes the model with 2000 images
and calculates the average time ignoring first 5 times. You can change the output log interval (defaults: 50) by setting
LOG-INTERVAL.

python tools/benchmark.py ${CONFIG} ${CHECKPOINT} [--log-interval $[LOG-INTERVAL]] [--
→˓fuse-conv-bn]

The latency of all models in our model zoo is benchmarked without setting fuse-conv-bn, you can get a lower latency
by setting it.

18.6 Comparison with Detectron2

We compare mmdetection with Detectron2 in terms of speed and performance. We use the commit id
185c27e(30/4/2020) of detectron. For fair comparison, we install and run both frameworks on the same machine.

18.6.1 Hardware

• 8 NVIDIA Tesla V100 (32G) GPUs

• Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz

18.6.2 Software environment

• Python 3.7

• PyTorch 1.4

• CUDA 10.1

• CUDNN 7.6.03

• NCCL 2.4.08

148 Chapter 18. Benchmark and Model Zoo

https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/analyze_logs.py
https://mmdetection.readthedocs.io/en/latest/useful_tools.html#log-analysis
https://github.com/facebookresearch/detectron2/blob/master/docs/notes/benchmarks.md/
https://github.com/facebookresearch/detectron2/blob/master/docs/notes/benchmarks.md/
https://github.com/open-mmlab/mmdetection/blob/master/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py
https://github.com/facebookresearch/detectron2/blob/master/configs/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x.yaml
https://download.openmmlab.com/mmdetection/v2.0/benchmark/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug_compare_20200518-10127928.pth
https://download.openmmlab.com/mmdetection/v2.0/benchmark/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug_20200518_105755.log.json
https://download.openmmlab.com/mmdetection/v2.0/benchmark/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug_20200518_105755.log.json
https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/benchmark.py
https://github.com/facebookresearch/detectron2.git
https://github.com/facebookresearch/detectron2/tree/185c27e4b4d2d4c68b5627b3765420c6d7f5a659

MMDetection, Release 3.0.0rc0

18.6.3 Performance

18.6.4 Training Speed

The training speed is measure with s/iter. The lower, the better.

18.6.5 Inference Speed

The inference speed is measured with fps (img/s) on a single GPU, the higher, the better. To be consistent with Detec-
tron2, we report the pure inference speed (without the time of data loading). For Mask R-CNN, we exclude the time
of RLE encoding in post-processing. We also include the officially reported speed in the parentheses, which is slightly
higher than the results tested on our server due to differences of hardwares.

18.6.6 Training memory

18.6. Comparison with Detectron2 149

MMDetection, Release 3.0.0rc0

150 Chapter 18. Benchmark and Model Zoo

CHAPTER

NINETEEN

CONTRIBUTION

151

MMDetection, Release 3.0.0rc0

152 Chapter 19. Contribution

CHAPTER

TWENTY

PROJECTS BASED ON MMDETECTION

There are many projects built upon MMDetection. We list some of them as examples of how to extend MMDetection
for your own projects. As the page might not be completed, please feel free to create a PR to update this page.

20.1 Projects as an extension

Some projects extend the boundary of MMDetection for deployment or other research fields. They reveal the potential
of what MMDetection can do. We list several of them as below.

• OTEDetection: OpenVINO training extensions for object detection.

• MMDetection3d: OpenMMLab’s next-generation platform for general 3D object detection.

20.2 Projects of papers

There are also projects released with papers. Some of the papers are published in top-tier conferences (CVPR, ICCV,
and ECCV), the others are also highly influential. To make this list also a reference for the community to develop
and compare new object detection algorithms, we list them following the time order of top-tier conferences. Methods
already supported and maintained by MMDetection are not listed.

• Involution: Inverting the Inherence of Convolution for Visual Recognition, CVPR21. [paper][github]

• Multiple Instance Active Learning for Object Detection, CVPR 2021. [paper][github]

• Adaptive Class Suppression Loss for Long-Tail Object Detection, CVPR 2021. [paper][github]

• Generalizable Pedestrian Detection: The Elephant In The Room, CVPR2021. [paper][github]

• Group Fisher Pruning for Practical Network Compression, ICML2021. [paper][github]

• Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax, CVPR2020.
[paper][github]

• Coherent Reconstruction of Multiple Humans from a Single Image, CVPR2020. [paper][github]

• Look-into-Object: Self-supervised Structure Modeling for Object Recognition, CVPR 2020. [paper][github]

• Video Panoptic Segmentation, CVPR2020. [paper][github]

• D2Det: Towards High Quality Object Detection and Instance Segmentation, CVPR2020. [paper][github]

• CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection, CVPR2020. [paper][github]

• Learning a Unified Sample Weighting Network for Object Detection, CVPR 2020. [paper][github]

• Scale-equalizing Pyramid Convolution for Object Detection, CVPR2020. [paper] [github]

153

https://github.com/opencv/mmdetection
https://github.com/open-mmlab/mmdetection3d
https://arxiv.org/abs/2103.06255
https://github.com/d-li14/involution
https://openaccess.thecvf.com/content/CVPR2021/papers/Yuan_Multiple_Instance_Active_Learning_for_Object_Detection_CVPR_2021_paper.pdf
https://github.com/yuantn/MI-AOD
https://arxiv.org/abs/2104.00885
https://github.com/CASIA-IVA-Lab/ACSL
https://arxiv.org/abs/2003.08799
https://github.com/hasanirtiza/Pedestron
https://github.com/jshilong/FisherPruning/blob/main/resources/paper.pdf
https://github.com/jshilong/FisherPruning
http://openaccess.thecvf.com/content_CVPR_2020/papers/Li_Overcoming_Classifier_Imbalance_for_Long-Tail_Object_Detection_With_Balanced_Group_CVPR_2020_paper.pdf
https://github.com/FishYuLi/BalancedGroupSoftmax
https://jiangwenpl.github.io/multiperson/
https://github.com/JiangWenPL/multiperson
http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhou_Look-Into-Object_Self-Supervised_Structure_Modeling_for_Object_Recognition_CVPR_2020_paper.pdf
https://github.com/JDAI-CV/LIO
https://arxiv.org/abs/2006.11339
https://github.com/mcahny/vps
http://openaccess.thecvf.com/content_CVPR_2020/html/Cao_D2Det_Towards_High_Quality_Object_Detection_and_Instance_Segmentation_CVPR_2020_paper.html
https://github.com/JialeCao001/D2Det
https://arxiv.org/abs/2003.09119
https://github.com/KiveeDong/CentripetalNet
http://openaccess.thecvf.com/content_CVPR_2020/html/Cai_Learning_a_Unified_Sample_Weighting_Network_for_Object_Detection_CVPR_2020_paper.html
https://github.com/caiqi/sample-weighting-network
https://arxiv.org/abs/2005.03101
https://github.com/jshilong/SEPC

MMDetection, Release 3.0.0rc0

• Revisiting the Sibling Head in Object Detector, CVPR2020. [paper][github]

• PolarMask: Single Shot Instance Segmentation with Polar Representation, CVPR2020. [paper][github]

• Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection, CVPR2020. [paper][github]

• ZeroQ: A Novel Zero Shot Quantization Framework, CVPR2020. [paper][github]

• CBNet: A Novel Composite Backbone Network Architecture for Object Detection, AAAI2020. [paper][github]

• RDSNet: A New Deep Architecture for Reciprocal Object Detection and Instance Segmentation, AAAI2020.
[paper][github]

• Training-Time-Friendly Network for Real-Time Object Detection, AAAI2020. [paper][github]

• Cascade RPN: Delving into High-Quality Region Proposal Network with Adaptive Convolution, NeurIPS 2019.
[paper][github]

• Reasoning R-CNN: Unifying Adaptive Global Reasoning into Large-scale Object Detection, CVPR2019. [pa-
per][github]

• Learning RoI Transformer for Oriented Object Detection in Aerial Images, CVPR2019. [paper][github]

• SOLO: Segmenting Objects by Locations. [paper][github]

• SOLOv2: Dynamic, Faster and Stronger. [paper][github]

• Dense Peppoints: Representing Visual Objects with Dense Point Sets. [paper][github]

• IterDet: Iterative Scheme for Object Detection in Crowded Environments. [paper][github]

• Cross-Iteration Batch Normalization. [paper][github]

• A Ranking-based, Balanced Loss Function Unifying Classification and Localisation in Object Detection,
NeurIPS2020 [paper][github]

• RelationNet++: Bridging Visual Representations for Object Detection via Transformer Decoder, NeurIPS2020
[paper][github]

• Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection,
CVPR2021[paper][github]

• Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV2021[paper][github]

• Focal Transformer: Focal Self-attention for Local-Global Interactions in Vision Transformers,
NeurIPS2021[paper][github]

• End-to-End Semi-Supervised Object Detection with Soft Teacher, ICCV2021[paper][github]

• CBNetV2: A Novel Composite Backbone Network Architecture for Object Detection [paper][github]

• Instances as Queries, ICCV2021 [paper][github]

154 Chapter 20. Projects based on MMDetection

https://arxiv.org/abs/2003.07540
https://github.com/Sense-X/TSD
https://arxiv.org/abs/1909.13226
https://github.com/xieenze/PolarMask
https://arxiv.org/abs/2003.11818
https://github.com/ggjy/HitDet.pytorch
https://arxiv.org/abs/2001.00281
https://github.com/amirgholami/ZeroQ
https://aaai.org/Papers/AAAI/2020GB/AAAI-LiuY.1833.pdf
https://github.com/VDIGPKU/CBNet
https://arxiv.org/abs/1912.05070
https://github.com/wangsr126/RDSNet
https://arxiv.org/abs/1909.00700
https://github.com/ZJULearning/ttfnet
https://arxiv.org/abs/1909.06720
https://github.com/thangvubk/Cascade-RPN
http://openaccess.thecvf.com/content_CVPR_2019/papers/Xu_Reasoning-RCNN_Unifying_Adaptive_Global_Reasoning_Into_Large-Scale_Object_Detection_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Xu_Reasoning-RCNN_Unifying_Adaptive_Global_Reasoning_Into_Large-Scale_Object_Detection_CVPR_2019_paper.pdf
https://github.com/chanyn/Reasoning-RCNN
https://arxiv.org/abs/1812.00155
https://github.com/dingjiansw101/AerialDetection
https://arxiv.org/abs/1912.04488
https://github.com/WXinlong/SOLO
https://arxiv.org/abs/2003.10152
https://github.com/WXinlong/SOLO
https://arxiv.org/abs/1912.11473
https://github.com/justimyhxu/Dense-RepPoints
https://arxiv.org/abs/2005.05708
https://github.com/saic-vul/iterdet
https://arxiv.org/abs/2002.05712
https://github.com/Howal/Cross-iterationBatchNorm
https://arxiv.org/abs/2009.13592
https://github.com/kemaloksuz/aLRPLoss
https://arxiv.org/abs/2010.15831
https://github.com/microsoft/RelationNet2
https://arxiv.org/abs/2011.12885
https://github.com/implus/GFocalV2
https://arxiv.org/abs/2103.14030
https://github.com/SwinTransformer/
https://arxiv.org/abs/2107.00641
https://github.com/microsoft/Focal-Transformer
https://arxiv.org/abs/2106.09018
https://github.com/microsoft/SoftTeacher
http://arxiv.org/abs/2107.00420
https://github.com/VDIGPKU/CBNetV2
https://openaccess.thecvf.com/content/ICCV2021/papers/Fang_Instances_As_Queries_ICCV_2021_paper.pdf
https://github.com/hustvl/QueryInst

CHAPTER

TWENTYONE

CHANGELOG OF V3.X

21.1 v3.0.0rc0 (31/8/2022)

We are excited to announce the release of MMDetection 3.0.0rc0. MMDet 3.0.0rc0 is the first version of MMDetection
3.x, a part of the OpenMMLab 2.0 projects. Built upon the new training engine, MMDet 3.x unifies the interfaces of
the dataset, models, evaluation, and visualization with faster training and testing speed. It also provides a general
semi-supervised object detection framework and strong baselines.

21.1.1 Highlights

1. New engine. MMDet 3.x is based on MMEngine, which provides a universal and powerful runner that allows
more flexible customizations and significantly simplifies the entry points of high-level interfaces.

2. Unified interfaces. As a part of the OpenMMLab 2.0 projects, MMDet 3.x unifies and refactors the interfaces
and internal logic of training, testing, datasets, models, evaluation, and visualization. All the OpenMMLab
2.0 projects share the same design in those interfaces and logic to allow the emergence of multi-task/modality
algorithms.

3. Faster speed. We optimize the training and inference speed for common models and configurations, achieving
a faster or similar speed than Detection2. Model details of benchmark will be updated in this note.

4. General semi-supervised object detection. Benefitting from the unified interfaces, we support a general semi-
supervised learning framework that works with all the object detectors supported in MMDet 3.x. Please refer to
semi-supervised object detection for details.

5. Strong baselines. We release strong baselines of many popular models to enable fair comparisons among state-
of-the-art models.

6. New features and algorithms:

• Enable all the single-stage detectors to serve as region proposal networks

• SoftTeacher

• the updated CenterNet

7. More documentation and tutorials. We add a bunch of documentation and tutorials to help users get started
more smoothly. Read it here.

155

https://github.com/open-mmlab/mmengine
https://github.com/open-mmlab/mmengine
https://github.com/facebookresearch/detectron2/
https://arxiv.org/abs/2106.09018
https://arxiv.org/abs/2103.07461
https://mmdetection.readthedocs.io/en/3.x/

MMDetection, Release 3.0.0rc0

21.1.2 Breaking Changes

MMDet 3.x has undergone significant changes for better design, higher efficiency, more flexibility, and more unified
interfaces. Besides the changes in API, we briefly list the major breaking changes in this section. We will update the
migration guide to provide complete details and migration instructions. Users can also refer to the API doc for more
details.

Dependencies

• MMDet 3.x runs on PyTorch>=1.6. We have deprecated the support of PyTorch 1.5 to embrace mixed precision
training and other new features since PyTorch 1.6. Some models can still run on PyTorch 1.5, but the full
functionality of MMDet 3.x is not guaranteed.

• MMDet 3.x relies on MMEngine to run. MMEngine is a new foundational library for training deep learning
models of OpenMMLab and is the core dependency of OpenMMLab 2.0 projects. The dependencies of file IO
and training are migrated from MMCV 1.x to MMEngine.

• MMDet 3.x relies on MMCV>=2.0.0rc0. Although MMCV no longer maintains the training functionalities since
2.0.0rc0, MMDet 3.x relies on the data transforms, CUDA operators, and image processing interfaces in MMCV.
Note that the package mmcv is the version that provides pre-built CUDA operators and mmcv-lite does not since
MMCV 2.0.0rc0, while mmcv-full has been deprecated since 2.0.0rc0.

Training and testing

• MMDet 3.x uses Runner in MMEngine rather than that in MMCV. The new Runner implements and unifies the
building logic of the dataset, model, evaluation, and visualizer. Therefore, MMDet 3.x no longer maintains the
building logic of those modules in mmdet.train.apis and tools/train.py. Those codes have been migrated
into MMEngine. Please refer to the migration guide of Runner in MMEngine for more details.

• The Runner in MMEngine also supports testing and validation. The testing scripts are also simplified, which has
similar logic to that in training scripts to build the runner.

• The execution points of hooks in the new Runner have been enriched to allow more flexible customization. Please
refer to the migration guide of Hook in MMEngine for more details.

• Learning rate and momentum schedules have been migrated from Hook to Parameter Scheduler in MMEngine.
Please refer to the migration guide of Parameter Scheduler in MMEngine for more details.

Configs

• The Runner in MMEngine uses a different config structure to ease the understanding of the components in the
runner. Users can read the config example of MMDet 3.x or refer to the migration guide in MMEngine for
migration details.

• The file names of configs and models are also refactored to follow the new rules unified across OpenMMLab
2.0 projects. The names of checkpoints are not updated for now as there is no BC-breaking of model weights
between MMDet 3.x and 2.x. We will progressively replace all the model weights with those trained in MMDet
3.x. Please refer to the user guides of config for more details.

156 Chapter 21. Changelog of v3.x

https://mmdetection.readthedocs.io/en/3.x/
https://github.com/open-mmlab/mmengine
https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/runner.py
https://mmengine.readthedocs.io/en/latest/migration/runner.html
https://mmengine.readthedocs.io/en/latest/migration/hook.html
https://mmengine.readthedocs.io/en/latest/tutorials/param_scheduler.html
https://mmengine.readthedocs.io/en/latest/migration/param_scheduler.html
https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/runner.py
https://mmengine.readthedocs.io/en/latest/migration/runner.html

MMDetection, Release 3.0.0rc0

Dataset

The Dataset classes implemented in MMDet 3.x all inherit from the BaseDetDataset, which inherits from the Base-
Dataset in MMEngine. In addition to the changes in interfaces, there are several changes in Dataset in MMDet 3.x.

• All the datasets support serializing the internal data list to reduce the memory when multiple workers are built
for data loading.

• The internal data structure in the dataset is changed to be self-contained (without losing information like class
names in MMDet 2.x) while keeping simplicity.

• The evaluation functionality of each dataset has been removed from the dataset so that some specific evaluation
metrics like COCO AP can be used to evaluate the prediction on other datasets.

Data Transforms

The data transforms in MMDet 3.x all inherits from BaseTransform in MMCV>=2.0.0rc0, which defines a new
convention in OpenMMLab 2.0 projects. Besides the interface changes, there are several changes listed below:

• The functionality of some data transforms (e.g., Resize) are decomposed into several transforms to simplify and
clarify the usages.

• The format of data dict processed by each data transform is changed according to the new data structure of dataset.

• Some inefficient data transforms (e.g., normalization and padding) are moved into data preprocessor of model to
improve data loading and training speed.

• The same data transforms in different OpenMMLab 2.0 libraries have the same augmentation implementation
and the logic given the same arguments, i.e., Resize in MMDet 3.x and MMSeg 1.x will resize the image in the
exact same manner given the same arguments.

Model

The models in MMDet 3.x all inherit from BaseModel in MMEngine, which defines a new convention of models in
OpenMMLab 2.0 projects. Users can refer to the tutorial of the model in MMengine for more details. Accordingly,
there are several changes as the following:

• The model interfaces, including the input and output formats, are significantly simplified and unified following the
new convention in MMDet 3.x. Specifically, all the input data in training and testing are packed into inputs and
data_samples, where inputs contains model inputs like a list of image tensors, and data_samples contains
other information of the current data sample such as ground truths, region proposals, and model predictions.
In this way, different tasks in MMDet 3.x can share the same input arguments, which makes the models more
general and suitable for multi-task learning and some flexible training paradigms like semi-supervised learning.

