Source code for mmdet.core.bbox.coder.delta_xywh_bbox_coder

import numpy as np
import torch

from ..builder import BBOX_CODERS
from .base_bbox_coder import BaseBBoxCoder


[docs]@BBOX_CODERS.register_module() class DeltaXYWHBBoxCoder(BaseBBoxCoder): """Delta XYWH BBox coder Following the practice in `R-CNN <https://arxiv.org/abs/1311.2524>`_, this coder encodes bbox (x1, y1, x2, y2) into delta (dx, dy, dw, dh) and decodes delta (dx, dy, dw, dh) back to original bbox (x1, y1, x2, y2). Args: target_means (Sequence[float]): denormalizing means of target for delta coordinates target_stds (Sequence[float]): denormalizing standard deviation of target for delta coordinates """ def __init__(self, target_means=(0., 0., 0., 0.), target_stds=(1., 1., 1., 1.)): super(BaseBBoxCoder, self).__init__() self.means = target_means self.stds = target_stds def encode(self, bboxes, gt_bboxes): assert bboxes.size(0) == gt_bboxes.size(0) assert bboxes.size(-1) == gt_bboxes.size(-1) == 4 encoded_bboxes = bbox2delta(bboxes, gt_bboxes, self.means, self.stds) return encoded_bboxes def decode(self, bboxes, pred_bboxes, max_shape=None, wh_ratio_clip=16 / 1000): assert pred_bboxes.size(0) == bboxes.size(0) decoded_bboxes = delta2bbox(bboxes, pred_bboxes, self.means, self.stds, max_shape, wh_ratio_clip) return decoded_bboxes
def bbox2delta(proposals, gt, means=(0., 0., 0., 0.), stds=(1., 1., 1., 1.)): """Compute deltas of proposals w.r.t. gt. We usually compute the deltas of x, y, w, h of proposals w.r.t ground truth bboxes to get regression target. This is the inverse function of `delta2bbox()` Args: proposals (Tensor): Boxes to be transformed, shape (N, ..., 4) gt (Tensor): Gt bboxes to be used as base, shape (N, ..., 4) means (Sequence[float]): Denormalizing means for delta coordinates stds (Sequence[float]): Denormalizing standard deviation for delta coordinates Returns: Tensor: deltas with shape (N, 4), where columns represent dx, dy, dw, dh. """ assert proposals.size() == gt.size() proposals = proposals.float() gt = gt.float() px = (proposals[..., 0] + proposals[..., 2]) * 0.5 py = (proposals[..., 1] + proposals[..., 3]) * 0.5 pw = proposals[..., 2] - proposals[..., 0] ph = proposals[..., 3] - proposals[..., 1] gx = (gt[..., 0] + gt[..., 2]) * 0.5 gy = (gt[..., 1] + gt[..., 3]) * 0.5 gw = gt[..., 2] - gt[..., 0] gh = gt[..., 3] - gt[..., 1] dx = (gx - px) / pw dy = (gy - py) / ph dw = torch.log(gw / pw) dh = torch.log(gh / ph) deltas = torch.stack([dx, dy, dw, dh], dim=-1) means = deltas.new_tensor(means).unsqueeze(0) stds = deltas.new_tensor(stds).unsqueeze(0) deltas = deltas.sub_(means).div_(stds) return deltas def delta2bbox(rois, deltas, means=(0., 0., 0., 0.), stds=(1., 1., 1., 1.), max_shape=None, wh_ratio_clip=16 / 1000): """Apply deltas to shift/scale base boxes. Typically the rois are anchor or proposed bounding boxes and the deltas are network outputs used to shift/scale those boxes. This is the inverse function of `bbox2delta()` Args: rois (Tensor): Boxes to be transformed. Has shape (N, 4) deltas (Tensor): Encoded offsets with respect to each roi. Has shape (N, 4 * num_classes). Note N = num_anchors * W * H when rois is a grid of anchors. Offset encoding follows [1]_. means (Sequence[float]): Denormalizing means for delta coordinates stds (Sequence[float]): Denormalizing standard deviation for delta coordinates max_shape (tuple[int, int]): Maximum bounds for boxes. specifies (H, W) wh_ratio_clip (float): Maximum aspect ratio for boxes. Returns: Tensor: Boxes with shape (N, 4), where columns represent tl_x, tl_y, br_x, br_y. References: .. [1] https://arxiv.org/abs/1311.2524 Example: >>> rois = torch.Tensor([[ 0., 0., 1., 1.], >>> [ 0., 0., 1., 1.], >>> [ 0., 0., 1., 1.], >>> [ 5., 5., 5., 5.]]) >>> deltas = torch.Tensor([[ 0., 0., 0., 0.], >>> [ 1., 1., 1., 1.], >>> [ 0., 0., 2., -1.], >>> [ 0.7, -1.9, -0.5, 0.3]]) >>> delta2bbox(rois, deltas, max_shape=(32, 32)) tensor([[0.0000, 0.0000, 1.0000, 1.0000], [0.1409, 0.1409, 2.8591, 2.8591], [0.0000, 0.3161, 4.1945, 0.6839], [5.0000, 5.0000, 5.0000, 5.0000]]) """ means = deltas.new_tensor(means).repeat(1, deltas.size(1) // 4) stds = deltas.new_tensor(stds).repeat(1, deltas.size(1) // 4) denorm_deltas = deltas * stds + means dx = denorm_deltas[:, 0::4] dy = denorm_deltas[:, 1::4] dw = denorm_deltas[:, 2::4] dh = denorm_deltas[:, 3::4] max_ratio = np.abs(np.log(wh_ratio_clip)) dw = dw.clamp(min=-max_ratio, max=max_ratio) dh = dh.clamp(min=-max_ratio, max=max_ratio) # Compute center of each roi px = ((rois[:, 0] + rois[:, 2]) * 0.5).unsqueeze(1).expand_as(dx) py = ((rois[:, 1] + rois[:, 3]) * 0.5).unsqueeze(1).expand_as(dy) # Compute width/height of each roi pw = (rois[:, 2] - rois[:, 0]).unsqueeze(1).expand_as(dw) ph = (rois[:, 3] - rois[:, 1]).unsqueeze(1).expand_as(dh) # Use exp(network energy) to enlarge/shrink each roi gw = pw * dw.exp() gh = ph * dh.exp() # Use network energy to shift the center of each roi gx = px + pw * dx gy = py + ph * dy # Convert center-xy/width/height to top-left, bottom-right x1 = gx - gw * 0.5 y1 = gy - gh * 0.5 x2 = gx + gw * 0.5 y2 = gy + gh * 0.5 if max_shape is not None: x1 = x1.clamp(min=0, max=max_shape[1]) y1 = y1.clamp(min=0, max=max_shape[0]) x2 = x2.clamp(min=0, max=max_shape[1]) y2 = y2.clamp(min=0, max=max_shape[0]) bboxes = torch.stack([x1, y1, x2, y2], dim=-1).view_as(deltas) return bboxes