Migrate Configuration File from MMDetection 2.x to 3.x¶
The configuration file of MMDetection 3.x has undergone significant changes in comparison to the 2.x version. This document explains how to migrate 2.x configuration files to 3.x.
In the previous tutorial Learn about Configs, we used Mask R-CNN as an example to introduce the configuration file structure of MMDetection 3.x. Here, we will follow the same structure to demonstrate how to migrate 2.x configuration files to 3.x.
Model Configuration¶
There have been no major changes to the model configuration in 3.x compared to 2.x. For the model’s backbone, neck, head, as well as train_cfg and test_cfg, the parameters remain the same as in version 2.x.
On the other hand, we have added the DataPreprocessor
module in MMDetection 3.x. The configuration for the DataPreprocessor
module is located in model.data_preprocessor
. It is used to preprocess the input data, such as normalizing input images and padding images of different sizes into batches, and loading images from memory to VRAM. This configuration replaces the Normalize
and Pad
modules in train_pipeline
and test_pipeline
of the earlier version.
2.x Config |
# Image normalization parameters
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)
pipeline=[
...,
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32), # Padding the image to multiples of 32
...
]
|
3.x Config |
model = dict(
data_preprocessor=dict(
type='DetDataPreprocessor',
# Image normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
# Image padding parameters
pad_mask=True, # In instance segmentation, the mask needs to be padded
pad_size_divisor=32) # Padding the image to multiples of 32
)
|
Dataset and Evaluator Configuration¶
The dataset and evaluator configurations have undergone major changes compared to version 2.x. We will introduce how to migrate from version 2.x to version 3.x from three aspects: Dataloader and Dataset, Data transform pipeline, and Evaluator configuration.
Dataloader and Dataset Configuration¶
In the new version, we set the data loading settings consistent with PyTorch’s official DataLoader,
making it easier for users to understand and get started with.
We put the data loading settings for training, validation, and testing separately in train_dataloader
, val_dataloader
, and test_dataloader
.
Users can set different parameters for these dataloaders.
The input parameters are basically the same as those required by PyTorch DataLoader.
This way, we put the unconfigurable parameters in version 2.x, such as sampler
, batch_sampler
, and persistent_workers
, in the configuration file, so that users can set dataloader parameters more flexibly.
Users can set the dataset configuration through train_dataloader.dataset
, val_dataloader.dataset
, and test_dataloader.dataset
, which correspond to data.train
, data.val
, and data.test
in version 2.x.
2.x Config |
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline))
|
3.x Config |
train_dataloader = dict(
batch_size=2,
num_workers=2,
persistent_workers=True, # Avoid recreating subprocesses after each iteration
sampler=dict(type='DefaultSampler', shuffle=True), # Default sampler, supports both distributed and non-distributed training
batch_sampler=dict(type='AspectRatioBatchSampler'), # Default batch_sampler, used to ensure that images in the batch have similar aspect ratios, so as to better utilize graphics memory
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_train2017.json',
data_prefix=dict(img='train2017/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline))
# In version 3.x, validation and test dataloaders can be configured independently
val_dataloader = dict(
batch_size=1,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_val2017.json',
data_prefix=dict(img='val2017/'),
test_mode=True,
pipeline=test_pipeline))
test_dataloader = val_dataloader # The configuration of the testing dataloader is the same as that of the validation dataloader, which is omitted here
|
Data Transform Pipeline Configuration¶
As mentioned earlier, we have separated the normalization and padding configurations for images from the train_pipeline
and test_pipeline
, and have placed them in model.data_preprocessor
instead. Hence, in the 3.x version of the pipeline, we no longer require the Normalize
and Pad
transforms.
At the same time, we have also refactored the transform responsible for packing the data format, and have merged the Collect
and DefaultFormatBundle
transforms into PackDetInputs
. This transform is responsible for packing the data from the data pipeline into the input format of the model. For more details on the input format conversion, please refer to the data flow documentation.
Below, we will use the train_pipeline
of Mask R-CNN as an example, to demonstrate how to migrate from the 2.x configuration to the 3.x configuration:
2.x Config |
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
|
3.x Config |
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs')
]
|
For the test_pipeline
, apart from removing the Normalize
and Pad
transforms, we have also separated the data augmentation for testing (TTA) from the normal testing process, and have removed MultiScaleFlipAug
. For more information on how to use the new TTA version, please refer to the TTA documentation.