• The model has a data preprocessor module, which is used to pre-process the input data of the model. In MMDet
3.x, the data preprocessor usually does the necessary steps to form the input images into a batch, such as padding.
It can also serve as a place for some special data augmentations or more efficient data transformations like
normalization.

• The internal logic of the model has been changed. In MMdet 2.x, model uses forward_train, forward_test,
simple_test, and aug_test to deal with different model forward logics. In MMDet 3.x and OpenMMLab 2.0,
the forward function has three modes: ‘loss’, ‘predict’, and ‘tensor’ for training, inference, and tracing or other
purposes, respectively. The forward function calls self.loss, self.predict, and self._forward given the
modes ‘loss’, ‘predict’, and ‘tensor’, respectively.

21.1. v3.0.0rc0 (31/8/2022) 157

https://mmengine.readthedocs.io/en/latest/advanced_tutorials/basedataset.html
https://mmengine.readthedocs.io/en/latest/advanced_tutorials/basedataset.html
https://mmengine.readthedocs.io/en/latest/tutorials/model.html

MMDetection, Release 3.0.0rc0

Evaluation

The evaluation in MMDet 2.x strictly binds with the dataset. In contrast, MMDet 3.x decomposes the evaluation from
dataset so that all the detection datasets can evaluate with COCO AP and other metrics implemented in MMDet 3.x.
MMDet 3.x mainly implements corresponding metrics for each dataset, which are manipulated by Evaluator to complete
the evaluation. Users can build an evaluator in MMDet 3.x to conduct offline evaluation, i.e., evaluate predictions that
may not produce in MMDet 3.x with the dataset as long as the dataset and the prediction follow the dataset conventions.
More details can be found in the tutorial in mmengine.

Visualization

The functions of visualization in MMDet 2.x are removed. Instead, in OpenMMLab 2.0 projects, we use Visualizer
to visualize data. MMDet 3.x implements DetLocalVisualizer to allow visualization of ground truths, model pre-
dictions, feature maps, etc., at any place. It also supports sending the visualization data to any external visualization
backends such as Tensorboard.

21.1.3 Improvements

• Optimized training and testing speed of FCOS, RetinaNet, Faster R-CNN, Mask R-CNN, and Cascade R-CNN.
The training speed of those models with some common training strategies is also optimized, including those with
synchronized batch normalization and mixed precision training.

• Support mixed precision training of all the models. However, some models may get undesirable performance due
to some numerical issues. We will update the documentation and list the results (accuracy of failure) of mixed
precision training.

• Release strong baselines of some popular object detectors. Their accuracy and pre-trained checkpoints will be
released.

21.1.4 Bug Fixes

• DeepFashion dataset: the config and results have been updated.

21.1.5 New Features

1. Support a general semi-supervised learning framework that works with all the object detectors supported in
MMDet 3.x. Please refer to semi-supervised object detection for details.

2. Enable all the single-stage detectors to serve as region proposal networks. We give an example of using FCOS
as RPN .

3. Support a semi-supervised object detection algorithm: SoftTeacher.

4. Support the updated CenterNet.

5. Support data structures HorizontalBoxes and BaseBoxes to encapsulate different kinds of bounding boxes.
We are migrating to use data structures of boxes to replace the use of pure tensor boxes. This will unify the
usages of different kinds of bounding boxes in MMDet 3.x and MMRotate 1.x to simplify the implementation
and reduce redundant codes.

158 Chapter 21. Changelog of v3.x

https://mmengine.readthedocs.io/en/latest/design/evaluator.html
https://mmengine.readthedocs.io/en/latest/tutorials/evaluation.html
https://mmengine.readthedocs.io/en/latest/design/visualization.html
https://arxiv.org/abs/2106.09018
https://arxiv.org/abs/2103.07461

MMDetection, Release 3.0.0rc0

21.1.6 Planned changes

We list several planned changes of MMDet 3.0.0rc0 so that the community could more comprehensively know the
progress of MMDet 3.x. Feel free to create a PR, issue, or discussion if you are interested, have any suggestions and
feedback, or want to participate.

1. Test-time augmentation: which is supported in MMDet 2.x, is not implemented in this version due to the limited
time slot. We will support it in the following releases with a new and simplified design.

2. Inference interfaces: unified inference interfaces will be supported in the future to ease the use of released models.

3. Interfaces of useful tools that can be used in Jupyter Notebook or Colab: more useful tools that are implemented
in the tools directory will have their python interfaces so that they can be used in Jupyter Notebook, Colab, and
downstream libraries.

4. Documentation: we will add more design docs, tutorials, and migration guidance so that the community can
deep dive into our new design, participate the future development, and smoothly migrate downstream libraries
to MMDet 3.x.

5. Wandb visualization: MMDet 2.x supports data visualization since v2.25.0, which has not been migrated to
MMDet 3.x for now. Since WandB provides strong visualization and experiment management capabilities, a
DetWandBVisualizer and maybe a hook are planned to fully migrate those functionalities from MMDet 2.x.

6. Full support of WiderFace dataset (#8508) and Fast R-CNN: we are verifying their functionalities and will fix
related issues soon.

7. Migrate DETR-series algorithms (#8655, #8533) and YOLOv3 on IPU (#8552) from MMDet 2.x.

21.1.7 Contributors

A total of 11 developers contributed to this release. Thanks @shuxp, @wanghonglie, @Czm369, @BIGWangYuDong,
@zytx121, @jbwang1997, @chhluo, @jshilong, @RangiLyu, @hhaAndroid, @ZwwWayne

21.1. v3.0.0rc0 (31/8/2022) 159

MMDetection, Release 3.0.0rc0

160 Chapter 21. Changelog of v3.x

CHAPTER

TWENTYTWO

CHANGELOG V2.X

22.1 v2.25.0 (31/5/2022)

22.1.1 Highlights

• Support dedicated WandbLogger hook

• Support ConvNeXt, DDOD, SOLOv2

• Support Mask2Former for instance segmentation

• Rename config files of Mask2Former

22.1.2 Backwards incompatible changes

• Rename config files of Mask2Former (#7571)

– mask2former_xxx_coco.py represents config files for panoptic segmentation.

– mask2former_xxx_coco.py represents config files for instance segmentation.

– mask2former_xxx_coco-panoptic.py represents config files for panoptic segmentation.

22.1.3 New Features

• Support ConvNeXt (#7281)

• Support DDOD (#7279)

• Support SOLOv2 (#7441)

• Support Mask2Former for instance segmentation (#7571, #8032)

22.1.4 Bug Fixes

• Enable YOLOX training on different devices (#7912)

• Fix the log plot error when evaluation with interval != 1 (#7784)

• Fix RuntimeError of HTC (#8083)

161

https://arxiv.org/abs/2201.03545
https://arxiv.org/abs/2107.02963
https://arxiv.org/abs/2003.10152
https://arxiv.org/abs/2112.01527

MMDetection, Release 3.0.0rc0

22.1.5 Improvements

• Support dedicated WandbLogger hook (#7459)

Users can set

cfg.log_config.hooks = [
dict(type='MMDetWandbHook',

init_kwargs={'project': 'MMDetection-tutorial'},
interval=10,
log_checkpoint=True,
log_checkpoint_metadata=True,
num_eval_images=10)]

in the config to use MMDetWandbHook. Example can be found in this colab tutorial

• Add AvoidOOM to avoid OOM (#7434, #8091)

Try to use AvoidCUDAOOM to avoid GPU out of memory. It will first retry after calling torch.cuda.
empty_cache(). If it still fails, it will then retry by converting the type of inputs to FP16 format. If it still
fails, it will try to copy inputs from GPUs to CPUs to continue computing. Try AvoidOOM in code to make the
code continue to run when GPU memory runs out:

from mmdet.utils import AvoidCUDAOOM

output = AvoidCUDAOOM.retry_if_cuda_oom(some_function)(input1, input2)

Users can also try AvoidCUDAOOM as a decorator to make the code continue to run when GPU memory runs out:

from mmdet.utils import AvoidCUDAOOM

@AvoidCUDAOOM.retry_if_cuda_oom
def function(*args, **kwargs):

...
return xxx

• Support reading gpu_collect from cfg.evaluation.gpu_collect (#7672)

• Speedup the Video Inference by Accelerating data-loading Stage (#7832)

• Support replacing the ${key} with the value of cfg.key (#7492)

• Accelerate result analysis in analyze_result.py. The evaluation time is speedup by 10 ~ 15 times and only
tasks 10 ~ 15 minutes now. (#7891)

• Support to set block_dilations in DilatedEncoder (#7812)

• Support panoptic segmentation result analysis (#7922)

• Release DyHead with Swin-Large backbone (#7733)

• Documentations updating and adding

– Fix wrong default type of act_cfg in SwinTransformer (#7794)

– Fix text errors in the tutorials (#7959)

– Rewrite the installation guide (#7897)

– Useful hooks (#7810)

– Fix heading anchor in documentation (#8006)

162 Chapter 22. Changelog v2.x

https://colab.research.google.com/drive/1RCSXHZwDZvakFh3eo9RuNrJbCGqD0dru?usp=sharing#scrollTo=WTEdPDRaBz2C

MMDetection, Release 3.0.0rc0

– Replace markdownlint with mdformat for avoiding installing ruby (#8009)

22.1.6 Contributors

A total of 20 developers contributed to this release.

Thanks @ZwwWayne, @DarthThomas, @solyaH, @LutingWang, @chenxinfeng4, @Czm369, @Chenastron, @chh-
luo, @austinmw, @Shanyaliux @hellock, @Y-M-Y, @jbwang1997, @hhaAndroid, @Irvingao, @zhanggefan, @BIG-
WangYuDong, @Keiku, @PeterVennerstrom, @ayulockin

22.2 v2.24.0 (26/4/2022)

22.2.1 Highlights

• Support Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation

• Support automatically scaling LR according to GPU number and samples per GPU

• Support Class Aware Sampler that improves performance on OpenImages Dataset

22.2.2 New Features

• Support Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation, see example
configs (#7501)

• Support Class Aware Sampler, users can set

data=dict(train_dataloader=dict(class_aware_sampler=dict(num_sample_class=1))))

in the config to use ClassAwareSampler. Examples can be found in the configs of OpenImages Dataset. (#7436)

• Support automatically scaling LR according to GPU number and samples per GPU. (#7482) In each config, there
is a corresponding config of auto-scaling LR as below,

auto_scale_lr = dict(enable=True, base_batch_size=N)

where N is the batch size used for the current learning rate in the config (also equals to samples_per_gpu * gpu
number to train this config). By default, we set enable=False so that the original usages will not be affected.
Users can set enable=True in each config or add --auto-scale-lr after the command line to enable this
feature and should check the correctness of base_batch_size in customized configs.

• Support setting dataloader arguments in config and add functions to handle config compatibility. (#7668) The
comparison between the old and new usages is as below.

data = dict(
samples_per_gpu=64, workers_per_gpu=4,
train=dict(type='xxx', ...),
val=dict(type='xxx', samples_per_gpu=4, ...),
test=dict(type='xxx', ...),

)

22.2. v2.24.0 (26/4/2022) 163

https://arxiv.org/abs/2012.07177
https://arxiv.org/abs/2012.07177
https://github.com/open-mmlab/mmdetection/tree/master/configs/openimages/faster_rcnn_r50_fpn_32x2_cas_1x_openimages.py

MMDetection, Release 3.0.0rc0

A recommended config that is clear
data = dict(

train=dict(type='xxx', ...),
val=dict(type='xxx', ...),
test=dict(type='xxx', ...),
Use different batch size during inference.
train_dataloader=dict(samples_per_gpu=64, workers_per_gpu=4),
val_dataloader=dict(samples_per_gpu=8, workers_per_gpu=2),
test_dataloader=dict(samples_per_gpu=8, workers_per_gpu=2),

)

Old style still works but allows to set more arguments about data loaders
data = dict(

samples_per_gpu=64, # only works for train_dataloader
workers_per_gpu=4, # only works for train_dataloader
train=dict(type='xxx', ...),
val=dict(type='xxx', ...),
test=dict(type='xxx', ...),
Use different batch size during inference.
val_dataloader=dict(samples_per_gpu=8, workers_per_gpu=2),
test_dataloader=dict(samples_per_gpu=8, workers_per_gpu=2),

)

• Support memory profile hook. Users can use it to monitor the memory usages during training as below (#7560)

custom_hooks = [
dict(type='MemoryProfilerHook', interval=50)

]

• Support to run on PyTorch with MLU chip (#7578)

• Support re-spliting data batch with tag (#7641)

• Support the DiceCost used by K-Net in MaskHungarianAssigner (#7716)

• Support splitting COCO data for Semi-supervised object detection (#7431)

• Support Pathlib for Config.fromfile (#7685)

• Support to use file client in OpenImages dataset (#7433)

• Add a probability parameter to Mosaic transformation (#7371)

• Support specifying interpolation mode in Resize pipeline (#7585)

22.2.3 Bug Fixes

• Avoid invalid bbox after deform_sampling (#7567)

• Fix the issue that argument color_theme does not take effect when exporting confusion matrix (#7701)

• Fix the end_level in Necks, which should be the index of the end input backbone level (#7502)

• Fix the bug that mix_results may be None in MultiImageMixDataset (#7530)

• Fix the bug in ResNet plugin when two plugins are used (#7797)

164 Chapter 22. Changelog v2.x

https://arxiv.org/abs/2106.14855

MMDetection, Release 3.0.0rc0

22.2.4 Improvements

• Enhance load_json_logs of analyze_logs.py for resumed training logs (#7732)

• Add argument out_file in image_demo.py (#7676)

• Allow mixed precision training with SimOTAAssigner (#7516)

• Updated INF to 100000.0 to be the same as that in the official YOLOX (#7778)

• Add documentations of:

– how to get channels of a new backbone (#7642)

– how to unfreeze the backbone network (#7570)

– how to train fast_rcnn model (#7549)

– proposals in Deformable DETR (#7690)

– from-scratch install script in get_started.md (#7575)

• Release pre-trained models of

– Mask2Former (#7595, #7709)

– RetinaNet with ResNet-18 and release models (#7387)

– RetinaNet with EfficientNet backbone (#7646)

22.2.5 Contributors

A total of 27 developers contributed to this release. Thanks @jovialio, @zhangsanfeng2022, @Har-
ryZJ, @jamiechoi1995, @nestiank, @PeterH0323, @RangeKing, @Y-M-Y, @mattcasey02, @weiji14, @Yulv-
git, @xiefeifeihu, @FANG-MING, @meng976537406, @nijkah, @sudz123, @CCODING04, @SheffieldCao,
@Czm369, @BIGWangYuDong, @zytx121, @jbwang1997, @chhluo, @jshilong, @RangiLyu, @hhaAndroid,
@ZwwWayne

22.3 v2.23.0 (28/3/2022)

22.3.1 Highlights

• Support Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation

• Support EfficientNet: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

• Support setting data root through environment variable MMDET_DATASETS, users don’t have to modify the corre-
sponding path in config files anymore.

• Find a good recipe for fine-tuning high precision ResNet backbone pre-trained by Torchvision.

22.3. v2.23.0 (28/3/2022) 165

https://arxiv.org/abs/2112.01527
https://arxiv.org/abs/1905.11946

MMDetection, Release 3.0.0rc0

22.3.2 New Features

• Support Mask2Former(#6938)(#7466)(#7471)

• Support EfficientNet (#7514)

• Support setting data root through environment variable MMDET_DATASETS, users don’t have to modify the corre-
sponding path in config files anymore. (#7386)

• Support setting different seeds to different ranks (#7432)

• Update the dist_train.sh so that the script can be used to support launching multi-node training on machines
without slurm (#7415)

• Find a good recipe for fine-tuning high precision ResNet backbone pre-trained by Torchvision (#7489)

22.3.3 Bug Fixes

• Fix bug in VOC unit test which removes the data directory (#7270)

• Adjust the order of get_classes and FileClient (#7276)

• Force the inputs of get_bboxes in yolox_head to float32 (#7324)

• Fix misplaced arguments in LoadPanopticAnnotations (#7388)

• Fix reduction=mean in CELoss. (#7449)

• Update unit test of CrossEntropyCost (#7537)

• Fix memory leaking in panpotic segmentation evaluation (#7538)

• Fix the bug of shape broadcast in YOLOv3 (#7551)

22.3.4 Improvements

• Add Chinese version of onnx2tensorrt.md (#7219)

• Update colab tutorials (#7310)

• Update information about Localization Distillation (#7350)

• Add Chinese version of finetune.md (#7178)

• Update YOLOX log for non square input (#7235)

• Add nproc in coco_panoptic.py for panoptic quality computing (#7315)

• Allow to set channel_order in LoadImageFromFile (#7258)

• Take point sample related functions out of mask_point_head (#7353)

• Add instance evaluation for coco_panoptic (#7313)

• Enhance the robustness of analyze_logs.py (#7407)

• Supplementary notes of sync_random_seed (#7440)

• Update docstring of cross entropy loss (#7472)

• Update pascal voc result (#7503)

• We create How-to documentation to record any questions about How to xxx. In this version, we added

– How to use Mosaic augmentation (#7507)

166 Chapter 22. Changelog v2.x

MMDetection, Release 3.0.0rc0

– How to use backbone in mmcls (#7438)

– How to produce and submit the prediction results of panoptic segmentation models on COCO test-dev set
(#7430))

22.3.5 Contributors

A total of 27 developers contributed to this release. Thanks @ZwwWayne, @haofanwang, @shinya7y, @chh-
luo, @yangrisheng, @triple-Mu, @jbwang1997, @HikariTJU, @imflash217, @274869388, @zytx121, @ma-
trixgame2018, @jamiechoi1995, @BIGWangYuDong, @JingweiZhang12, @Xiangxu-0103, @hhaAndroid, @jshi-
long, @osbm, @ceroytres, @bunge-bedstraw-herb, @Youth-Got, @daavoo, @jiangyitong, @RangiLyu, @CCOD-
ING04, @yarkable

22.4 v2.22.0 (24/2/2022)

22.4.1 Highlights

• Support MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation (#7212)

• Support DyHead: Dynamic Head: Unifying Object Detection Heads with Attentions (#6823)

• Release a good recipe of using ResNet in object detectors pre-trained by ResNet Strikes Back, which consistently
brings about 3~4 mAP improvements over RetinaNet, Faster/Mask/Cascade Mask R-CNN (#7001)

• Support Open Images Dataset (#6331)

• Support TIMM backbone: PyTorch Image Models (#7020)

22.4.2 New Features

• Support MaskFormer (#7212)

• Support DyHead (#6823)

• Support ResNet Strikes Back (#7001)

• Support OpenImages Dataset (#6331)

• Support TIMM backbone (#7020)

• Support visualization for Panoptic Segmentation (#7041)

22.4.3 Breaking Changes

In order to support the visualization for Panoptic Segmentation, the num_classes can not be None when using the
get_palette function to determine whether to use the panoptic palette.

