Source code for mmdet.models.dense_heads.sabl_retina_head

import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmcv.runner import force_fp32

from mmdet.core import (build_anchor_generator, build_assigner,
                        build_bbox_coder, build_sampler, images_to_levels,
                        multi_apply, multiclass_nms, unmap)
from ..builder import HEADS, build_loss
from .base_dense_head import BaseDenseHead
from .dense_test_mixins import BBoxTestMixin
from .guided_anchor_head import GuidedAnchorHead


[docs]@HEADS.register_module() class SABLRetinaHead(BaseDenseHead, BBoxTestMixin): """Side-Aware Boundary Localization (SABL) for RetinaNet. The anchor generation, assigning and sampling in SABLRetinaHead are the same as GuidedAnchorHead for guided anchoring. Please refer to https://arxiv.org/abs/1912.04260 for more details. Args: num_classes (int): Number of classes. in_channels (int): Number of channels in the input feature map. stacked_convs (int): Number of Convs for classification \ and regression branches. Defaults to 4. feat_channels (int): Number of hidden channels. \ Defaults to 256. approx_anchor_generator (dict): Config dict for approx generator. square_anchor_generator (dict): Config dict for square generator. conv_cfg (dict): Config dict for ConvModule. Defaults to None. norm_cfg (dict): Config dict for Norm Layer. Defaults to None. bbox_coder (dict): Config dict for bbox coder. reg_decoded_bbox (bool): If true, the regression loss would be applied directly on decoded bounding boxes, converting both the predicted boxes and regression targets to absolute coordinates format. Default False. It should be `True` when using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head. train_cfg (dict): Training config of SABLRetinaHead. test_cfg (dict): Testing config of SABLRetinaHead. loss_cls (dict): Config of classification loss. loss_bbox_cls (dict): Config of classification loss for bbox branch. loss_bbox_reg (dict): Config of regression loss for bbox branch. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, num_classes, in_channels, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), conv_cfg=None, norm_cfg=None, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), reg_decoded_bbox=False, train_cfg=None, test_cfg=None, loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), loss_bbox_reg=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5), init_cfg=dict( type='Normal', layer='Conv2d', std=0.01, override=dict( type='Normal', name='retina_cls', std=0.01, bias_prob=0.01))): super(SABLRetinaHead, self).__init__(init_cfg) self.in_channels = in_channels self.num_classes = num_classes self.feat_channels = feat_channels self.num_buckets = bbox_coder['num_buckets'] self.side_num = int(np.ceil(self.num_buckets / 2)) assert (approx_anchor_generator['octave_base_scale'] == square_anchor_generator['scales'][0]) assert (approx_anchor_generator['strides'] == square_anchor_generator['strides']) self.approx_anchor_generator = build_anchor_generator( approx_anchor_generator) self.square_anchor_generator = build_anchor_generator( square_anchor_generator) self.approxs_per_octave = ( self.approx_anchor_generator.num_base_anchors[0]) # one anchor per location self.num_anchors = 1 self.stacked_convs = stacked_convs self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.reg_decoded_bbox = reg_decoded_bbox self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) self.sampling = loss_cls['type'] not in [ 'FocalLoss', 'GHMC', 'QualityFocalLoss' ] if self.use_sigmoid_cls: self.cls_out_channels = num_classes else: self.cls_out_channels = num_classes + 1 self.bbox_coder = build_bbox_coder(bbox_coder) self.loss_cls = build_loss(loss_cls) self.loss_bbox_cls = build_loss(loss_bbox_cls) self.loss_bbox_reg = build_loss(loss_bbox_reg) self.train_cfg = train_cfg self.test_cfg = test_cfg if self.train_cfg: self.assigner = build_assigner(self.train_cfg.assigner) # use PseudoSampler when sampling is False if self.sampling and hasattr(self.train_cfg, 'sampler'): sampler_cfg = self.train_cfg.sampler else: sampler_cfg = dict(type='PseudoSampler') self.sampler = build_sampler(sampler_cfg, context=self) self.fp16_enabled = False self._init_layers() def _init_layers(self): self.relu = nn.ReLU(inplace=True) self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels self.cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.reg_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.retina_cls = nn.Conv2d( self.feat_channels, self.cls_out_channels, 3, padding=1) self.retina_bbox_reg = nn.Conv2d( self.feat_channels, self.side_num * 4, 3, padding=1) self.retina_bbox_cls = nn.Conv2d( self.feat_channels, self.side_num * 4, 3, padding=1) def forward_single(self, x): cls_feat = x reg_feat = x for cls_conv in self.cls_convs: cls_feat = cls_conv(cls_feat) for reg_conv in self.reg_convs: reg_feat = reg_conv(reg_feat) cls_score = self.retina_cls(cls_feat) bbox_cls_pred = self.retina_bbox_cls(reg_feat) bbox_reg_pred = self.retina_bbox_reg(reg_feat) bbox_pred = (bbox_cls_pred, bbox_reg_pred) return cls_score, bbox_pred
[docs] def forward(self, feats): return multi_apply(self.forward_single, feats)
[docs] def get_anchors(self, featmap_sizes, img_metas, device='cuda'): """Get squares according to feature map sizes and guided anchors. Args: featmap_sizes (list[tuple]): Multi-level feature map sizes. img_metas (list[dict]): Image meta info. device (torch.device | str): device for returned tensors Returns: tuple: square approxs of each image """ num_imgs = len(img_metas) # since feature map sizes of all images are the same, we only compute # squares for one time multi_level_squares = self.square_anchor_generator.grid_anchors( featmap_sizes, device=device) squares_list = [multi_level_squares for _ in range(num_imgs)] return squares_list
