Source code for mmdet.datasets.dataset_wrappers

import bisect
import math
from collections import defaultdict

import numpy as np
from torch.utils.data.dataset import ConcatDataset as _ConcatDataset

from .builder import DATASETS


[docs]@DATASETS.register_module() class ConcatDataset(_ConcatDataset): """A wrapper of concatenated dataset. Same as :obj:`torch.utils.data.dataset.ConcatDataset`, but concat the group flag for image aspect ratio. Args: datasets (list[:obj:`Dataset`]): A list of datasets. """ def __init__(self, datasets): super(ConcatDataset, self).__init__(datasets) self.CLASSES = datasets[0].CLASSES if hasattr(datasets[0], 'flag'): flags = [] for i in range(0, len(datasets)): flags.append(datasets[i].flag) self.flag = np.concatenate(flags) def get_cat_ids(self, idx): if idx < 0: if -idx > len(self): raise ValueError( 'absolute value of index should not exceed dataset length') idx = len(self) + idx dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx) if dataset_idx == 0: sample_idx = idx else: sample_idx = idx - self.cumulative_sizes[dataset_idx - 1] return self.datasets[dataset_idx].get_cat_ids(sample_idx)
[docs]@DATASETS.register_module() class RepeatDataset(object): """A wrapper of repeated dataset. The length of repeated dataset will be `times` larger than the original dataset. This is useful when the data loading time is long but the dataset is small. Using RepeatDataset can reduce the data loading time between epochs. Args: dataset (:obj:`Dataset`): The dataset to be repeated. times (int): Repeat times. """ def __init__(self, dataset, times): self.dataset = dataset self.times = times self.CLASSES = dataset.CLASSES if hasattr(self.dataset, 'flag'): self.flag = np.tile(self.dataset.flag, times) self._ori_len = len(self.dataset) def __getitem__(self, idx): return self.dataset[idx % self._ori_len] def get_cat_ids(self, idx): return self.dataset.get_cat_ids(idx % self._ori_len) def __len__(self): return self.times * self._ori_len
# Modified from https://github.com/facebookresearch/detectron2/blob/41d475b75a230221e21d9cac5d69655e3415e3a4/detectron2/data/samplers/distributed_sampler.py#L57 # noqa
[docs]@DATASETS.register_module() class ClassBalancedDataset(object): """A wrapper of repeated dataset with repeat factor. Suitable for training on class imbalanced datasets like LVIS. Following the sampling strategy in [1], in each epoch, an image may appear multiple times based on its "repeat factor". The repeat factor for an image is a function of the frequency the rarest category labeled in that image. The "frequency of category c" in [0, 1] is defined by the fraction of images in the training set (without repeats) in which category c appears. The dataset needs to instantiate :func:`self.get_cat_ids(idx)` to support ClassBalancedDataset. The repeat factor is computed as followed. 1. For each category c, compute the fraction # of images that contain it: f(c) 2. For each category c, compute the category-level repeat factor: r(c) = max(1, sqrt(t/f(c))) 3. For each image I, compute the image-level repeat factor: r(I) = max_{c in I} r(c) References: .. [1] https://arxiv.org/pdf/1903.00621v2.pdf Args: dataset (:obj:`CustomDataset`): The dataset to be repeated. oversample_thr (float): frequency threshold below which data is repeated. For categories with `f_c` >= `oversample_thr`, there is no oversampling. For categories with `f_c` < `oversample_thr`, the degree of oversampling following the square-root inverse frequency heuristic above. """ def __init__(self, dataset, oversample_thr): self.dataset = dataset self.oversample_thr = oversample_thr self.CLASSES = dataset.CLASSES repeat_factors = self._get_repeat_factors(dataset, oversample_thr) repeat_indices = [] for dataset_index, repeat_factor in enumerate(repeat_factors): repeat_indices.extend([dataset_index] * math.ceil(repeat_factor)) self.repeat_indices = repeat_indices flags = [] if hasattr(self.dataset, 'flag'): for flag, repeat_factor in zip(self.dataset.flag, repeat_factors): flags.extend([flag] * int(math.ceil(repeat_factor))) assert len(flags) == len(repeat_indices) self.flag = np.asarray(flags, dtype=np.uint8) def _get_repeat_factors(self, dataset, repeat_thr): # 1. For each category c, compute the fraction # of images # that contain it: f(c) category_freq = defaultdict(int) num_images = len(dataset) for idx in range(num_images): cat_ids = set(self.dataset.get_cat_ids(idx)) for cat_id in cat_ids: category_freq[cat_id] += 1 for k, v in category_freq.items(): category_freq[k] = v / num_images # 2. For each category c, compute the category-level repeat factor: # r(c) = max(1, sqrt(t/f(c))) category_repeat = { cat_id: max(1.0, math.sqrt(repeat_thr / cat_freq)) for cat_id, cat_freq in category_freq.items() } # 3. For each image I, compute the image-level repeat factor: # r(I) = max_{c in I} r(c) repeat_factors = [] for idx in range(num_images): cat_ids = set(self.dataset.get_cat_ids(idx)) repeat_factor = max( {category_repeat[cat_id] for cat_id in cat_ids}) repeat_factors.append(repeat_factor) return repeat_factors def __getitem__(self, idx): ori_index = self.repeat_indices[idx] return self.dataset[ori_index] def __len__(self): return len(self.repeat_indices)