22.4. v2.22.0 (24/2/2022) 167

https://arxiv.org/abs/2107.06278
https://arxiv.org/abs/2106.08322
https://arxiv.org/abs/2110.00476
https://storage.googleapis.com/openimages/web/index.html
https://github.com/rwightman/pytorch-image-models

MMDetection, Release 3.0.0rc0

22.4.4 Bug Fixes

• Fix bug for the best checkpoints can not be saved when the key_score is None (#7101)

• Fix MixUp transform filter boxes failing case (#7080)

• Add missing properties in SABLHead (#7091)

• Fix bug when NaNs exist in confusion matrix (#7147)

• Fix PALETTE AttributeError in downstream task (#7230)

22.4.5 Improvements

• Speed up SimOTA matching (#7098)

• Add Chinese translation of docs_zh-CN/tutorials/init_cfg.md (#7188)

22.4.6 Contributors

A total of 20 developers contributed to this release. Thanks @ZwwWayne, @hhaAndroid, @RangiLyu, @Aron-
Lin, @BIGWangYuDong, @jbwang1997, @zytx121, @chhluo, @shinya7y, @LuooChen, @dvansa, @siatwang-
min, @del-zhenwu, @vikashranjan26, @haofanwang, @jamiechoi1995, @HJoonKwon, @yarkable, @zhijian-liu,
@RangeKing

22.5 v2.21.0 (8/2/2022)

22.6 Breaking Changes

To standardize the contents in config READMEs and meta files of OpenMMLab projects, the READMEs and meta
files in each config directory have been significantly changed. The template will be released in the future, for now, you
can refer to the examples of README for algorithm, dataset and backbone. To align with the standard, the configs in
dcn are put into to two directories named dcn and dcnv2.

22.6.1 New Features

• Allow to customize colors of different classes during visualization (#6716)

• Support CPU training (#7016)

• Add download script of COCO, LVIS, and VOC dataset (#7015)

168 Chapter 22. Changelog v2.x

https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn/README.md
https://github.com/open-mmlab/mmdetection/blob/master/configs/deepfashion/README.md
https://github.com/open-mmlab/mmdetection/blob/master/configs/regnet/README.md

MMDetection, Release 3.0.0rc0

22.6.2 Bug Fixes

• Fix weight conversion issue of RetinaNet with Swin-S (#6973)

• Update __repr__ of Compose (#6951)

• Fix BadZipFile Error when build docker (#6966)

• Fix bug in non-distributed multi-gpu training/testing (#7019)

• Fix bbox clamp in PyTorch 1.10 (#7074)

• Relax the requirement of PALETTE in dataset wrappers (#7085)

• Keep the same weights before reassign in the PAA head (#7032)

• Update code demo in doc (#7092)

22.6.3 Improvements

• Speed-up training by allow to set variables of multi-processing (#6974, #7036)

• Add links of Chinese tutorials in readme (#6897)

• Disable cv2 multiprocessing by default for acceleration (#6867)

• Deprecate the support for “python setup.py test” (#6998)

• Re-organize metafiles and config readmes (#7051)

• Fix None grad problem during training TOOD by adding SigmoidGeometricMean (#7090)

22.6.4 Contributors

A total of 26 developers contributed to this release. Thanks @del-zhenwu, @zimoqingfeng, @srishilesh, @imyhxy,
@jenhaoyang, @jliu-ac, @kimnamu, @ShengliLiu, @garvan2021, @ciusji, @DIYer22, @kimnamu, @q3394101,
@zhouzaida, @gaotongxiao, @topsy404, @AntoAndGar, @jbwang1997, @nijkah, @ZwwWayne, @Czm369, @jshi-
long, @RangiLyu, @BIGWangYuDong, @hhaAndroid, @AronLin

22.7 v2.20.0 (27/12/2021)

22.7.1 New Features

• Support TOOD: Task-aligned One-stage Object Detection (ICCV 2021 Oral) (#6746)

• Support resuming from the latest checkpoint automatically (#6727)

22.7. v2.20.0 (27/12/2021) 169

MMDetection, Release 3.0.0rc0

22.7.2 Bug Fixes

• Fix wrong bbox loss_weight of the PAA head (#6744)

• Fix the padding value of gt_semantic_seg in batch collating (#6837)

• Fix test error of lvis when using classwise (#6845)

• Avoid BC-breaking of get_local_path (#6719)

• Fix bug in sync_norm_hook when the BN layer does not exist (#6852)

• Use pycocotools directly no matter what platform it is (#6838)

22.7.3 Improvements

• Add unit test for SimOTA with no valid bbox (#6770)

• Use precommit to check readme (#6802)

• Support selecting GPU-ids in non-distributed testing time (#6781)

22.7.4 Contributors

A total of 16 developers contributed to this release. Thanks @ZwwWayne, @Czm369, @jshilong, @RangiLyu, @BIG-
WangYuDong, @hhaAndroid, @jamiechoi1995, @AronLin, @Keiku, @gkagkos, @fcakyon, @www516717402,
@vansin, @zactodd, @kimnamu, @jenhaoyang

22.8 v2.19.1 (14/12/2021)

22.8.1 New Features

• Release YOLOX COCO pretrained models (#6698)

22.8.2 Bug Fixes

• Fix DCN initialization in DenseHead (#6625)

• Fix initialization of ConvFCHead (#6624)

• Fix PseudoSampler in RCNN (#6622)

• Fix weight initialization in Swin and PVT (#6663)

• Fix dtype bug in BaseDenseHead (#6767)

• Fix SimOTA with no valid bbox (#6733)

170 Chapter 22. Changelog v2.x

MMDetection, Release 3.0.0rc0

22.8.3 Improvements

• Add an example of combining swin and one-stage models (#6621)

• Add get_ann_info to dataset_wrappers (#6526)

• Support keeping image ratio in the multi-scale training of YOLOX (#6732)

• Support bbox_clip_border for the augmentations of YOLOX (#6730)

22.8.4 Documents

• Update metafile (#6717)

• Add mmhuman3d in readme (#6699)

• Update FAQ docs (#6587)

• Add doc for detect_anomalous_params (#6697)

22.8.5 Contributors

A total of 11 developers contributed to this release. Thanks @ZwwWayne, @LJoson, @Czm369, @jshilong, @ZC-
Max, @RangiLyu, @BIGWangYuDong, @hhaAndroid, @zhaoxin111, @GT9505, @shinya7y

22.9 v2.19.0 (29/11/2021)

22.9.1 Highlights

• Support Label Assignment Distillation

• Support persistent_workers for Pytorch >= 1.7

• Align accuracy to the updated official YOLOX

22.9.2 New Features

• Support Label Assignment Distillation (#6342)

• Support persistent_workers for Pytorch >= 1.7 (#6435)

22.9.3 Bug Fixes

• Fix repeatedly output warning message (#6584)

• Avoid infinite GPU waiting in dist training (#6501)

• Fix SSD512 config error (#6574)

• Fix MMDetection model to ONNX command (#6558)

22.9. v2.19.0 (29/11/2021) 171

https://arxiv.org/abs/2108.10520
https://arxiv.org/abs/2108.10520

MMDetection, Release 3.0.0rc0

22.9.4 Improvements

• Refactor configs of FP16 models (#6592)

• Align accuracy to the updated official YOLOX (#6443)

• Speed up training and reduce memory cost when using PhotoMetricDistortion. (#6442)

• Make OHEM work with seesaw loss (#6514)

22.9.5 Documents

• Update README.md (#6567)

22.9.6 Contributors

A total of 11 developers contributed to this release. Thanks @FloydHsiu, @RangiLyu, @ZwwWayne, @An-
dreaPi, @st9007a, @hachreak, @BIGWangYuDong, @hhaAndroid, @AronLin, @chhluo, @vealocia, @HarborYuan,
@st9007a, @jshilong

22.10 v2.18.1 (15/11/2021)

22.10.1 Highlights

• Release QueryInst pre-trained weights (#6460)

• Support plot confusion matrix (#6344)

22.10.2 New Features

• Release QueryInst pre-trained weights (#6460)

• Support plot confusion matrix (#6344)

22.10.3 Bug Fixes

• Fix aug test error when the number of prediction bboxes is 0 (#6398)

• Fix SpatialReductionAttention in PVT (#6488)

• Fix wrong use of trunc_normal_init in PVT and Swin-Transformer (#6432)

172 Chapter 22. Changelog v2.x

http://arxiv.org/abs/2105.01928
http://arxiv.org/abs/2105.01928

MMDetection, Release 3.0.0rc0

22.10.4 Improvements

• Save the printed AP information of COCO API to logger (#6505)

• Always map location to cpu when load checkpoint (#6405)

• Set a random seed when the user does not set a seed (#6457)

22.10.5 Documents

• Chinese version of Corruption Benchmarking (#6375)

• Fix config path in docs (#6396)

• Update GRoIE readme (#6401)

22.10.6 Contributors

A total of 11 developers contributed to this release. Thanks @st9007a, @hachreak, @HarborYuan, @vealocia, @chh-
luo, @AndreaPi, @AronLin, @BIGWangYuDong, @hhaAndroid, @RangiLyu, @ZwwWayne

22.11 v2.18.0 (27/10/2021)

22.11.1 Highlights

• Support QueryInst (#6050)

• Refactor dense heads to decouple onnx export logics from get_bboxes and speed up inference (#5317, #6003,
#6369, #6268, #6315)

22.11.2 New Features

• Support QueryInst (#6050)

• Support infinite sampler (#5996)

22.11.3 Bug Fixes

• Fix init_weight in fcn_mask_head (#6378)

• Fix type error in imshow_bboxes of RPN (#6386)

• Fix broken colab link in MMDetection Tutorial (#6382)

• Make sure the device and dtype of scale_factor are the same as bboxes (#6374)

• Remove sampling hardcode (#6317)

• Fix RandomAffine bbox coordinate recorrection (#6293)

• Fix init bug of final cls/reg layer in convfc head (#6279)

• Fix img_shape broken in auto_augment (#6259)

• Fix kwargs parameter missing error in two_stage (#6256)

22.11. v2.18.0 (27/10/2021) 173

http://arxiv.org/abs/2105.01928
http://arxiv.org/abs/2105.01928

MMDetection, Release 3.0.0rc0

22.11.4 Improvements

• Unify the interface of stuff head and panoptic head (#6308)

• Polish readme (#6243)

• Add code-spell pre-commit hook and fix a typo (#6306)

• Fix typo (#6245, #6190)

• Fix sampler unit test (#6284)

• Fix forward_dummy of YOLACT to enable get_flops (#6079)

• Fix link error in the config documentation (#6252)

• Adjust the order to beautify the document (#6195)

22.11.5 Refactors

• Refactor one-stage get_bboxes logic (#5317)

• Refactor ONNX export of One-Stage models (#6003, #6369)

• Refactor dense_head and speedup (#6268)

• Migrate to use prior_generator in training of dense heads (#6315)

22.11.6 Contributors

A total of 18 developers contributed to this release. Thanks @Boyden, @onnkeat, @st9007a, @vealocia, @yhcao6,
@DapangpangX, @yellowdolphin, @cclauss, @kennymckormick, @pingguokiller, @collinzrj, @AndreaPi, @Aron-
Lin, @BIGWangYuDong, @hhaAndroid, @jshilong, @RangiLyu, @ZwwWayne

22.12 v2.17.0 (28/9/2021)

22.12.1 Highlights

• Support PVT and PVTv2

• Support SOLO

• Support large scale jittering and New Mask R-CNN baselines

• Speed up YOLOv3 inference

22.12.2 New Features

• Support PVT and PVTv2 (#5780)

• Support SOLO (#5832)

• Support large scale jittering and New Mask R-CNN baselines (#6132)

• Add a general data structrue for the results of models (#5508)

• Added a base class for one-stage instance segmentation (#5904)

174 Chapter 22. Changelog v2.x

https://arxiv.org/abs/2102.12122
https://arxiv.org/abs/2106.13797
https://arxiv.org/abs/1912.04488
https://arxiv.org/abs/2102.12122
https://arxiv.org/abs/2106.13797
https://arxiv.org/abs/1912.04488

MMDetection, Release 3.0.0rc0

• Speed up YOLOv3 inference (#5991)

• Release Swin Transformer pre-trained models (#6100)

• Support mixed precision training in YOLOX (#5983)

• Support val workflow in YOLACT (#5986)

• Add script to test torchserve (#5936)

• Support onnxsim with dynamic input shape (#6117)

22.12.3 Bug Fixes

• Fix the function naming errors in model_wrappers (#5975)

• Fix regression loss bug when the input is an empty tensor (#5976)

• Fix scores not contiguous error in centernet_head (#6016)

• Fix missing parameters bug in imshow_bboxes (#6034)

• Fix bug in aug_test of HTC when the length of det_bboxes is 0 (#6088)

• Fix empty proposal errors in the training of some two-stage models (#5941)

• Fix dynamic_axes parameter error in ONNX dynamic shape export (#6104)

• Fix dynamic_shape bug of SyncRandomSizeHook (#6144)

• Fix the Swin Transformer config link error in the configuration (#6172)

22.12.4 Improvements

• Add filter rules in Mosaic transform (#5897)

• Add size divisor in get flops to avoid some potential bugs (#6076)

• Add Chinese translation of docs_zh-CN/tutorials/customize_dataset.md (#5915)

• Add Chinese translation of conventions.md (#5825)

• Add description of the output of data pipeline (#5886)

• Add dataset information in the README file for PanopticFPN (#5996)

• Add extra_repr for DropBlock layer to get details in the model printing (#6140)

• Fix CI out of memory and add PyTorch1.9 Python3.9 unit tests (#5862)

• Fix download links error of some model (#6069)

• Improve the generalization of XML dataset (#5943)

• Polish assertion error messages (#6017)

• Remove opencv-python-headless dependency by albumentations (#5868)

• Check dtype in transform unit tests (#5969)

• Replace the default theme of documentation with PyTorch Sphinx Theme (#6146)

• Update the paper and code fields in the metafile (#6043)

• Support to customize padding value of segmentation map (#6152)

• Support to resize multiple segmentation maps (#5747)

22.12. v2.17.0 (28/9/2021) 175

MMDetection, Release 3.0.0rc0

22.12.5 Contributors

A total of 24 developers contributed to this release. Thanks @morkovka1337, @HarborYuan, @guillaumefrd,
@guigarfr, @www516717402, @gaotongxiao, @ypwhs, @MartaYang, @shinya7y, @justiceeem, @zhaojinjian0000,
@VVsssssk, @aravind-anantha, @wangbo-zhao, @czczup, @whai362, @czczup, @marijnl, @AronLin, @BIG-
WangYuDong, @hhaAndroid, @jshilong, @RangiLyu, @ZwwWayne

22.13 v2.16.0 (30/8/2021)

22.13.1 Highlights

• Support Panoptic FPN and Swin Transformer

22.13.2 New Features

• Support Panoptic FPN and release models (#5577, #5902)

• Support Swin Transformer backbone (#5748)

• Release RetinaNet models pre-trained with multi-scale 3x schedule (#5636)

• Add script to convert unlabeled image list to coco format (#5643)

• Add hook to check whether the loss value is valid (#5674)

• Add YOLO anchor optimizing tool (#5644)

• Support export onnx models without post process. (#5851)

• Support classwise evaluation in CocoPanopticDataset (#5896)

• Adapt browse_dataset for concatenated datasets. (#5935)

• Add PatchEmbed and PatchMerging with AdaptivePadding (#5952)

22.13.3 Bug Fixes

• Fix unit tests of YOLOX (#5859)

• Fix lose randomness in imshow_det_bboxes (#5845)

• Make output result of ImageToTensor contiguous (#5756)

• Fix inference bug when calling regress_by_class in RoIHead in some cases (#5884)

• Fix bug in CIoU loss where alpha should not have gradient. (#5835)

• Fix the bug that multiscale_output is defined but not used in HRNet (#5887)

• Set the priority of EvalHook to LOW. (#5882)

• Fix a YOLOX bug when applying bbox rescaling in test mode (#5899)

• Fix mosaic coordinate error (#5947)

• Fix dtype of bbox in RandomAffine. (#5930)

176 Chapter 22. Changelog v2.x

https://arxiv.org/abs/1901.02446
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/1901.02446

MMDetection, Release 3.0.0rc0

22.13.4 Improvements

• Add Chinese version of data_pipeline and (#5662)

• Support to remove state dicts of EMA when publishing models. (#5858)

• Refactor the loss function in HTC and SCNet (#5881)

• Use warnings instead of logger.warning (#5540)

• Use legacy coordinate in metric of VOC (#5627)

• Add Chinese version of customize_losses (#5826)

• Add Chinese version of model_zoo (#5827)

22.13.5 Contributors

A total of 19 developers contributed to this release. Thanks @ypwhs, @zywvvd, @collinzrj, @OceanPang, @ddo-
natien, @@haotian-liu, @viibridges, @Muyun99, @guigarfr, @zhaojinjian0000, @jbwang1997,@wangbo-zhao,
@xvjiarui, @RangiLyu, @jshilong, @AronLin, @BIGWangYuDong, @hhaAndroid, @ZwwWayne

22.14 v2.15.1 (11/8/2021)

22.14.1 Highlights

• Support YOLOX

22.14.2 New Features

• Support YOLOX(#5756, #5758, #5760, #5767, #5770, #5774, #5777, #5808, #5828, #5848)

22.14.3 Bug Fixes

• Update correct SSD models. (#5789)

• Fix casting error in mask structure (#5820)