Below, we will again use the test_pipeline
of Mask R-CNN as an example, to demonstrate how to migrate from the 2.x configuration to the 3.x configuration:
2.x Config |
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
|
3.x Config |
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
|
In addition, we have also refactored some data augmentation transforms. The following table lists the mapping between the transforms used in the 2.x version and the 3.x version:
Name | 2.x Config | 3.x Config |
---|---|---|
Resize |
dict(type='Resize',
img_scale=(1333, 800),
keep_ratio=True)
|
dict(type='Resize',
scale=(1333, 800),
keep_ratio=True)
|
RandomResize |
dict(
type='Resize',
img_scale=[
(1333, 640), (1333, 800)],
multiscale_mode='range',
keep_ratio=True)
|
dict(
type='RandomResize',
scale=[
(1333, 640), (1333, 800)],
keep_ratio=True)
|
RandomChoiceResize |
dict(
type='Resize',
img_scale=[
(1333, 640), (1333, 672),
(1333, 704), (1333, 736),
(1333, 768), (1333, 800)],
multiscale_mode='value',
keep_ratio=True)
|
dict(
type='RandomChoiceResize',
scales=[
(1333, 640), (1333, 672),
(1333, 704), (1333, 736),
(1333, 768), (1333, 800)],
keep_ratio=True)
|
RandomFlip |
dict(type='RandomFlip', flip_ratio=0.5)
|
dict(type='RandomFlip', prob=0.5)
|
评测器配置¶
In version 3.x, model accuracy evaluation is no longer tied to the dataset, but is instead accomplished through the use of an Evaluator.
The Evaluator configuration is divided into two parts: val_evaluator
and test_evaluator
. The val_evaluator
is used for validation dataset evaluation, while the test_evaluator
is used for testing dataset evaluation.
This corresponds to the evaluation
field in version 2.x.
The following table shows the corresponding relationship between Evaluators in version 2.x and 3.x.
Metric Name | 2.x Config | 3.x Config |
---|---|---|
COCO |
data = dict(
val=dict(
type='CocoDataset',
ann_file=data_root + 'annotations/instances_val2017.json'))
evaluation = dict(metric=['bbox', 'segm'])
|
val_evaluator = dict(
type='CocoMetric',
ann_file=data_root + 'annotations/instances_val2017.json',
metric=['bbox', 'segm'],
format_only=False)
|
Pascal VOC |
data = dict(
val=dict(
type=dataset_type,
ann_file=data_root + 'VOC2007/ImageSets/Main/test.txt'))
evaluation = dict(metric='mAP')
|
val_evaluator = dict(
type='VOCMetric',
metric='mAP',
eval_mode='11points')
|
OpenImages |
data = dict(
val=dict(
type='OpenImagesDataset',
ann_file=data_root + 'annotations/validation-annotations-bbox.csv',
img_prefix=data_root + 'OpenImages/validation/',
label_file=data_root + 'annotations/class-descriptions-boxable.csv',
hierarchy_file=data_root +
'annotations/bbox_labels_600_hierarchy.json',
meta_file=data_root + 'annotations/validation-image-metas.pkl',
image_level_ann_file=data_root +
'annotations/validation-annotations-human-imagelabels-boxable.csv'))
evaluation = dict(interval=1, metric='mAP')
|
val_evaluator = dict(
type='OpenImagesMetric',
iou_thrs=0.5,
ioa_thrs=0.5,
use_group_of=True,
get_supercategory=True)
|
CityScapes |
data = dict(
val=dict(
type='CityScapesDataset',
ann_file=data_root +
'annotations/instancesonly_filtered_gtFine_val.json',
img_prefix=data_root + 'leftImg8bit/val/',
pipeline=test_pipeline))
evaluation = dict(metric=['bbox', 'segm'])
|
val_evaluator = [
dict(
type='CocoMetric',
ann_file=data_root +
'annotations/instancesonly_filtered_gtFine_val.json',
metric=['bbox', 'segm']),
dict(
type='CityScapesMetric',
ann_file=data_root +
'annotations/instancesonly_filtered_gtFine_val.json',
seg_prefix=data_root + '/gtFine/val',
outfile_prefix='./work_dirs/cityscapes_metric/instance')
]
|
Configuration for Training and Testing¶
2.x Config |
runner = dict(
type='EpochBasedRunner', # Type of training loop
max_epochs=12) # Maximum number of training epochs
evaluation = dict(interval=2) # Interval for evaluation, check the performance every 2 epochs
|
3.x Config |
train_cfg = dict(
type='EpochBasedTrainLoop', # Type of training loop, please refer to https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/loops.py
max_epochs=12, # Maximum number of training epochs
val_interval=2) # Interval for validation, check the performance every 2 epochs
val_cfg = dict(type='ValLoop') # Type of validation loop
test_cfg = dict(type='TestLoop') # Type of testing loop
|
Optimization Configuration¶
The configuration for optimizer and gradient clipping is moved to the optim_wrapper
field.