• Fix MMCV deployment documentation links. (#5790)

22.14.4 Improvements

• Use dynamic MMCV download link in TorchServe dockerfile (#5779)

• Rename the function upsample_like to interpolate_as for more general usage (#5788)

22.14. v2.15.1 (11/8/2021) 177

https://arxiv.org/abs/2107.08430
https://arxiv.org/abs/2107.08430

MMDetection, Release 3.0.0rc0

22.14.5 Contributors

A total of 14 developers contributed to this release. Thanks @HAOCHENYE, @xiaohu2015, @HsLOL, @zhiqwang,
@Adamdad, @shinya7y, @Johnson-Wang, @RangiLyu, @jshilong, @mmeendez8, @AronLin, @BIGWangYuDong,
@hhaAndroid, @ZwwWayne

22.15 v2.15.0 (02/8/2021)

22.15.1 Highlights

• Support adding MIM dependencies during pip installation

• Support MobileNetV2 for SSD-Lite and YOLOv3

• Support Chinese Documentation

22.15.2 New Features

• Add function upsample_like (#5732)

• Support to output pdf and epub format documentation (#5738)

• Support and release Cascade Mask R-CNN 3x pre-trained models (#5645)

• Add ignore_index to CrossEntropyLoss (#5646)

• Support adding MIM dependencies during pip installation (#5676)

• Add MobileNetV2 config and models for YOLOv3 (#5510)

• Support COCO Panoptic Dataset (#5231)

• Support ONNX export of cascade models (#5486)

• Support DropBlock with RetinaNet (#5544)

• Support MobileNetV2 SSD-Lite (#5526)

22.15.3 Bug Fixes

• Fix the device of label in multiclass_nms (#5673)

• Fix error of backbone initialization from pre-trained checkpoint in config file (#5603, #5550)

• Fix download links of RegNet pretrained weights (#5655)

• Fix two-stage runtime error given empty proposal (#5559)

• Fix flops count error in DETR (#5654)

• Fix unittest for NumClassCheckHook when it is not used. (#5626)

• Fix description bug of using custom dataset (#5546)

• Fix bug of multiclass_nms that returns the global indices (#5592)

• Fix valid_mask logic error in RPNHead (#5562)

• Fix unit test error of pretrained configs (#5561)

• Fix typo error in anchor_head.py (#5555)

178 Chapter 22. Changelog v2.x

https://github.com/open-mmlab/mim
https://github.com/open-mmlab/mim

MMDetection, Release 3.0.0rc0

• Fix bug when using dataset wrappers (#5552)

• Fix a typo error in demo/MMDet_Tutorial.ipynb (#5511)

• Fixing crash in get_root_logger when cfg.log_level is not None (#5521)

• Fix docker version (#5502)

• Fix optimizer parameter error when using IterBasedRunner (#5490)

22.15.4 Improvements

• Add unit tests for MMTracking (#5620)

• Add Chinese translation of documentation (#5718, #5618, #5558, #5423, #5593, #5421, #5408. #5369, #5419,
#5530, #5531)

• Update resource limit (#5697)

• Update docstring for InstaBoost (#5640)

• Support key reduction_override in all loss functions (#5515)

• Use repeatdataset to accelerate CenterNet training (#5509)

• Remove unnecessary code in autoassign (#5519)

• Add documentation about init_cfg (#5273)

22.15.5 Contributors

A total of 18 developers contributed to this release. Thanks @OceanPang, @AronLin, @hellock, @Outsider565,
@RangiLyu, @ElectronicElephant, @likyoo, @BIGWangYuDong, @hhaAndroid, @noobying, @yyz561, @likyoo,
@zeakey, @ZwwWayne, @ChenyangLiu, @johnson-magic, @qingswu, @BuxianChen

22.16 v2.14.0 (29/6/2021)

22.16.1 Highlights

• Add simple_test to dense heads to improve the consistency of single-stage and two-stage detectors

• Revert the test_mixins to single image test to improve efficiency and readability

• Add Faster R-CNN and Mask R-CNN config using multi-scale training with 3x schedule

22.16.2 New Features

• Support pretrained models from MoCo v2 and SwAV (#5286)

• Add Faster R-CNN and Mask R-CNN config using multi-scale training with 3x schedule (#5179, #5233)

• Add reduction_override in MSELoss (#5437)

• Stable support of exporting DETR to ONNX with dynamic shapes and batch inference (#5168)

• Stable support of exporting PointRend to ONNX with dynamic shapes and batch inference (#5440)

22.16. v2.14.0 (29/6/2021) 179

MMDetection, Release 3.0.0rc0

22.16.3 Bug Fixes

• Fix size mismatch bug in multiclass_nms (#4980)

• Fix the import path of MultiScaleDeformableAttention (#5338)

• Fix errors in config of GCNet ResNext101 models (#5360)

• Fix Grid-RCNN error when there is no bbox result (#5357)

• Fix errors in onnx_export of bbox_head when setting reg_class_agnostic (#5468)

• Fix type error of AutoAssign in the document (#5478)

• Fix web links ending with .md (#5315)

22.16.4 Improvements

• Add simple_test to dense heads to improve the consistency of single-stage and two-stage detectors (#5264)

• Add support for mask diagonal flip in TTA (#5403)

• Revert the test_mixins to single image test to improve efficiency and readability (#5249)

• Make YOLOv3 Neck more flexible (#5218)

• Refactor SSD to make it more general (#5291)

• Refactor anchor_generator and point_generator (#5349)

• Allow to configure out the mask_head of the HTC algorithm (#5389)

• Delete deprecated warning in FPN (#5311)

• Move model.pretrained to model.backbone.init_cfg (#5370)

• Make deployment tools more friendly to use (#5280)

• Clarify installation documentation (#5316)

• Add ImageNet Pretrained Models docs (#5268)

• Add FAQ about training loss=nan solution and COCO AP or AR =-1 (# 5312, #5313)

• Change all weight links of http to https (#5328)

22.17 v2.13.0 (01/6/2021)

22.17.1 Highlights

• Support new methods: CenterNet, Seesaw Loss, MobileNetV2

180 Chapter 22. Changelog v2.x

https://arxiv.org/abs/1904.07850
https://arxiv.org/abs/2008.10032
https://arxiv.org/abs/1801.04381

MMDetection, Release 3.0.0rc0

22.17.2 New Features

• Support paper Objects as Points (#4602)

• Support paper Seesaw Loss for Long-Tailed Instance Segmentation (CVPR 2021) (#5128)

• Support MobileNetV2 backbone and inverted residual block (#5122)

• Support MIM (#5143)

• ONNX exportation with dynamic shapes of CornerNet (#5136)

• Add mask_soft config option to allow non-binary masks (#4615)

• Add PWC metafile (#5135)

22.17.3 Bug Fixes

• Fix YOLOv3 FP16 training error (#5172)

• Fix Cacscade R-CNN TTA test error when det_bboxes length is 0 (#5221)

• Fix iou_thr variable naming errors in VOC recall calculation function (#5195)

• Fix Faster R-CNN performance dropped in ONNX Runtime (#5197)

• Fix DETR dict changed error when using python 3.8 during iteration (#5226)

22.17.4 Improvements

• Refactor ONNX export of two stage detector (#5205)

• Replace MMDetection’s EvalHook with MMCV’s EvalHook for consistency (#4806)

• Update RoI extractor for ONNX (#5194)

• Use better parameter initialization in YOLOv3 head for higher performance (#5181)

• Release new DCN models of Mask R-CNN by mixed-precision training (#5201)

• Update YOLOv3 model weights (#5229)

• Add DetectoRS ResNet-101 model weights (#4960)

• Discard bboxes with sizes equals to min_bbox_size (#5011)

• Remove duplicated code in DETR head (#5129)

• Remove unnecessary object in class definition (#5180)

• Fix doc link (#5192)

22.17. v2.13.0 (01/6/2021) 181

https://arxiv.org/abs/1904.07850
https://arxiv.org/abs/2008.10032
https://arxiv.org/abs/1801.04381
https://github.com/open-mmlab/mim

MMDetection, Release 3.0.0rc0

22.18 v2.12.0 (01/5/2021)

22.18.1 Highlights

• Support new methods: AutoAssign, YOLOF, and Deformable DETR

• Stable support of exporting models to ONNX with batched images and dynamic shape (#5039)

22.18.2 Backwards Incompatible Changes

MMDetection is going through big refactoring for more general and convenient usages during the releases from v2.12.0
to v2.15.0 (maybe longer). In v2.12.0 MMDetection inevitably brings some BC-breakings, including the MMCV
dependency, model initialization, model registry, and mask AP evaluation.

• MMCV version. MMDetection v2.12.0 relies on the newest features in MMCV 1.3.3, including BaseModule
for unified parameter initialization, model registry, and the CUDA operator MultiScaleDeformableAttn for
Deformable DETR. Note that MMCV 1.3.2 already contains all the features used by MMDet but has known
issues. Therefore, we recommend users skip MMCV v1.3.2 and use v1.3.3, though v1.3.2 might work for most
cases.

• Unified model initialization (#4750). To unify the parameter initialization in OpenMMLab projects, MMCV
supports BaseModule that accepts init_cfg to allow the modules’ parameters initialized in a flexible and uni-
fied manner. Now the users need to explicitly call model.init_weights() in the training script to initialize
the model (as in here, previously this was handled by the detector. The models in MMDetection have been re-
benchmarked to ensure accuracy based on PR #4750. The downstream projects should update their code
accordingly to use MMDetection v2.12.0.

• Unified model registry (#5059). To easily use backbones implemented in other OpenMMLab projects, MMDe-
tection migrates to inherit the model registry created in MMCV (#760). In this way, as long as the backbone
is supported in an OpenMMLab project and that project also uses the registry in MMCV, users can use that
backbone in MMDetection by simply modifying the config without copying the code of that backbone into
MMDetection.

• Mask AP evaluation (#4898). Previous versions calculate the areas of masks through the bounding boxes when
calculating the mask AP of small, medium, and large instances. To indeed use the areas of masks, we pop the
key bbox during mask AP calculation. This change does not affect the overall mask AP evaluation and aligns
the mask AP of similar models in other projects like Detectron2.

22.18.3 New Features

• Support paper AutoAssign: Differentiable Label Assignment for Dense Object Detection (#4295)

• Support paper You Only Look One-level Feature (#4295)

• Support paper Deformable DETR: Deformable Transformers for End-to-End Object Detection (#4778)

• Support calculating IoU with FP16 tensor in bbox_overlaps to save memory and keep speed (#4889)

• Add __repr__ in custom dataset to count the number of instances (#4756)

• Add windows support by updating requirements.txt (#5052)

• Stable support of exporting models to ONNX with batched images and dynamic shape, including SSD,
FSAF,FCOS, YOLOv3, RetinaNet, Faster R-CNN, and Mask R-CNN (#5039)

182 Chapter 22. Changelog v2.x

https://arxiv.org/abs/2007.03496
https://arxiv.org/abs/2103.09460
https://arxiv.org/abs/2010.04159
https://arxiv.org/abs/2010.04159
https://github.com/open-mmlab/mmdetection/blob/master/tools/train.py#L162
https://arxiv.org/abs/2007.03496
https://arxiv.org/abs/2103.09460
https://arxiv.org/abs/2010.04159

MMDetection, Release 3.0.0rc0

22.18.4 Improvements

• Use MMCV MODEL_REGISTRY (#5059)

• Unified parameter initialization for more flexible usage (#4750)

• Rename variable names and fix docstring in anchor head (#4883)

• Support training with empty GT in Cascade RPN (#4928)

• Add more details of usage of test_robustness in documentation (#4917)

• Changing to use pycocotools instead of mmpycocotools to fully support Detectron2 and MMDetection in
one environment (#4939)

• Update torch serve dockerfile to support dockers of more versions (#4954)

• Add check for training with single class dataset (#4973)

• Refactor transformer and DETR Head (#4763)

• Update FPG model zoo (#5079)

• More accurate mask AP of small/medium/large instances (#4898)

22.18.5 Bug Fixes

• Fix bug in mean_ap.py when calculating mAP by 11 points (#4875)

• Fix error when key meta is not in old checkpoints (#4936)

• Fix hanging bug when training with empty GT in VFNet, GFL, and FCOS by changing the place of reduce_mean
(#4923, #4978, #5058)

• Fix asyncronized inference error and provide related demo (#4941)

• Fix IoU losses dimensionality unmatch error (#4982)

• Fix torch.randperm whtn using PyTorch 1.8 (#5014)

• Fix empty bbox error in mask_head when using CARAFE (#5062)

• Fix supplement_mask bug when there are zero-size RoIs (#5065)

• Fix testing with empty rois in RoI Heads (#5081)

22.19 v2.11.0 (01/4/2021)

Highlights

• Support new method: Localization Distillation for Object Detection

• Support Pytorch2ONNX with batch inference and dynamic shape

New Features

• Support Localization Distillation for Object Detection (#4758)

• Support Pytorch2ONNX with batch inference and dynamic shape for Faster-RCNN and mainstream one-stage
detectors (#4796)

Improvements

• Support batch inference in head of RetinaNet (#4699)

22.19. v2.11.0 (01/4/2021) 183

https://arxiv.org/pdf/2102.12252.pdf
https://arxiv.org/pdf/2102.12252.pdf

MMDetection, Release 3.0.0rc0

• Add batch dimension in second stage of Faster-RCNN (#4785)

• Support batch inference in bbox coder (#4721)

• Add check for ann_ids in COCODataset to ensure it is unique (#4789)

• support for showing the FPN results (#4716)

• support dynamic shape for grid_anchor (#4684)

• Move pycocotools version check to when it is used (#4880)

Bug Fixes

• Fix a bug of TridentNet when doing the batch inference (#4717)

• Fix a bug of Pytorch2ONNX in FASF (#4735)

• Fix a bug when show the image with float type (#4732)

22.20 v2.10.0 (01/03/2021)

22.20.1 Highlights

• Support new methods: FPG

• Support ONNX2TensorRT for SSD, FSAF, FCOS, YOLOv3, and Faster R-CNN.

22.20.2 New Features

• Support ONNX2TensorRT for SSD, FSAF, FCOS, YOLOv3, and Faster R-CNN (#4569)

• Support Feature Pyramid Grids (FPG) (#4645)

• Support video demo (#4420)

• Add seed option for sampler (#4665)

• Support to customize type of runner (#4570, #4669)

• Support synchronizing BN buffer in EvalHook (#4582)

• Add script for GIF demo (#4573)

22.20.3 Bug Fixes

• Fix ConfigDict AttributeError and add Colab link (#4643)

• Avoid crash in empty gt training of GFL head (#4631)

• Fix iou_thrs bug in RPN evaluation (#4581)

• Fix syntax error of config when upgrading model version (#4584)

184 Chapter 22. Changelog v2.x

https://arxiv.org/abs/2004.03580
https://arxiv.org/abs/2004.03580

MMDetection, Release 3.0.0rc0

22.20.4 Improvements

• Refactor unit test file structures (#4600)

• Refactor nms config (#4636)

• Get loading pipeline by checking the class directly rather than through config strings (#4619)

• Add doctests for mask target generation and mask structures (#4614)

• Use deep copy when copying pipeline arguments (#4621)

• Update documentations (#4642, #4650, #4620, #4630)

• Remove redundant code calling import_modules_from_strings (#4601)

• Clean deprecated FP16 API (#4571)

• Check whether CLASSES is correctly initialized in the initialization of XMLDataset (#4555)

• Support batch inference in the inference API (#4462, #4526)

• Clean deprecated warning and fix ‘meta’ error (#4695)

22.21 v2.9.0 (01/02/2021)

22.21.1 Highlights

• Support new methods: SCNet, Sparse R-CNN

• Move train_cfg and test_cfg into model in configs

• Support to visualize results based on prediction quality

22.21.2 New Features

• Support SCNet (#4356)

• Support Sparse R-CNN (#4219)

• Support evaluate mAP by multiple IoUs (#4398)

• Support concatenate dataset for testing (#4452)

• Support to visualize results based on prediction quality (#4441)

• Add ONNX simplify option to Pytorch2ONNX script (#4468)

• Add hook for checking compatibility of class numbers in heads and datasets (#4508)

22.21. v2.9.0 (01/02/2021) 185

https://arxiv.org/abs/2012.10150
https://arxiv.org/abs/2011.12450
https://arxiv.org/abs/2012.10150
https://arxiv.org/abs/2011.12450

MMDetection, Release 3.0.0rc0

22.21.3 Bug Fixes

• Fix CPU inference bug of Cascade RPN (#4410)

• Fix NMS error of CornerNet when there is no prediction box (#4409)

• Fix TypeError in CornerNet inference (#4411)

• Fix bug of PAA when training with background images (#4391)

• Fix the error that the window data is not destroyed when out_file is not None and show==False (#4442)

• Fix order of NMS score_factor that will decrease the performance of YOLOv3 (#4473)

• Fix bug in HTC TTA when the number of detection boxes is 0 (#4516)

• Fix resize error in mask data structures (#4520)

22.21.4 Improvements

• Allow to customize classes in LVIS dataset (#4382)

• Add tutorials for building new models with existing datasets (#4396)

• Add CPU compatibility information in documentation (#4405)

• Add documentation of deprecated ImageToTensor for batch inference (#4408)

• Add more details in documentation for customizing dataset (#4430)

• Switch imshow_det_bboxes visualization backend from OpenCV to Matplotlib (#4389)

• Deprecate ImageToTensor in image_demo.py (#4400)

• Move train_cfg/test_cfg into model (#4347, #4489)

• Update docstring for reg_decoded_bbox option in bbox heads (#4467)

• Update dataset information in documentation (#4525)

• Release pre-trained R50 and R101 PAA detectors with multi-scale 3x training schedules (#4495)

• Add guidance for speed benchmark (#4537)

22.22 v2.8.0 (04/01/2021)

22.22.1 Highlights

• Support new methods: Cascade RPN, TridentNet

186 Chapter 22. Changelog v2.x

https://arxiv.org/abs/1909.06720
https://arxiv.org/abs/1901.01892

MMDetection, Release 3.0.0rc0

22.22.2 New Features

• Support Cascade RPN (#1900)

• Support TridentNet (#3313)

22.22.3 Bug Fixes

• Fix bug of show result in async_benchmark (#4367)

• Fix scale factor in MaskTestMixin (#4366)

• Fix but when returning indices in multiclass_nms (#4362)

• Fix bug of empirical attention in resnext backbone error (#4300)

• Fix bug of img_norm_cfg in FCOS-HRNet models with updated performance and models (#4250)

• Fix invalid checkpoint and log in Mask R-CNN models on Cityscapes dataset (#4287)

• Fix bug in distributed sampler when dataset is too small (#4257)

• Fix bug of ‘PAFPN has no attribute extra_convs_on_inputs’ (#4235)

22.22.4 Improvements

• Update model url from aws to aliyun (#4349)

• Update ATSS for PyTorch 1.6+ (#4359)

• Update script to install ruby in pre-commit installation (#4360)

• Delete deprecated mmdet.ops (#4325)

• Refactor hungarian assigner for more general usage in Sparse R-CNN (#4259)

• Handle scipy import in DETR to reduce package dependencies (#4339)

• Update documentation of usages for config options after MMCV (1.2.3) supports overriding list in config (#4326)

• Update pre-train models of faster rcnn trained on COCO subsets (#4307)

• Avoid zero or too small value for beta in Dynamic R-CNN (#4303)

• Add doccumentation for Pytorch2ONNX (#4271)

• Add deprecated warning FPN arguments (#4264)

• Support returning indices of kept bboxes when using nms (#4251)

• Update type and device requirements when creating tensors GFLHead (#4210)

• Update device requirements when creating tensors in CrossEntropyLoss (#4224)

22.22. v2.8.0 (04/01/2021) 187

https://arxiv.org/abs/1909.06720
https://arxiv.org/abs/1901.01892

MMDetection, Release 3.0.0rc0

22.23 v2.7.0 (30/11/2020)

• Support new method: DETR, ResNest, Faster R-CNN DC5.

• Support YOLO, Mask R-CNN, and Cascade R-CNN models exportable to ONNX.

22.23.1 New Features

• Support DETR (#4201, #4206)

• Support to link the best checkpoint in training (#3773)

• Support to override config through options in inference.py (#4175)

• Support YOLO, Mask R-CNN, and Cascade R-CNN models exportable to ONNX (#4087, #4083)

• Support ResNeSt backbone (#2959)

• Support unclip border bbox regression (#4076)

• Add tpfp func in evaluating AP (#4069)

• Support mixed precision training of SSD detector with other backbones (#4081)

• Add Faster R-CNN DC5 models (#4043)

22.23.2 Bug Fixes

• Fix bug of gpu_id in distributed training mode (#4163)

• Support Albumentations with version higher than 0.5 (#4032)

• Fix num_classes bug in faster rcnn config (#4088)

• Update code in docs/2_new_data_model.md (#4041)

22.23.3 Improvements

• Ensure DCN offset to have similar type as features in VFNet (#4198)

• Add config links in README files of models (#4190)

• Add tutorials for loss conventions (#3818)

• Add solution to installation issues in 30-series GPUs (#4176)

• Update docker version in get_started.md (#4145)

• Add model statistics and polish some titles in configs README (#4140)

• Clamp neg probability in FreeAnchor (#4082)

• Speed up expanding large images (#4089)

• Fix Pytorch 1.7 incompatibility issues (#4103)

• Update trouble shooting page to resolve segmentation fault (#4055)

• Update aLRP-Loss in project page (#4078)

• Clean duplicated reduce_mean function (#4056)

• Refactor Q&A (#4045)

188 Chapter 22. Changelog v2.x

https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2004.08955
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2004.08955

MMDetection, Release 3.0.0rc0

22.24 v2.6.0 (1/11/2020)

• Support new method: VarifocalNet.

• Refactored documentation with more tutorials.

22.24.1 New Features

• Support GIoU calculation in BboxOverlaps2D, and re-implement giou_loss using bbox_overlaps (#3936)

• Support random sampling in CPU mode (#3948)

• Support VarifocalNet (#3666, #4024)

22.24.2 Bug Fixes

• Fix SABL validating bug in Cascade R-CNN (#3913)

• Avoid division by zero in PAA head when num_pos=0 (#3938)

• Fix temporary directory bug of multi-node testing error (#4034, #4017)

• Fix --show-dir option in test script (#4025)

• Fix GA-RetinaNet r50 model url (#3983)

• Update code in docs and fix broken urls (#3947)

22.24.3 Improvements

• Refactor pytorch2onnx API into mmdet.core.export and use generate_inputs_and_wrap_model for py-
torch2onnx (#3857, #3912)

• Update RPN upgrade scripts for v2.5.0 compatibility (#3986)

• Use mmcv tensor2imgs (#4010)

• Update test robustness (#4000)

• Update trouble shooting page (#3994)

• Accelerate PAA training speed (#3985)

• Support batch_size > 1 in validation (#3966)

• Use RoIAlign implemented in MMCV for inference in CPU mode (#3930)

• Documentation refactoring (#4031)

22.24. v2.6.0 (1/11/2020) 189

https://arxiv.org/abs/2008.13367

MMDetection, Release 3.0.0rc0

22.25 v2.5.0 (5/10/2020)

22.25.1 Highlights

• Support new methods: YOLACT, CentripetalNet.

• Add more documentations for easier and more clear usage.

22.25.2 Backwards Incompatible Changes

FP16 related methods are imported from mmcv instead of mmdet. (#3766, #3822) Mixed precision training utils
in mmdet.core.fp16 are moved to mmcv.runner, including force_fp32, auto_fp16, wrap_fp16_model, and
Fp16OptimizerHook. A deprecation warning will be raised if users attempt to import those methods from mmdet.
core.fp16, and will be finally removed in V2.10.0.

[0, N-1] represents foreground classes and N indicates background classes for all models. (#3221) Before v2.5.0,
the background label for RPN is 0, and N for other heads. Now the behavior is consistent for all models. Thus self.
background_labels in dense_heads is removed and all heads use self.num_classes to indicate the class index
of background labels. This change has no effect on the pre-trained models in the v2.x model zoo, but will affect the
training of all models with RPN heads. Two-stage detectors whose RPN head uses softmax will be affected because
the order of categories is changed.

Only call get_subset_by_classes when test_mode=True and self.filter_empty_gt=True (#3695) Func-
tion get_subset_by_classes in dataset is refactored and only filters out images when test_mode=True and self.
filter_empty_gt=True. In the original implementation, get_subset_by_classes is not related to the flag self.
filter_empty_gt and will only be called when the classes is set during initialization no matter test_mode is True or
False. This brings ambiguous behavior and potential bugs in many cases. After v2.5.0, if filter_empty_gt=False,
no matter whether the classes are specified in a dataset, the dataset will use all the images in the annotations. If
filter_empty_gt=True and test_mode=True, no matter whether the classes are specified, the dataset will call
``get_subset_by_classes` to check the images and filter out images containing no GT boxes. Therefore, the users should
be responsible for the data filtering/cleaning process for the test dataset.

22.25.3 New Features

• Test time augmentation for single stage detectors (#3844, #3638)

• Support to show the name of experiments during training (#3764)

• Add Shear, Rotate, Translate Augmentation (#3656, #3619, #3687)

• Add image-only transformations including Constrast, Equalize, Color, and Brightness. (#3643)

• Support YOLACT (#3456)

• Support CentripetalNet (#3390)

• Support PyTorch 1.6 in docker (#3905)

190 Chapter 22. Changelog v2.x

https://arxiv.org/abs/1904.02689
https://arxiv.org/abs/2003.09119
https://arxiv.org/abs/1904.02689
https://arxiv.org/abs/2003.09119

MMDetection, Release 3.0.0rc0

22.25.4 Bug Fixes

• Fix the bug of training ATSS when there is no ground truth boxes (#3702)

• Fix the bug of using Focal Loss when there is num_pos is 0 (#3702)

• Fix the label index mapping in dataset browser (#3708)

• Fix Mask R-CNN training stuck problem when their is no positive rois (#3713)

• Fix the bug of self.rpn_head.test_cfg in RPNTestMixin by using self.rpn_head in rpn head (#3808)

• Fix deprecated Conv2d from mmcv.ops (#3791)

• Fix device bug in RepPoints (#3836)

• Fix SABL validating bug (#3849)

• Use https://download.openmmlab.com/mmcv/dist/index.html for installing MMCV (#3840)

• Fix nonzero in NMS for PyTorch 1.6.0 (#3867)

• Fix the API change bug of PAA (#3883)

• Fix typo in bbox_flip (#3886)

• Fix cv2 import error of ligGL.so.1 in Dockerfile (#3891)

22.25.5 Improvements

• Change to use mmcv.utils.collect_env for collecting environment information to avoid duplicate codes
(#3779)

• Update checkpoint file names to v2.0 models in documentation (#3795)

• Update tutorials for changing runtime settings (#3778), modifying loss (#3777)

• Improve the function of simple_test_bboxes in SABL (#3853)

• Convert mask to bool before using it as img’s index for robustness and speedup (#3870)

• Improve documentation of modules and dataset customization (#3821)

22.26 v2.4.0 (5/9/2020)

Highlights

• Fix lots of issues/bugs and reorganize the trouble shooting page

• Support new methods SABL, YOLOv3, and PAA Assign

• Support Batch Inference

• Start to publish mmdet package to PyPI since v2.3.0

• Switch model zoo to download.openmmlab.com

Backwards Incompatible Changes

• Support Batch Inference (#3564, #3686, #3705): Since v2.4.0, MMDetection could inference model with mul-
tiple images in a single GPU. This change influences all the test APIs in MMDetection and downstream code-
bases. To help the users migrate their code, we use replace_ImageToTensor (#3686) to convert legacy test
data pipelines during dataset initialization.

22.26. v2.4.0 (5/9/2020) 191

https://arxiv.org/abs/1912.04260
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/2007.08103

MMDetection, Release 3.0.0rc0

• Support RandomFlip with horizontal/vertical/diagonal direction (#3608): Since v2.4.0, MMDetection supports
horizontal/vertical/diagonal flip in the data augmentation. This influences bounding box, mask, and image trans-
formations in data augmentation process and the process that will map those data back to the original format.

• Migrate to use mmlvis and mmpycocotools for COCO and LVIS dataset (#3727). The APIs are fully compatible
with the original lvis and pycocotools. Users need to uninstall the existing pycocotools and lvis packages in
their environment first and install mmlvis & mmpycocotools.

Bug Fixes

• Fix default mean/std for onnx (#3491)

• Fix coco evaluation and add metric items (#3497)

• Fix typo for install.md (#3516)

• Fix atss when sampler per gpu is 1 (#3528)

• Fix import of fuse_conv_bn (#3529)

• Fix bug of gaussian_target, update unittest of heatmap (#3543)

• Fixed VOC2012 evaluate (#3553)

• Fix scale factor bug of rescale (#3566)

• Fix with_xxx_attributes in base detector (#3567)

• Fix boxes scaling when number is 0 (#3575)

• Fix rfp check when neck config is a list (#3591)

• Fix import of fuse conv bn in benchmark.py (#3606)

• Fix webcam demo (#3634)

• Fix typo and itemize issues in tutorial (#3658)

• Fix error in distributed training when some levels of FPN are not assigned with bounding boxes (#3670)

• Fix the width and height orders of stride in valid flag generation (#3685)

• Fix weight initialization bug in Res2Net DCN (#3714)

• Fix bug in OHEMSampler (#3677)

New Features

• Support Cutout augmentation (#3521)

• Support evaluation on multiple datasets through ConcatDataset (#3522)

• Support PAA assign #(3547)

• Support eval metric with pickle results (#3607)

• Support YOLOv3 (#3083)

• Support SABL (#3603)

• Support to publish to Pypi in github-action (#3510)

• Support custom imports (#3641)

Improvements

• Refactor common issues in documentation (#3530)

• Add pytorch 1.6 to CI config (#3532)

192 Chapter 22. Changelog v2.x

https://arxiv.org/abs/2007.08103
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1912.04260

MMDetection, Release 3.0.0rc0

• Add config to runner meta (#3534)

• Add eval-option flag for testing (#3537)

• Add init_eval to evaluation hook (#3550)

• Add include_bkg in ClassBalancedDataset (#3577)

• Using config’s loading in inference_detector (#3611)

• Add ATSS ResNet-101 models in model zoo (#3639)

• Update urls to download.openmmlab.com (#3665)

• Support non-mask training for CocoDataset (#3711)

22.27 v2.3.0 (5/8/2020)

Highlights

• The CUDA/C++ operators have been moved to mmcv.ops. For backward compatibility mmdet.ops is kept as
warppers of mmcv.ops.

• Support new methods CornerNet, DIOU/CIOU loss, and new dataset: LVIS V1

• Provide more detailed colab training tutorials and more complete documentation.

• Support to convert RetinaNet from Pytorch to ONNX.

Bug Fixes

• Fix the model initialization bug of DetectoRS (#3187)

• Fix the bug of module names in NASFCOSHead (#3205)

• Fix the filename bug in publish_model.py (#3237)

• Fix the dimensionality bug when inside_flags.any() is False in dense heads (#3242)

• Fix the bug of forgetting to pass flip directions in MultiScaleFlipAug (#3262)

• Fixed the bug caused by default value of stem_channels (#3333)

• Fix the bug of model checkpoint loading for CPU inference (#3318, #3316)

• Fix topk bug when box number is smaller than the expected topk number in ATSSAssigner (#3361)

• Fix the gt priority bug in center_region_assigner.py (#3208)

• Fix NaN issue of iou calculation in iou_loss.py (#3394)

• Fix the bug that iou_thrs is not actually used during evaluation in coco.py (#3407)

• Fix test-time augmentation of RepPoints (#3435)

• Fix runtimeError caused by incontiguous tensor in Res2Net+DCN (#3412)

New Features

• Support CornerNet (#3036)

• Support DIOU/CIOU loss (#3151)

• Support LVIS V1 dataset (#)

• Support customized hooks in training (#3395)

• Support fp16 training of generalized focal loss (#3410)

22.27. v2.3.0 (5/8/2020) 193

https://arxiv.org/abs/1808.01244
https://arxiv.org/abs/1911.08287
https://arxiv.org/abs/2005.03572
https://arxiv.org/abs/1908.03195
https://arxiv.org/abs/1808.01244
https://arxiv.org/abs/1911.08287
https://arxiv.org/abs/2005.03572
https://arxiv.org/abs/1908.03195

MMDetection, Release 3.0.0rc0

• Support to convert RetinaNet from Pytorch to ONNX (#3075)

Improvements

• Support to process ignore boxes in ATSS assigner (#3082)

• Allow to crop images without ground truth in RandomCrop (#3153)

• Enable the the Accuracy module to set threshold (#3155)

• Refactoring unit tests (#3206)

• Unify the training settings of to_float32 and norm_cfg in RegNets configs (#3210)

• Add colab training tutorials for beginners (#3213, #3273)

• Move CUDA/C++ operators into mmcv.ops and keep mmdet.ops as warppers for backward compatibility
(#3232)(#3457)

• Update installation scripts in documentation (#3290) and dockerfile (#3320)

• Support to set image resize backend (#3392)

• Remove git hash in version file (#3466)

• Check mmcv version to force version compatibility (#3460)

22.28 v2.2.0 (1/7/2020)

Highlights

• Support new methods: DetectoRS, PointRend, Generalized Focal Loss, Dynamic R-CNN

Bug Fixes

• Fix FreeAnchor when no gt in image (#3176)

• Clean up deprecated usage of register_module() (#3092, #3161)

• Fix pretrain bug in NAS FCOS (#3145)

• Fix num_classes in SSD (#3142)

• Fix FCOS warmup (#3119)

• Fix rstrip in tools/publish_model.py

• Fix flip_ratio default value in RandomFLip pipeline (#3106)

• Fix cityscapes eval with ms_rcnn (#3112)

• Fix RPN softmax (#3056)

• Fix filename of LVIS@v0.5 (#2998)

• Fix nan loss by filtering out-of-frame gt_bboxes in COCO (#2999)

• Fix bug in FSAF (#3018)

• Add FocalLoss num_classes check (#2964)

• Fix PISA Loss when there are no gts (#2992)

• Avoid nan in iou_calculator (#2975)

• Prevent possible bugs in loading and transforms caused by shallow copy (#2967)

New Features

194 Chapter 22. Changelog v2.x

https://arxiv.org/abs/2006.02334
https://arxiv.org/abs/1912.08193
https://arxiv.org/abs/2006.04388
https://arxiv.org/abs/2004.06002

MMDetection, Release 3.0.0rc0

• Add DetectoRS (#3064)

• Support Generalize Focal Loss (#3097)

• Support PointRend (#2752)

• Support Dynamic R-CNN (#3040)

• Add DeepFashion dataset (#2968)

• Implement FCOS training tricks (#2935)

• Use BaseDenseHead as base class for anchor-base heads (#2963)

• Add with_cp for BasicBlock (#2891)

• Add stem_channels argument for ResNet (#2954)

Improvements

• Add anchor free base head (#2867)

• Migrate to github action (#3137)

• Add docstring for datasets, pipelines, core modules and methods (#3130, #3125, #3120)

• Add VOC benchmark (#3060)

• Add concat mode in GRoI (#3098)

• Remove cmd arg autorescale-lr (#3080)

• Use len(data['img_metas']) to indicate num_samples (#3073, #3053)

• Switch to EpochBasedRunner (#2976)

22.29 v2.1.0 (8/6/2020)

Highlights

• Support new backbones: RegNetX, Res2Net

• Support new methods: NASFCOS, PISA, GRoIE

• Support new dataset: LVIS

Bug Fixes

• Change the CLI argument --validate to --no-validate to enable validation after training epochs by default.
(#2651)

• Add missing cython to docker file (#2713)

• Fix bug in nms cpu implementation (#2754)

• Fix bug when showing mask results (#2763)

• Fix gcc requirement (#2806)

• Fix bug in async test (#2820)

• Fix mask encoding-decoding bugs in test API (#2824)

• Fix bug in test time augmentation (#2858, #2921, #2944)

• Fix a typo in comment of apis/train (#2877)

22.29. v2.1.0 (8/6/2020) 195

https://arxiv.org/abs/2003.13678
https://arxiv.org/abs/1904.01169
https://arxiv.org/abs/1906.04423
https://arxiv.org/abs/1904.04821
https://arxiv.org/abs/2004.13665
https://arxiv.org/abs/1908.03195

MMDetection, Release 3.0.0rc0

• Fix the bug of returning None when no gt bboxes are in the original image in RandomCrop. Fix the bug
that misses to handle gt_bboxes_ignore, gt_label_ignore, and gt_masks_ignore in RandomCrop,
MinIoURandomCrop and Expand modules. (#2810)

• Fix bug of base_channels of regnet (#2917)

• Fix the bug of logger when loading pre-trained weights in base detector (#2936)

New Features

• Add IoU models (#2666)

• Add colab demo for inference

• Support class agnostic nms (#2553)

• Add benchmark gathering scripts for development only (#2676)

• Add mmdet-based project links (#2736, #2767, #2895)

• Add config dump in training (#2779)

• Add ClassBalancedDataset (#2721)

• Add res2net backbone (#2237)

• Support RegNetX models (#2710)

• Use mmcv.FileClient to support different storage backends (#2712)

• Add ClassBalancedDataset (#2721)

• Code Release: Prime Sample Attention in Object Detection (CVPR 2020) (#2626)

• Implement NASFCOS (#2682)

• Add class weight in CrossEntropyLoss (#2797)

• Support LVIS dataset (#2088)

• Support GRoIE (#2584)

Improvements

• Allow different x and y strides in anchor heads. (#2629)

• Make FSAF loss more robust to no gt (#2680)

• Compute pure inference time instead (#2657) and update inference speed (#2730)

• Avoided the possibility that a patch with 0 area is cropped. (#2704)

• Add warnings when deprecated imgs_per_gpu is used. (#2700)

• Add a mask rcnn example for config (#2645)

• Update model zoo (#2762, #2866, #2876, #2879, #2831)

• Add ori_filename to img_metas and use it in test show-dir (#2612)

• Use img_fields to handle multiple images during image transform (#2800)

• Add upsample_cfg support in FPN (#2787)

• Add ['img'] as default img_fields for back compatibility (#2809)

• Rename the pretrained model from open-mmlab://resnet50_caffe and open-mmlab://
resnet50_caffe_bgr to open-mmlab://detectron/resnet50_caffe and open-mmlab://detectron2/
resnet50_caffe. (#2832)

196 Chapter 22. Changelog v2.x

MMDetection, Release 3.0.0rc0

• Added sleep(2) in test.py to reduce hanging problem (#2847)

• Support c10::half in CARAFE (#2890)

• Improve documentations (#2918, #2714)

• Use optimizer constructor in mmcv and clean the original implementation in mmdet.core.optimizer (#2947)

22.30 v2.0.0 (6/5/2020)

In this release, we made lots of major refactoring and modifications.