The following table shows the correspondences for optimizer configuration between 2.x version and 3.x version:
2.x Config |
optimizer = dict(
type='SGD', # Optimizer: Stochastic Gradient Descent
lr=0.02, # Base learning rate
momentum=0.9, # SGD with momentum
weight_decay=0.0001) # Weight decay
optimizer_config = dict(grad_clip=None) # Configuration for gradient clipping, set to None to disable
|
3.x Config |
optim_wrapper = dict( # Configuration for the optimizer wrapper
type='OptimWrapper', # Type of optimizer wrapper, you can switch to AmpOptimWrapper to enable mixed precision training
optimizer=dict( # Optimizer configuration, supports various PyTorch optimizers, please refer to https://pytorch.org/docs/stable/optim.html#algorithms
type='SGD', # SGD
lr=0.02, # Base learning rate
momentum=0.9, # SGD with momentum
weight_decay=0.0001), # Weight decay
clip_grad=None, # Configuration for gradient clipping, set to None to disable. For usage, please see https://mmengine.readthedocs.io/en/latest/tutorials/optimizer.html
)
|
The configuration for learning rate is also moved from the lr_config
field to the param_scheduler
field. The param_scheduler
configuration is more similar to PyTorch’s learning rate scheduler and more flexible. The following table shows the correspondences for learning rate configuration between 2.x version and 3.x version:
2.x Config |
lr_config = dict(
policy='step', # Use multi-step learning rate strategy during training
warmup='linear', # Use linear learning rate warmup
warmup_iters=500, # End warmup at iteration 500
warmup_ratio=0.001, # Coefficient for learning rate warmup
step=[8, 11], # Learning rate decay at which epochs
gamma=0.1) # Learning rate decay coefficient
|
3.x Config |
param_scheduler = [
dict(
type='LinearLR', # Use linear learning rate warmup
start_factor=0.001, # Coefficient for learning rate warmup
by_epoch=False, # Update the learning rate during warmup at each iteration
begin=0, # Starting from the first iteration
end=500), # End at the 500th iteration
dict(
type='MultiStepLR', # Use multi-step learning rate strategy during training
by_epoch=True, # Update the learning rate at each epoch
begin=0, # Starting from the first epoch
end=12, # Ending at the 12th epoch
milestones=[8, 11], # Learning rate decay at which epochs
gamma=0.1) # Learning rate decay coefficient
]
|
For information on how to migrate other learning rate adjustment policies, please refer to the learning rate migration document of MMEngine.
Migration of Other Configurations¶
Configuration for Saving Checkpoints¶
Function | 2.x Config | 3.x Config |
---|---|---|
Set Save Interval |
checkpoint_config = dict(
interval=1)
|
default_hooks = dict(
checkpoint=dict(
type='CheckpointHook',
interval=1))
|
Save Best Model |
evaluation = dict(
save_best='auto')
|
default_hooks = dict(
checkpoint=dict(
type='CheckpointHook',
save_best='auto'))
|
Keep Latest Model |
checkpoint_config = dict(
max_keep_ckpts=3)
|
default_hooks = dict(
checkpoint=dict(
type='CheckpointHook',
max_keep_ckpts=3))
|
Logging Configuration¶
In MMDetection 3.x, the logging and visualization of the log are carried out respectively by the logger and visualizer in MMEngine. The following table shows the comparison between the configuration of printing logs and visualizing logs in MMDetection 2.x and 3.x.
Function | 2.x Config | 3.x Config |
---|---|---|
Set Log Printing Interval |
log_config = dict(interval=50)
|
default_hooks = dict(
logger=dict(type='LoggerHook', interval=50))
# Optional: set moving average window size
log_processor = dict(
type='LogProcessor', window_size=50)
|
Use TensorBoard or WandB to visualize logs |
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook'),
dict(type='MMDetWandbHook',
init_kwargs={
'project': 'mmdetection',
'group': 'maskrcnn-r50-fpn-1x-coco'
},
interval=50,
log_checkpoint=True,
log_checkpoint_metadata=True,
num_eval_images=100)
])
|
vis_backends = [
dict(type='LocalVisBackend'),
dict(type='TensorboardVisBackend'),
dict(type='WandbVisBackend',
init_kwargs={
'project': 'mmdetection',
'group': 'maskrcnn-r50-fpn-1x-coco'
})
]
visualizer = dict(
type='DetLocalVisualizer',
vis_backends=vis_backends,
name='visualizer')
|
For visualization-related tutorials, please refer to Visualization Tutorial of MMDetection.
Runtime Configuration¶
The runtime configuration fields in version 3.x have been adjusted, and the specific correspondence is as follows:
2.x Config | 3.x Config |
---|---|
cudnn_benchmark = False
opencv_num_threads = 0
mp_start_method = 'fork'
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
|
env_cfg = dict(
cudnn_benchmark=False,
mp_cfg=dict(mp_start_method='fork',
opencv_num_threads=0),
dist_cfg=dict(backend='nccl'))
log_level = 'INFO'
load_from = None
resume = False
|