1. Faster speed. We optimize the training and inference speed for common models, achieving up to 30% speedup
for training and 25% for inference. Please refer to model zoo for details.

2. Higher performance. We change some default hyperparameters with no additional cost, which leads to a gain
of performance for most models. Please refer to compatibility for details.

3. More documentation and tutorials. We add a bunch of documentation and tutorials to help users get started
more smoothly. Read it here.

4. Support PyTorch 1.5. The support for 1.1 and 1.2 is dropped, and we switch to some new APIs.

5. Better configuration system. Inheritance is supported to reduce the redundancy of configs.

6. Better modular design. Towards the goal of simplicity and flexibility, we simplify some encapsulation while
add more other configurable modules like BBoxCoder, IoUCalculator, OptimizerConstructor, RoIHead. Target
computation is also included in heads and the call hierarchy is simpler.

7. Support new methods: FSAF and PAFPN (part of PAFPN).

Breaking Changes Models training with MMDetection 1.x are not fully compatible with 2.0, please refer to the com-
patibility doc for the details and how to migrate to the new version.

Improvements

• Unify cuda and cpp API for custom ops. (#2277)

• New config files with inheritance. (#2216)

• Encapsulate the second stage into RoI heads. (#1999)

• Refactor GCNet/EmpericalAttention into plugins. (#2345)

• Set low quality match as an option in IoU-based bbox assigners. (#2375)

• Change the codebase’s coordinate system. (#2380)

• Refactor the category order in heads. 0 means the first positive class instead of background now. (#2374)

• Add bbox sampler and assigner registry. (#2419)

• Speed up the inference of RPN. (#2420)

• Add train_cfg and test_cfg as class members in all anchor heads. (#2422)

• Merge target computation methods into heads. (#2429)

• Add bbox coder to support different bbox encoding and losses. (#2480)

• Unify the API for regression loss. (#2156)

• Refactor Anchor Generator. (#2474)

• Make lr an optional argument for optimizers. (#2509)

22.30. v2.0.0 (6/5/2020) 197

https://mmdetection.readthedocs.io/en/latest/
https://arxiv.org/abs/1903.00621
https://arxiv.org/abs/1803.01534

MMDetection, Release 3.0.0rc0

• Migrate to modules and methods in MMCV. (#2502, #2511, #2569, #2572)

• Support PyTorch 1.5. (#2524)

• Drop the support for Python 3.5 and use F-string in the codebase. (#2531)

Bug Fixes

• Fix the scale factors for resized images without keep the aspect ratio. (#2039)

• Check if max_num > 0 before slicing in NMS. (#2486)

• Fix Deformable RoIPool when there is no instance. (#2490)

• Fix the default value of assigned labels. (#2536)

• Fix the evaluation of Cityscapes. (#2578)

New Features

• Add deep_stem and avg_down option to ResNet, i.e., support ResNetV1d. (#2252)

• Add L1 loss. (#2376)

• Support both polygon and bitmap for instance masks. (#2353, #2540)

• Support CPU mode for inference. (#2385)

• Add optimizer constructor for complicated configuration of optimizers. (#2397, #2488)

• Implement PAFPN. (#2392)

• Support empty tensor input for some modules. (#2280)

• Support for custom dataset classes without overriding it. (#2408, #2443)

• Support to train subsets of coco dataset. (#2340)

• Add iou_calculator to potentially support more IoU calculation methods. (2405)

• Support class wise mean AP (was removed in the last version). (#2459)

• Add option to save the testing result images. (#2414)

• Support MomentumUpdaterHook. (#2571)

• Add a demo to inference a single image. (#2605)

22.31 v1.1.0 (24/2/2020)

Highlights

• Dataset evaluation is rewritten with a unified api, which is used by both evaluation hooks and test scripts.

• Support new methods: CARAFE.

Breaking Changes

• The new MMDDP inherits from the official DDP, thus the __init__ api is changed to be the same as official
DDP.

• The mask_head field in HTC config files is modified.

• The evaluation and testing script is updated.

• In all transforms, instance masks are stored as a numpy array shaped (n, h, w) instead of a list of (h, w) arrays,
where n is the number of instances.

198 Chapter 22. Changelog v2.x

https://arxiv.org/abs/1905.02188

MMDetection, Release 3.0.0rc0

Bug Fixes

• Fix IOU assigners when ignore_iof_thr > 0 and there is no pred boxes. (#2135)

• Fix mAP evaluation when there are no ignored boxes. (#2116)

• Fix the empty RoI input for Deformable RoI Pooling. (#2099)

• Fix the dataset settings for multiple workflows. (#2103)

• Fix the warning related to torch.uint8 in PyTorch 1.4. (#2105)

• Fix the inference demo on devices other than gpu:0. (#2098)

• Fix Dockerfile. (#2097)

• Fix the bug that pad_val is unused in Pad transform. (#2093)

• Fix the albumentation transform when there is no ground truth bbox. (#2032)

Improvements

• Use torch instead of numpy for random sampling. (#2094)

• Migrate to the new MMDDP implementation in MMCV v0.3. (#2090)

• Add meta information in logs. (#2086)

• Rewrite Soft NMS with pytorch extension and remove cython as a dependency. (#2056)

• Rewrite dataset evaluation. (#2042, #2087, #2114, #2128)

• Use numpy array for masks in transforms. (#2030)

New Features

• Implement “CARAFE: Content-Aware ReAssembly of FEatures”. (#1583)

• Add worker_init_fn() in data_loader when seed is set. (#2066, #2111)

• Add logging utils. (#2035)

22.32 v1.0.0 (30/1/2020)

This release mainly improves the code quality and add more docstrings.

Highlights

• Documentation is online now: https://mmdetection.readthedocs.io.

• Support new models: ATSS.

• DCN is now available with the api build_conv_layer and ConvModule like the normal conv layer.

• A tool to collect environment information is available for trouble shooting.

Bug Fixes

• Fix the incompatibility of the latest numpy and pycocotools. (#2024)

• Fix the case when distributed package is unavailable, e.g., on Windows. (#1985)

• Fix the dimension issue for refine_bboxes(). (#1962)

• Fix the typo when seg_prefix is a list. (#1906)

• Add segmentation map cropping to RandomCrop. (#1880)

22.32. v1.0.0 (30/1/2020) 199

https://mmdetection.readthedocs.io
https://arxiv.org/abs/1912.02424

MMDetection, Release 3.0.0rc0

• Fix the return value of ga_shape_target_single(). (#1853)

• Fix the loaded shape of empty proposals. (#1819)

• Fix the mask data type when using albumentation. (#1818)

Improvements

• Enhance AssignResult and SamplingResult. (#1995)

• Add ability to overwrite existing module in Registry. (#1982)

• Reorganize requirements and make albumentations and imagecorruptions optional. (#1969)

• Check NaN in SSDHead. (#1935)

• Encapsulate the DCN in ResNe(X)t into a ConvModule & Conv_layers. (#1894)

• Refactoring for mAP evaluation and support multiprocessing and logging. (#1889)

• Init the root logger before constructing Runner to log more information. (#1865)

• Split SegResizeFlipPadRescale into different existing transforms. (#1852)

• Move init_dist() to MMCV. (#1851)

• Documentation and docstring improvements. (#1971, #1938, #1869, #1838)

• Fix the color of the same class for mask visualization. (#1834)

• Remove the option keep_all_stages in HTC and Cascade R-CNN. (#1806)

New Features

• Add two test-time options crop_mask and rle_mask_encode for mask heads. (#2013)

• Support loading grayscale images as single channel. (#1975)

• Implement “Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample
Selection”. (#1872)

• Add sphinx generated docs. (#1859, #1864)

• Add GN support for flops computation. (#1850)

• Collect env info for trouble shooting. (#1812)

22.33 v1.0rc1 (13/12/2019)

The RC1 release mainly focuses on improving the user experience, and fixing bugs.

Highlights

• Support new models: FoveaBox, RepPoints and FreeAnchor.

• Add a Dockerfile.

• Add a jupyter notebook demo and a webcam demo.

• Setup the code style and CI.

• Add lots of docstrings and unit tests.

• Fix lots of bugs.

Breaking Changes

200 Chapter 22. Changelog v2.x

https://arxiv.org/abs/1904.03797
https://arxiv.org/abs/1904.11490
https://arxiv.org/abs/1909.02466

MMDetection, Release 3.0.0rc0

• There was a bug for computing COCO-style mAP w.r.t different scales (AP_s, AP_m, AP_l), introduced by #621.
(#1679)

Bug Fixes

• Fix a sampling interval bug in Libra R-CNN. (#1800)

• Fix the learning rate in SSD300 WIDER FACE. (#1781)

• Fix the scaling issue when keep_ratio=False. (#1730)

• Fix typos. (#1721, #1492, #1242, #1108, #1107)

• Fix the shuffle argument in build_dataloader. (#1693)

• Clip the proposal when computing mask targets. (#1688)

• Fix the “index out of range” bug for samplers in some corner cases. (#1610, #1404)

• Fix the NMS issue on devices other than GPU:0. (#1603)

• Fix SSD Head and GHM Loss on CPU. (#1578)

• Fix the OOM error when there are too many gt bboxes. (#1575)

• Fix the wrong keyword argument nms_cfg in HTC. (#1573)

• Process masks and semantic segmentation in Expand and MinIoUCrop transforms. (#1550, #1361)

• Fix a scale bug in the Non Local op. (#1528)

• Fix a bug in transforms when gt_bboxes_ignore is None. (#1498)

• Fix a bug when img_prefix is None. (#1497)

• Pass the device argument to grid_anchors and valid_flags. (#1478)

• Fix the data pipeline for test_robustness. (#1476)

• Fix the argument type of deformable pooling. (#1390)

• Fix the coco_eval when there are only two classes. (#1376)

• Fix a bug in Modulated DeformableConv when deformable_group>1. (#1359)

• Fix the mask cropping in RandomCrop. (#1333)

• Fix zero outputs in DeformConv when not running on cuda:0. (#1326)

• Fix the type issue in Expand. (#1288)

• Fix the inference API. (#1255)

• Fix the inplace operation in Expand. (#1249)

• Fix the from-scratch training config. (#1196)

• Fix inplace add in RoIExtractor which cause an error in PyTorch 1.2. (#1160)

• Fix FCOS when input images has no positive sample. (#1136)

• Fix recursive imports. (#1099)

Improvements

• Print the config file and mmdet version in the log. (#1721)

• Lint the code before compiling in travis CI. (#1715)

• Add a probability argument for the Expand transform. (#1651)

22.33. v1.0rc1 (13/12/2019) 201

MMDetection, Release 3.0.0rc0

• Update the PyTorch and CUDA version in the docker file. (#1615)

• Raise a warning when specifying --validate in non-distributed training. (#1624, #1651)

• Beautify the mAP printing. (#1614)

• Add pre-commit hook. (#1536)

• Add the argument in_channels to backbones. (#1475)

• Add lots of docstrings and unit tests, thanks to @Erotemic. (#1603, #1517, #1506, #1505, #1491, #1479, #1477,
#1475, #1474)

• Add support for multi-node distributed test when there is no shared storage. (#1399)

• Optimize Dockerfile to reduce the image size. (#1306)

• Update new results of HRNet. (#1284, #1182)

• Add an argument no_norm_on_lateral in FPN. (#1240)

• Test the compiling in CI. (#1235)

• Move docs to a separate folder. (#1233)

• Add a jupyter notebook demo. (#1158)

• Support different type of dataset for training. (#1133)

• Use int64_t instead of long in cuda kernels. (#1131)

• Support unsquare RoIs for bbox and mask heads. (#1128)

• Manually add type promotion to make compatible to PyTorch 1.2. (#1114)

• Allowing validation dataset for computing validation loss. (#1093)

• Use .scalar_type() instead of .type() to suppress some warnings. (#1070)

New Features

• Add an option --with_ap to compute the AP for each class. (#1549)

• Implement “FreeAnchor: Learning to Match Anchors for Visual Object Detection”. (#1391)

• Support Albumentations for augmentations in the data pipeline. (#1354)

• Implement “FoveaBox: Beyond Anchor-based Object Detector”. (#1339)

• Support horizontal and vertical flipping. (#1273, #1115)

• Implement “RepPoints: Point Set Representation for Object Detection”. (#1265)

• Add test-time augmentation to HTC and Cascade R-CNN. (#1251)

• Add a COCO result analysis tool. (#1228)

• Add Dockerfile. (#1168)

• Add a webcam demo. (#1155, #1150)

• Add FLOPs counter. (#1127)

• Allow arbitrary layer order for ConvModule. (#1078)

202 Chapter 22. Changelog v2.x

https://github.com/Erotemic
https://github.com/albumentations-team/albumentations

MMDetection, Release 3.0.0rc0

22.34 v1.0rc0 (27/07/2019)

• Implement lots of new methods and components (Mixed Precision Training, HTC, Libra R-CNN, Guided An-
choring, Empirical Attention, Mask Scoring R-CNN, Grid R-CNN (Plus), GHM, GCNet, FCOS, HRNet, Weight
Standardization, etc.). Thank all collaborators!

• Support two additional datasets: WIDER FACE and Cityscapes.

• Refactoring for loss APIs and make it more flexible to adopt different losses and related hyper-parameters.

• Speed up multi-gpu testing.

• Integrate all compiling and installing in a single script.

22.35 v0.6.0 (14/04/2019)

• Up to 30% speedup compared to the model zoo.

• Support both PyTorch stable and nightly version.

• Replace NMS and SigmoidFocalLoss with Pytorch CUDA extensions.

22.36 v0.6rc0(06/02/2019)

• Migrate to PyTorch 1.0.

22.37 v0.5.7 (06/02/2019)

• Add support for Deformable ConvNet v2. (Many thanks to the authors and @chengdazhi)

• This is the last release based on PyTorch 0.4.1.

22.38 v0.5.6 (17/01/2019)

• Add support for Group Normalization.

• Unify RPNHead and single stage heads (RetinaHead, SSDHead) with AnchorHead.

22.39 v0.5.5 (22/12/2018)

• Add SSD for COCO and PASCAL VOC.

• Add ResNeXt backbones and detection models.

• Refactoring for Samplers/Assigners and add OHEM.

• Add VOC dataset and evaluation scripts.

22.34. v1.0rc0 (27/07/2019) 203

https://github.com/chengdazhi

MMDetection, Release 3.0.0rc0

22.40 v0.5.4 (27/11/2018)

• Add SingleStageDetector and RetinaNet.

22.41 v0.5.3 (26/11/2018)

• Add Cascade R-CNN and Cascade Mask R-CNN.

• Add support for Soft-NMS in config files.

22.42 v0.5.2 (21/10/2018)

• Add support for custom datasets.

• Add a script to convert PASCAL VOC annotations to the expected format.

22.43 v0.5.1 (20/10/2018)

• Add BBoxAssigner and BBoxSampler, the train_cfg field in config files are restructured.

• ConvFCRoIHead / SharedFCRoIHead are renamed to ConvFCBBoxHead / SharedFCBBoxHead for consistency.

204 Chapter 22. Changelog v2.x

CHAPTER

TWENTYTHREE

FREQUENTLY ASKED QUESTIONS

We list some common troubles faced by many users and their corresponding solutions here. Feel free to enrich the list
if you find any frequent issues and have ways to help others to solve them. If the contents here do not cover your issue,
please create an issue using the provided templates and make sure you fill in all required information in the template.

23.1 Installation

• Compatibility issue between MMCV and MMDetection; “ConvWS is already registered in conv layer”; “Asser-
tionError: MMCV==xxx is used but incompatible. Please install mmcv>=xxx, <=xxx.”

Compatible MMDetection, MMEngine, and MMCV versions are shown as below. Please choose the correct
version of MMCV to avoid installation issues.

Note:

1. If you want to install mmdet-v2.x, the compatible MMDetection and MMCV versions table can be found at here.
Please choose the correct version of MMCV to avoid installation issues.

2. In MMCV-v2.x, mmcv-full is rename to mmcv, if you want to install mmcv without CUDA ops, you can install
mmcv-lite.

• “No module named ‘mmcv.ops’”; “No module named ‘mmcv._ext’”.

1. Uninstall existing mmcv-lite in the environment using pip uninstall mmcv-lite.

2. Install mmcv following the installation instruction.

• Using Albumentations

If you would like to use albumentations, we suggest using pip install -r requirements/albu.txt
or pip install -U albumentations --no-binary qudida,albumentations. If you simply use pip
install albumentations>=0.3.2, it will install opencv-python-headless simultaneously (even though
you have already installed opencv-python). Please refer to the official documentation for details.

• ModuleNotFoundError is raised when using some algorithms

Some extra dependencies are required for Instaboost, Panoptic Segmentation, LVIS dataset, etc. Please note the
error message and install corresponding packages, e.g.,

for instaboost
pip install instaboostfast
for panoptic segmentation
pip install git+https://github.com/cocodataset/panopticapi.git
for LVIS dataset
pip install git+https://github.com/lvis-dataset/lvis-api.git

205

https://github.com/open-mmlab/mmdetection/blob/master/.github/ISSUE_TEMPLATE/error-report.md/
https://mmdetection.readthedocs.io/en/stable/faq.html#installation
https://mmcv.readthedocs.io/en/2.x/get_started/installation.html
https://albumentations.ai/docs/getting_started/installation/#note-on-opencv-dependencies

MMDetection, Release 3.0.0rc0

23.2 Coding

• Do I need to reinstall mmdet after some code modifications

If you follow the best practice and install mmdet with pip install -e ., any local modifications made to the
code will take effect without reinstallation.

• How to develop with multiple MMDetection versions

You can have multiple folders like mmdet-3.0, mmdet-3.1. When you run the train or test script, it will adopt the
mmdet package in the current folder.

To use the default MMDetection installed in the environment rather than the one you are working with, you can
remove the following line in those scripts:

PYTHONPATH="$(dirname $0)/..":$PYTHONPATH

23.3 PyTorch/CUDA Environment

• “RTX 30 series card fails when building MMCV or MMDet”

1. Temporary work-around: do MMCV_WITH_OPS=1 MMCV_CUDA_ARGS='-gencode=arch=compute_80,
code=sm_80' pip install -e .. The common issue is nvcc fatal : Unsupported gpu
architecture 'compute_86'. This means that the compiler should optimize for sm_86, i.e., nvidia
30 series card, but such optimizations have not been supported by CUDA toolkit 11.0. This work-around
modifies the compile flag by adding MMCV_CUDA_ARGS='-gencode=arch=compute_80,code=sm_80',
which tells nvcc to optimize for sm_80, i.e., Nvidia A100. Although A100 is different from the 30 series
card, they use similar ampere architecture. This may hurt the performance but it works.

2. PyTorch developers have updated that the default compiler flags should be fixed by pytorch/pytorch#47585.
So using PyTorch-nightly may also be able to solve the problem, though we have not tested it yet.

• “invalid device function” or “no kernel image is available for execution”.

1. Check if your cuda runtime version (under /usr/local/), nvcc --version and conda list
cudatoolkit version match.

2. Run python mmdet/utils/collect_env.py to check whether PyTorch, torchvision, and MMCV are
built for the correct GPU architecture. You may need to set TORCH_CUDA_ARCH_LIST to reinstall MMCV.
The GPU arch table could be found here, i.e. run TORCH_CUDA_ARCH_LIST=7.0 pip install mmcv to
build MMCV for Volta GPUs. The compatibility issue could happen when using old GPUS, e.g., Tesla
K80 (3.7) on colab.

3. Check whether the running environment is the same as that when mmcv/mmdet has compiled. For example,
you may compile mmcv using CUDA 10.0 but run it on CUDA 9.0 environments.

• “undefined symbol” or “cannot open xxx.so”.

1. If those symbols are CUDA/C++ symbols (e.g., libcudart.so or GLIBCXX), check whether the CUDA/GCC
runtimes are the same as those used for compiling mmcv, i.e. run python mmdet/utils/collect_env.
py to see if "MMCV Compiler"/"MMCV CUDA Compiler" is the same as "GCC"/"CUDA_HOME".

2. If those symbols are PyTorch symbols (e.g., symbols containing caffe, aten, and TH), check whether the
PyTorch version is the same as that used for compiling mmcv.

3. Run python mmdet/utils/collect_env.py to check whether PyTorch, torchvision, and MMCV are
built by and running on the same environment.

206 Chapter 23. Frequently Asked Questions

https://github.com/pytorch/pytorch/pull/47585
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#gpu-feature-list

MMDetection, Release 3.0.0rc0

• setuptools.sandbox.UnpickleableException: DistutilsSetupError(“each element of ‘ext_modules’ option must be
an Extension instance or 2-tuple”)

1. If you are using miniconda rather than anaconda, check whether Cython is installed as indicated in #3379.
You need to manually install Cython first and then run command pip install -r requirements.txt.

2. You may also need to check the compatibility between the setuptools, Cython, and PyTorch in your
environment.

• “Segmentation fault”.

1. Check you GCC version and use GCC 5.4. This usually caused by the incompatibility between PyTorch
and the environment (e.g., GCC < 4.9 for PyTorch). We also recommend the users to avoid using GCC
5.5 because many feedbacks report that GCC 5.5 will cause “segmentation fault” and simply changing it to
GCC 5.4 could solve the problem.

2. Check whether PyTorch is correctly installed and could use CUDA op, e.g. type the following command
in your terminal.

python -c 'import torch; print(torch.cuda.is_available())'

And see whether they could correctly output results.

3. If Pytorch is correctly installed, check whether MMCV is correctly installed.

python -c 'import mmcv; import mmcv.ops'

If MMCV is correctly installed, then there will be no issue of the above two commands.

4. If MMCV and Pytorch is correctly installed, you man use ipdb, pdb to set breakpoints or directly add
‘print’ in mmdetection code and see which part leads the segmentation fault.

23.4 Training

• “Loss goes Nan”

1. Check if the dataset annotations are valid: zero-size bounding boxes will cause the regression loss to be
Nan due to the commonly used transformation for box regression. Some small size (width or height are
smaller than 1) boxes will also cause this problem after data augmentation (e.g., instaboost). So check the
data and try to filter out those zero-size boxes and skip some risky augmentations on the small-size boxes
when you face the problem.

2. Reduce the learning rate: the learning rate might be too large due to some reasons, e.g., change of batch
size. You can rescale them to the value that could stably train the model.

3. Extend the warmup iterations: some models are sensitive to the learning rate at the start of the training.
You can extend the warmup iterations, e.g., change the warmup_iters from 500 to 1000 or 2000.

4. Add gradient clipping: some models requires gradient clipping to stabilize the training process. The de-
fault of grad_clip is None, you can add gradient clippint to avoid gradients that are too large, i.e., set
optim_wrapper=dict(clip_grad=dict(max_norm=35, norm_type=2)) in your config file.

• “GPU out of memory”

1. There are some scenarios when there are large amount of ground truth boxes, which may cause OOM
during target assignment. You can set gpu_assign_thr=N in the config of assigner thus the assigner will
calculate box overlaps through CPU when there are more than N GT boxes.

2. Set with_cp=True in the backbone. This uses the sublinear strategy in PyTorch to reduce GPU memory
cost in the backbone.

23.4. Training 207

https://github.com/open-mmlab/mmdetection/issues/3379

MMDetection, Release 3.0.0rc0

3. Try mixed precision training using following the examples in config/fp16. The loss_scale might need
further tuning for different models.

4. Try to use AvoidCUDAOOM to avoid GPU out of memory. It will first retry after calling torch.cuda.
empty_cache(). If it still fails, it will then retry by converting the type of inputs to FP16 format. If it still
fails, it will try to copy inputs from GPUs to CPUs to continue computing. Try AvoidOOM in you code to
make the code continue to run when GPU memory runs out:

from mmdet.utils import AvoidCUDAOOM

output = AvoidCUDAOOM.retry_if_cuda_oom(some_function)(input1, input2)

You can also try AvoidCUDAOOM as a decorator to make the code continue to run when GPU memory runs
out:

from mmdet.utils import AvoidCUDAOOM

@AvoidCUDAOOM.retry_if_cuda_oom
def function(*args, **kwargs):

...
return xxx

• “RuntimeError: Expected to have finished reduction in the prior iteration before starting a new one”

1. This error indicates that your module has parameters that were not used in producing loss. This phenomenon
may be caused by running different branches in your code in DDP mode.

2. You can set find_unused_parameters = True in the config to solve the above problems, but this will
slow down the training speed.

3. You can set detect_anomalous_params = True in the config or model_wrapper_cfg =
dict(type='MMDistributedDataParallel', detect_anomalous_params=True) (More details
please refer to MMEngine) to get the name of those unused parameters. Note detect_anomalous_params
= True will slow down the training speed, so it is recommended for debugging only.

• Save the best model

It can be turned on by configuring default_hooks = dict(checkpoint=dict(type='CheckpointHook',
interval=1, save_best='auto'),. In the case of the auto parameter, the first key in the returned evaluation
result will be used as the basis for selecting the best model. You can also directly set the key in the evaluation
result to manually set it, for example, save_best='mAP'.

23.5 Evaluation

• COCO Dataset, AP or AR = -1

1. According to the definition of COCO dataset, the small and medium areas in an image are less than 1024
(32*32), 9216 (96*96), respectively.

2. If the corresponding area has no object, the result of AP and AR will set to -1.

208 Chapter 23. Frequently Asked Questions

https://github.com/open-mmlab/mmengine/blob/main/mmengine/model/wrappers/distributed.py#L91

MMDetection, Release 3.0.0rc0

23.6 Model

• style in ResNet

The style parameter in ResNet allows either pytorch or caffe style. It indicates the difference in the Bot-
tleneck module. Bottleneck is a stacking structure of 1x1-3x3-1x1 convolutional layers. In the case of caffe
mode, the convolution layer with stride=2 is the first 1x1 convolution, while in pyorch mode, it is the second
3x3 convolution has stride=2. A sample code is as below:

if self.style == 'pytorch':
self.conv1_stride = 1
self.conv2_stride = stride

else:
self.conv1_stride = stride
self.conv2_stride = 1

• ResNeXt parameter description

ResNeXt comes from the paper Aggregated Residual Transformations for Deep Neural Networks.
It introduces group and uses “cardinality” to control the number of groups to achieve a balance between ac-
curacy and complexity. It controls the basic width and grouping parameters of the internal Bottleneck module
through two hyperparameters baseWidth and cardinality. An example configuration name in MMDetection
is mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco.py, where mask_rcnn represents the algorithm
using Mask R-CNN, x101 represents the backbone network using ResNeXt-101, and 64x4d represents that the
bottleneck block has 64 group and each group has basic width of 4.

• norm_eval in backbone

Since the detection model is usually large and the input image resolution is high, this will result in a small batch of
the detection model, which will make the variance of the statistics calculated by BatchNorm during the training
process very large and not as stable as the statistics obtained during the pre-training of the backbone network
. Therefore, the norm_eval=True mode is generally used in training, and the BatchNorm statistics in the pre-
trained backbone network are directly used. The few algorithms that use large batches are the norm_eval=False
mode, such as NASFPN. For the backbone network without ImageNet pre-training and the batch is relatively
small, you can consider using SyncBN.

23.6. Model 209

https://arxiv.org/abs/1611.05431

MMDetection, Release 3.0.0rc0

210 Chapter 23. Frequently Asked Questions

CHAPTER

TWENTYFOUR

COMPATIBILITY OF MMDETECTION 2.X

24.1 MMDetection 2.25.0

In order to support Mask2Former for instance segmentation, the original config files of Mask2Former for panpotic
segmentation need to be renamed PR #7571.

'mask2former_xxx_coco.py' represents config files for **panoptic segmentation**.

'mask2former_xxx_coco.py' represents config files for **instance segmentation**.
'mask2former_xxx_coco-panoptic.py' represents config files for **panoptic segmentation**.

24.2 MMDetection 2.21.0

In order to support CPU training, the logic of scatter in batch collating has been changed. We recommend to use
MMCV v1.4.4 or higher. For more details, please refer to MMCV PR #1621.

24.3 MMDetection 2.18.1

24.3.1 MMCV compatibility

In order to fix the wrong weight reference bug in BaseTransformerLayer, the logic in batch first mode of MultiheadAt-
tention has been changed. We recommend to use MMCV v1.3.17 or higher. For more details, please refer to MMCV
PR #1418.

24.4 MMDetection 2.18.0

24.4.1 DIIHead compatibility

In order to support QueryInst, attn_feats is added into the returned tuple of DIIHead.

211

https://github.com/open-mmlab/mmdetection/pull/7571
https://github.com/open-mmlab/mmcv/pull/1621
https://github.com/open-mmlab/mmcv/pull/1418
https://github.com/open-mmlab/mmcv/pull/1418

MMDetection, Release 3.0.0rc0

24.5 MMDetection 2.14.0

24.5.1 MMCV Version

In order to fix the problem that the priority of EvalHook is too low, all hook priorities have been re-adjusted in 1.3.8, so
MMDetection 2.14.0 needs to rely on the latest MMCV 1.3.8 version. For related information, please refer to #1120,
for related issues, please refer to #5343.

24.5.2 SSD compatibility

In v2.14.0, to make SSD more flexible to use, PR5291 refactored its backbone, neck and head. The users can use the
script tools/model_converters/upgrade_ssd_version.py to convert their models.

python tools/model_converters/upgrade_ssd_version.py ${OLD_MODEL_PATH} ${NEW_MODEL_PATH}

• OLD_MODEL_PATH: the path to load the old version SSD model.

• NEW_MODEL_PATH: the path to save the converted model weights.

24.6 MMDetection 2.12.0

MMDetection is going through big refactoring for more general and convenient usages during the releases from v2.12.0
to v2.18.0 (maybe longer). In v2.12.0 MMDetection inevitably brings some BC-breakings, including the MMCV
dependency, model initialization, model registry, and mask AP evaluation.

24.6.1 MMCV Version

MMDetection v2.12.0 relies on the newest features in MMCV 1.3.3, including BaseModule for unified parameter
initialization, model registry, and the CUDA operator MultiScaleDeformableAttn for Deformable DETR. Note
that MMCV 1.3.2 already contains all the features used by MMDet but has known issues. Therefore, we recommend
users to skip MMCV v1.3.2 and use v1.3.2, though v1.3.2 might work for most of the cases.

24.6.2 Unified model initialization

To unify the parameter initialization in OpenMMLab projects, MMCV supports BaseModule that accepts init_cfg to
allow the modules’ parameters initialized in a flexible and unified manner. Now the users need to explicitly call model.
init_weights() in the training script to initialize the model (as in here, previously this was handled by the detector.
The downstream projects must update their model initialization accordingly to use MMDetection v2.12.0. Please
refer to PR #4750 for details.

212 Chapter 24. Compatibility of MMDetection 2.x

https://github.com/open-mmlab/mmcv/pull/1120
https://github.com/open-mmlab/mmdetection/issues/5343
https://github.com/open-mmlab/mmdetection/pull/5291
https://arxiv.org/abs/2010.04159
https://github.com/open-mmlab/mmdetection/blob/master/tools/train.py#L162

MMDetection, Release 3.0.0rc0

24.6.3 Unified model registry

To easily use backbones implemented in other OpenMMLab projects, MMDetection v2.12.0 inherits the model registry
created in MMCV (#760). In this way, as long as the backbone is supported in an OpenMMLab project and that project
also uses the registry in MMCV, users can use that backbone in MMDetection by simply modifying the config without
copying the code of that backbone into MMDetection. Please refer to PR #5059 for more details.

24.6.4 Mask AP evaluation

Before PR 4898 and V2.12.0, the mask AP of small, medium, and large instances is calculated based on the bounding
box area rather than the real mask area. This leads to higher APs and APm but lower APl but will not affect the overall
mask AP. PR 4898 change it to use mask areas by deleting bbox in mask AP calculation. The new calculation does not
affect the overall mask AP evaluation and is consistent with Detectron2.

24.7 Compatibility with MMDetection 1.x

MMDetection 2.0 goes through a big refactoring and addresses many legacy issues. It is not compatible with the 1.x
version, i.e., running inference with the same model weights in these two versions will produce different results. Thus,
MMDetection 2.0 re-benchmarks all the models and provides their links and logs in the model zoo.

The major differences are in four folds: coordinate system, codebase conventions, training hyperparameters, and mod-
ular design.

24.7.1 Coordinate System

The new coordinate system is consistent with Detectron2 and treats the center of the most left-top pixel as (0, 0) rather
than the left-top corner of that pixel. Accordingly, the system interprets the coordinates in COCO bounding box and
segmentation annotations as coordinates in range [0, width] or [0, height]. This modification affects all the
computation related to the bbox and pixel selection, which is more natural and accurate.

• The height and width of a box with corners (x1, y1) and (x2, y2) in the new coordinate system is computed as
width = x2 - x1 and height = y2 - y1. In MMDetection 1.x and previous version, a “+ 1” was added
both height and width. This modification are in three folds:

1. Box transformation and encoding/decoding in regression.

2. IoU calculation. This affects the matching process between ground truth and bounding box and the NMS
process. The effect to compatibility is very negligible, though.

3. The corners of bounding box is in float type and no longer quantized. This should provide more accurate
bounding box results. This also makes the bounding box and RoIs not required to have minimum size of 1,
whose effect is small, though.

• The anchors are center-aligned to feature grid points and in float type. In MMDetection 1.x and previous version,
the anchors are in int type and not center-aligned. This affects the anchor generation in RPN and all the anchor-
based methods.

• ROIAlign is better aligned with the image coordinate system. The new implementation is adopted from Detec-
tron2. The RoIs are shifted by half a pixel by default when they are used to cropping RoI features, compared to
MMDetection 1.x. The old behavior is still available by setting aligned=False instead of aligned=True.

• Mask cropping and pasting are more accurate.

24.7. Compatibility with MMDetection 1.x 213

https://github.com/open-mmlab/mmdetection/pull/4898
https://github.com/open-mmlab/mmdetection/pull/4898
https://github.com/facebookresearch/detectron2/
https://github.com/facebookresearch/detectron2/
https://github.com/facebookresearch/detectron2/tree/master/detectron2/layers/csrc/ROIAlign
https://github.com/facebookresearch/detectron2/tree/master/detectron2/layers/csrc/ROIAlign

MMDetection, Release 3.0.0rc0

1. We use the new RoIAlign to crop mask targets. In MMDetection 1.x, the bounding box is quantized before
it is used to crop mask target, and the crop process is implemented by numpy. In new implementation, the
bounding box for crop is not quantized and sent to RoIAlign. This implementation accelerates the training
speed by a large margin (~0.1s per iter, ~2 hour when training Mask R50 for 1x schedule) and should be
more accurate.

2. In MMDetection 2.0, the “paste_mask()” function is different and should be more accurate than those
in previous versions. This change follows the modification in Detectron2 and can improve mask AP on
COCO by ~0.5% absolute.

24.7.2 Codebase Conventions

• MMDetection 2.0 changes the order of class labels to reduce unused parameters in regression and mask branch
more naturally (without +1 and -1). This effect all the classification layers of the model to have a different
ordering of class labels. The final layers of regression branch and mask head no longer keep K+1 channels for
K categories, and their class orders are consistent with the classification branch.

– In MMDetection 2.0, label “K” means background, and labels [0, K-1] correspond to the K =
num_categories object categories.

– In MMDetection 1.x and previous version, label “0” means background, and labels [1, K] correspond to
the K categories.

– Note: The class order of softmax RPN is still the same as that in 1.x in versions<=2.4.0 while sigmoid RPN
is not affected. The class orders in all heads are unified since MMDetection v2.5.0.

• Low quality matching in R-CNN is not used. In MMDetection 1.x and previous versions, the
max_iou_assigner will match low quality boxes for each ground truth box in both RPN and R-CNN training.
We observe this sometimes does not assign the most perfect GT box to some bounding boxes, thus MMDetection
2.0 do not allow low quality matching by default in R-CNN training in the new system. This sometimes may
slightly improve the box AP (~0.1% absolute).

• Separate scale factors for width and height. In MMDetection 1.x and previous versions, the scale factor is a single
float in mode keep_ratio=True. This is slightly inaccurate because the scale factors for width and height have
slight difference. MMDetection 2.0 adopts separate scale factors for width and height, the improvement on AP
~0.1% absolute.

• Configs name conventions are changed. MMDetection V2.0 adopts the new name convention to maintain the
gradually growing model zoo as the following:

[model]_(model setting)_[backbone]_[neck]_(norm setting)_(misc)_(gpu x batch)_
→˓[schedule]_[dataset].py,

where the (misc) includes DCN and GCBlock, etc. More details are illustrated in the documentation for config

• MMDetection V2.0 uses new ResNet Caffe backbones to reduce warnings when loading pre-trained models.
Most of the new backbones’ weights are the same as the former ones but do not have conv.bias, except that
they use a different img_norm_cfg. Thus, the new backbone will not cause warning of unexpected keys.

214 Chapter 24. Compatibility of MMDetection 2.x

https://github.com/facebookresearch/detectron2/blob/master/detectron2/structures/masks.py

MMDetection, Release 3.0.0rc0

24.7.3 Training Hyperparameters

The change in training hyperparameters does not affect model-level compatibility but slightly improves the perfor-
mance. The major ones are:

• The number of proposals after nms is changed from 2000 to 1000 by setting nms_post=1000 and
max_num=1000. This slightly improves both mask AP and bbox AP by ~0.2% absolute.

• The default box regression losses for Mask R-CNN, Faster R-CNN and RetinaNet are changed from smooth L1
Loss to L1 loss. This leads to an overall improvement in box AP (~0.6% absolute). However, using L1-loss for
other methods such as Cascade R-CNN and HTC does not improve the performance, so we keep the original
settings for these methods.

• The sample num of RoIAlign layer is set to be 0 for simplicity. This leads to slightly improvement on mask AP
(~0.2% absolute).

• The default setting does not use gradient clipping anymore during training for faster training speed. This does
not degrade performance of the most of models. For some models such as RepPoints we keep using gradient
clipping to stabilize the training process and to obtain better performance.

• The default warmup ratio is changed from 1/3 to 0.001 for a more smooth warming up process since the gradient
clipping is usually not used. The effect is found negligible during our re-benchmarking, though.

24.7.4 Upgrade Models from 1.x to 2.0

To convert the models trained by MMDetection V1.x to MMDetection V2.0, the users can use the script tools/
model_converters/upgrade_model_version.py to convert their models. The converted models can be run in
MMDetection V2.0 with slightly dropped performance (less than 1% AP absolute). Details can be found in configs/
legacy.

24.8 pycocotools compatibility

mmpycocotools is the OpenMMlab’s fork of official pycocotools, which works for both MMDetection and De-
tectron2. Before PR 4939, since pycocotools and mmpycocotool have the same package name, if users already
installed pycocotools (installed Detectron2 first under the same environment), then the setup of MMDetection will
skip installing mmpycocotool. Thus MMDetection fails due to the missing mmpycocotools. If MMDetection is in-
stalled before Detectron2, they could work under the same environment. PR 4939 deprecates mmpycocotools in favor
of official pycocotools. Users may install MMDetection and Detectron2 under the same environment after PR 4939,
no matter what the installation order is.

24.8. pycocotools compatibility 215

https://github.com/open-mmlab/mmdetection/pull/4939
https://github.com/open-mmlab/mmdetection/pull/4939
https://github.com/open-mmlab/mmdetection/pull/4939

MMDetection, Release 3.0.0rc0

216 Chapter 24. Compatibility of MMDetection 2.x

CHAPTER

TWENTYFIVE

ENGLISH

217

MMDetection, Release 3.0.0rc0

218 Chapter 25. English

CHAPTER

TWENTYSIX

219

MMDetection, Release 3.0.0rc0

220 Chapter 26.

CHAPTER

TWENTYSEVEN

INDICES AND TABLES

• genindex

• search

221

	OVERVIEW
	What is MMDetection
	How to Use this Guide

	GET STARTED
	Prerequisites
	Installation
	Best Practices

	Verify the installation
	Customize Installation
	CUDA versions
	Install MMEngine without MIM
	Install MMCV without MIM
	Install on CPU-only platforms
	Install on Google Colab
	Using MMDetection with Docker

	Trouble shooting

	Train & Test
	Learn about Configs
	Config file content
	Model config
	Dataset and evaluator config
	Training and testing config
	Optimization config
	Hook config
	Runtime config

	Iter-based config
	Config file inheritance
	Ignore some fields in the base configs
	Use intermediate variables in configs
	Reuse variables in _base_ file

	Modify config through script arguments
	Config name style

	Inference with existing models
	High-level APIs for inference
	Demos
	Image demo
	Webcam demo

	Video demo
	Video demo with GPU acceleration

	Dataset Prepare
	Test existing models on standard datasets
	Test existing models
	Examples
	Test without Ground Truth Annotations
	Batch Inference

	Train predefined models on standard datasets
	Prepare datasets
	Learning rate automatically scale
	Training on a single GPU
	Training on CPU
	Training on multiple GPUs
	Launch multiple jobs simultaneously

	Train with multiple machines
	Manage jobs with Slurm

	Train with customized datasets
	Prepare the customized dataset
	COCO annotation format

	Prepare a config
	Train a new model
	Test and inference

	Train with customized models and standard datasets
	Prepare the standard dataset
	Prepare your own customized model
	1. Define a new neck (e.g. AugFPN)
	2. Import the module
	3. Modify the config file

	Prepare a config
	Train a new model
	Test and inference

	Finetuning Models
	Inherit base configs
	Modify head
	Modify dataset
	Modify training schedule
	Use pre-trained model

	Test Results Submission
	Panoptic segmentation test results submission
	Prerequisites
	Inference on coco test-dev
	Update them in config file
	Update them in command line

	Rename files and zip results

	Weight initialization
	Description
	Initialize parameters
	Usage of init_cfg

	Use a single stage detector as RPN
	Use FCOSHead as an RPNHead in Faster R-CNN
	Evaluate proposals
	Train the customized Faster R-CNN with pre-trained FCOS

	Semi-supervised Object Detection
	Prepare and split dataset
	Configure multi-branch pipeline
	Configure semi-supervised dataloader
	Configure semi-supervised model
	Configure MeanTeacherHook
	Configure TeacherStudentValLoop

	Useful Tools
	Log Analysis
	Result Analysis
	Visualization
	Visualize Datasets
	Visualize Models
	Visualize Predictions

	Error Analysis
	Model Serving
	1. Convert model from MMDetection to TorchServe
	2. Build mmdet-serve docker image
	3. Run mmdet-serve
	4. Test deployment

	Model Complexity
	Model conversion
	MMDetection model to ONNX
	MMDetection 1.x model to MMDetection 2.x
	RegNet model to MMDetection
	Detectron ResNet to Pytorch
	Prepare a model for publishing

	Dataset Conversion
	Dataset Download
	Benchmark
	Robust Detection Benchmark
	FPS Benchmark

	Miscellaneous
	Evaluating a metric
	Print the entire config

	Hyper-parameter Optimization
	YOLO Anchor Optimization

	Confusion Matrix
	Useful Hooks
	CheckInvalidLossHook
	NumClassCheckHook
	MemoryProfilerHook
	Usage
	Result

	SetEpochInfoHook
	SyncNormHook
	SyncRandomSizeHook
	YOLOXLrUpdaterHook
	YOLOXModeSwitchHook
	How to implement a custom hook

	Visualization
	Corruption Benchmarking
	Introduction
	About the benchmark
	Inference with pretrained models
	Test a dataset

	Results for modelzoo models

	Basic Concepts
	Data Flow
	Structures
	Models
	Datasets
	Data Transforms
	Design of Data transforms pipeline

	Evaluation
	Engine
	Conventions
	Loss
	Empty Proposals
	Coco Panoptic Dataset

	Component Customization
	Customize Models
	Develop new components
	Add a new backbone
	1. Define a new backbone (e.g. MobileNet)
	2. Import the module
	3. Use the backbone in your config file

	Add new necks
	1. Define a neck (e.g. PAFPN)
	2. Import the module
	3. Modify the config file

	Add new heads
	Add new loss

	Customize Losses
	Computation pipeline of a loss
	Set sampling method (step 1)
	Tweaking loss
	Tweaking hyper-parameters (step 2)
	Tweaking the way of reduction (step 3)
	Tweaking loss weight (step 5)

	Weighting loss (step 3)

	Customize Datasets
	Support new data format
	Reorganize new data formats to existing format
	1. Modify the config file for using the customized dataset
	2. Check the annotations of the customized dataset

	Reorganize new data format to middle format
	An example of customized dataset

	Customize datasets by dataset wrappers
	Modify Dataset Classes
	COCO Panoptic Dataset

	Customize Data Pipelines
	Customize Runtime Settings
	Customize optimization settings
	Customize optimizer supported by Pytorch
	Customize self-implemented optimizer
	1. Define a new optimizer
	2. Add the optimizer to registry
	3. Specify the optimizer in the config file

	Customize optimizer wrapper constructor
	Additional settings

	Customize training schedules
	Customize train loop
	Customize hooks
	Customize self-implemented hooks
	1. Implement a new hook
	2. Register the new hook
	3. Modify the config

	Use hooks implemented in MMDetection
	Example: NumClassCheckHook

	Modify default runtime hooks
	CheckpointHook
	LoggerHook
	DetVisualizationHook

	How to
	Use backbone network through MMClassification
	Use backbone network implemented in MMClassification
	Use backbone network in TIMM through MMClassification

	Use Mosaic augmentation
	Unfreeze backbone network after freezing the backbone in the config
	Get the channels of a new backbone

	Migration
	mmdet.apis
	mmdet.datasets
	datasets
	api_wrappers
	samplers
	transforms

	mmdet.engine
	hooks
	optimizers
	runner
	schedulers

	mmdet.evaluation
	functional
	metrics

	mmdet.models
	backbones
	data_preprocessors
	dense_heads
	detectors
	layers
	losses
	necks
	roi_heads
	seg_heads
	task_modules
	test_time_augs
	utils

	mmdet.structures
	bbox
	mask

	mmdet.testing
	mmdet.visulization
	mmdet.utils
	Benchmark and Model Zoo
	Mirror sites
	Common settings
	ImageNet Pretrained Models
	Baselines
	RPN
	Faster R-CNN
	Mask R-CNN
	Fast R-CNN (with pre-computed proposals)
	RetinaNet
	Cascade R-CNN and Cascade Mask R-CNN
	Hybrid Task Cascade (HTC)
	SSD
	Group Normalization (GN)
	Weight Standardization
	Deformable Convolution v2
	CARAFE: Content-Aware ReAssembly of FEatures
	Instaboost
	Libra R-CNN
	Guided Anchoring
	FCOS
	FoveaBox
	RepPoints
	FreeAnchor
	Grid R-CNN (plus)
	GHM
	GCNet
	HRNet
	Mask Scoring R-CNN
	Train from Scratch
	NAS-FPN
	ATSS
	FSAF
	RegNetX
	Res2Net
	GRoIE
	Dynamic R-CNN
	PointRend
	DetectoRS
	Generalized Focal Loss
	CornerNet
	YOLOv3
	PAA
	SABL
	CentripetalNet
	ResNeSt
	DETR
	Deformable DETR
	AutoAssign
	YOLOF
	Seesaw Loss
	CenterNet
	YOLOX
	PVT
	SOLO
	QueryInst
	PanopticFPN
	MaskFormer
	DyHead
	Mask2Former
	Efficientnet
	Other datasets
	Pre-trained Models

	Speed benchmark
	Training Speed benchmark
	Inference Speed Benchmark

	Comparison with Detectron2
	Hardware
	Software environment
	Performance
	Training Speed
	Inference Speed
	Training memory

	Contribution
	Projects based on MMDetection
	Projects as an extension
	Projects of papers

	Changelog of v3.x
	v3.0.0rc0 (31/8/2022)
	Highlights
	Breaking Changes
	Dependencies
	Training and testing
	Configs
	Dataset
	Data Transforms
	Model
	Evaluation
	Visualization

	Improvements
	Bug Fixes
	New Features
	Planned changes
	Contributors

	Changelog v2.x
	v2.25.0 (31/5/2022)
	Highlights
	Backwards incompatible changes
	New Features
	Bug Fixes
	Improvements
	Contributors

	v2.24.0 (26/4/2022)
	Highlights
	New Features
	Bug Fixes
	Improvements
	Contributors

	v2.23.0 (28/3/2022)
	Highlights
	New Features
	Bug Fixes
	Improvements
	Contributors

	v2.22.0 (24/2/2022)
	Highlights
	New Features
	Breaking Changes
	Bug Fixes
	Improvements
	Contributors

	v2.21.0 (8/2/2022)
	Breaking Changes
	New Features
	Bug Fixes
	Improvements
	Contributors

	v2.20.0 (27/12/2021)
	New Features
	Bug Fixes
	Improvements
	Contributors

	v2.19.1 (14/12/2021)
	New Features
	Bug Fixes
	Improvements
	Documents
	Contributors

	v2.19.0 (29/11/2021)
	Highlights
	New Features
	Bug Fixes
	Improvements
	Documents
	Contributors

	v2.18.1 (15/11/2021)
	Highlights
	New Features
	Bug Fixes
	Improvements
	Documents
	Contributors

	v2.18.0 (27/10/2021)
	Highlights
	New Features
	Bug Fixes
	Improvements
	Refactors
	Contributors

	v2.17.0 (28/9/2021)
	Highlights
	New Features
	Bug Fixes
	Improvements
	Contributors

	v2.16.0 (30/8/2021)
	Highlights
	New Features
	Bug Fixes
	Improvements
	Contributors

	v2.15.1 (11/8/2021)
	Highlights
	New Features
	Bug Fixes
	Improvements
	Contributors

	v2.15.0 (02/8/2021)
	Highlights
	New Features
	Bug Fixes
	Improvements
	Contributors

	v2.14.0 (29/6/2021)
	Highlights
	New Features
	Bug Fixes
	Improvements

	v2.13.0 (01/6/2021)
	Highlights
	New Features
	Bug Fixes
	Improvements

	v2.12.0 (01/5/2021)
	Highlights
	Backwards Incompatible Changes
	New Features
	Improvements
	Bug Fixes

	v2.11.0 (01/4/2021)
	v2.10.0 (01/03/2021)
	Highlights
	New Features
	Bug Fixes
	Improvements

	v2.9.0 (01/02/2021)
	Highlights
	New Features
	Bug Fixes
	Improvements

	v2.8.0 (04/01/2021)
	Highlights
	New Features
	Bug Fixes
	Improvements

	v2.7.0 (30/11/2020)
	New Features
	Bug Fixes
	Improvements

	v2.6.0 (1/11/2020)
	New Features
	Bug Fixes
	Improvements

	v2.5.0 (5/10/2020)
	Highlights
	Backwards Incompatible Changes
	New Features
	Bug Fixes
	Improvements

	v2.4.0 (5/9/2020)
	v2.3.0 (5/8/2020)
	v2.2.0 (1/7/2020)
	v2.1.0 (8/6/2020)
	v2.0.0 (6/5/2020)
	v1.1.0 (24/2/2020)
	v1.0.0 (30/1/2020)
	v1.0rc1 (13/12/2019)
	v1.0rc0 (27/07/2019)
	v0.6.0 (14/04/2019)
	v0.6rc0(06/02/2019)
	v0.5.7 (06/02/2019)
	v0.5.6 (17/01/2019)
	v0.5.5 (22/12/2018)
	v0.5.4 (27/11/2018)
	v0.5.3 (26/11/2018)
	v0.5.2 (21/10/2018)
	v0.5.1 (20/10/2018)

	Frequently Asked Questions
	Installation
	Coding
	PyTorch/CUDA Environment
	Training
	Evaluation
	Model

	Compatibility of MMDetection 2.x
	MMDetection 2.25.0
	MMDetection 2.21.0
	MMDetection 2.18.1
	MMCV compatibility

	MMDetection 2.18.0
	DIIHead compatibility

	MMDetection 2.14.0
	MMCV Version
	SSD compatibility

	MMDetection 2.12.0
	MMCV Version
	Unified model initialization
	Unified model registry
	Mask AP evaluation

	Compatibility with MMDetection 1.x
	Coordinate System
	Codebase Conventions
	Training Hyperparameters
	Upgrade Models from 1.x to 2.0

	pycocotools compatibility

	English
	简体中文
	Indices and tables