[docs] def get_target(self, approx_list, inside_flag_list, square_list, gt_bboxes_list, img_metas, gt_bboxes_ignore_list=None, gt_labels_list=None, label_channels=None, sampling=True, unmap_outputs=True): """Compute bucketing targets. Args: approx_list (list[list]): Multi level approxs of each image. inside_flag_list (list[list]): Multi level inside flags of each image. square_list (list[list]): Multi level squares of each image. gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. img_metas (list[dict]): Meta info of each image. gt_bboxes_ignore_list (list[Tensor]): ignore list of gt bboxes. gt_bboxes_list (list[Tensor]): Gt bboxes of each image. label_channels (int): Channel of label. sampling (bool): Sample Anchors or not. unmap_outputs (bool): unmap outputs or not. Returns: tuple: Returns a tuple containing learning targets. - labels_list (list[Tensor]): Labels of each level. - label_weights_list (list[Tensor]): Label weights of each \ level. - bbox_cls_targets_list (list[Tensor]): BBox cls targets of \ each level. - bbox_cls_weights_list (list[Tensor]): BBox cls weights of \ each level. - bbox_reg_targets_list (list[Tensor]): BBox reg targets of \ each level. - bbox_reg_weights_list (list[Tensor]): BBox reg weights of \ each level. - num_total_pos (int): Number of positive samples in all \ images. - num_total_neg (int): Number of negative samples in all \ images. """ num_imgs = len(img_metas) assert len(approx_list) == len(inside_flag_list) == len( square_list) == num_imgs # anchor number of multi levels num_level_squares = [squares.size(0) for squares in square_list[0]] # concat all level anchors and flags to a single tensor inside_flag_flat_list = [] approx_flat_list = [] square_flat_list = [] for i in range(num_imgs): assert len(square_list[i]) == len(inside_flag_list[i]) inside_flag_flat_list.append(torch.cat(inside_flag_list[i])) approx_flat_list.append(torch.cat(approx_list[i])) square_flat_list.append(torch.cat(square_list[i])) # compute targets for each image if gt_bboxes_ignore_list is None: gt_bboxes_ignore_list = [None for _ in range(num_imgs)] if gt_labels_list is None: gt_labels_list = [None for _ in range(num_imgs)] (all_labels, all_label_weights, all_bbox_cls_targets, all_bbox_cls_weights, all_bbox_reg_targets, all_bbox_reg_weights, pos_inds_list, neg_inds_list) = multi_apply( self._get_target_single, approx_flat_list, inside_flag_flat_list, square_flat_list, gt_bboxes_list, gt_bboxes_ignore_list, gt_labels_list, img_metas, label_channels=label_channels, sampling=sampling, unmap_outputs=unmap_outputs) # no valid anchors if any([labels is None for labels in all_labels]): return None # sampled anchors of all images num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) # split targets to a list w.r.t. multiple levels labels_list = images_to_levels(all_labels, num_level_squares) label_weights_list = images_to_levels(all_label_weights, num_level_squares) bbox_cls_targets_list = images_to_levels(all_bbox_cls_targets, num_level_squares) bbox_cls_weights_list = images_to_levels(all_bbox_cls_weights, num_level_squares) bbox_reg_targets_list = images_to_levels(all_bbox_reg_targets, num_level_squares) bbox_reg_weights_list = images_to_levels(all_bbox_reg_weights, num_level_squares) return (labels_list, label_weights_list, bbox_cls_targets_list, bbox_cls_weights_list, bbox_reg_targets_list, bbox_reg_weights_list, num_total_pos, num_total_neg)
def _get_target_single(self, flat_approxs, inside_flags, flat_squares, gt_bboxes, gt_bboxes_ignore, gt_labels, img_meta, label_channels=None, sampling=True, unmap_outputs=True): """Compute regression and classification targets for anchors in a single image. Args: flat_approxs (Tensor): flat approxs of a single image, shape (n, 4) inside_flags (Tensor): inside flags of a single image, shape (n, ). flat_squares (Tensor): flat squares of a single image, shape (approxs_per_octave * n, 4) gt_bboxes (Tensor): Ground truth bboxes of a single image, \ shape (num_gts, 4). gt_bboxes_ignore (Tensor): Ground truth bboxes to be ignored, shape (num_ignored_gts, 4). gt_labels (Tensor): Ground truth labels of each box, shape (num_gts,). img_meta (dict): Meta info of the image. label_channels (int): Channel of label. sampling (bool): Sample Anchors or not. unmap_outputs (bool): unmap outputs or not. Returns: tuple: - labels_list (Tensor): Labels in a single image - label_weights (Tensor): Label weights in a single image - bbox_cls_targets (Tensor): BBox cls targets in a single image - bbox_cls_weights (Tensor): BBox cls weights in a single image - bbox_reg_targets (Tensor): BBox reg targets in a single image - bbox_reg_weights (Tensor): BBox reg weights in a single image - num_total_pos (int): Number of positive samples \ in a single image - num_total_neg (int): Number of negative samples \ in a single image """ if not inside_flags.any(): return (None, ) * 8 # assign gt and sample anchors expand_inside_flags = inside_flags[:, None].expand( -1, self.approxs_per_octave).reshape(-1) approxs = flat_approxs[expand_inside_flags, :] squares = flat_squares[inside_flags, :] assign_result = self.assigner.assign(approxs, squares, self.approxs_per_octave, gt_bboxes, gt_bboxes_ignore) sampling_result = self.sampler.sample(assign_result, squares, gt_bboxes) num_valid_squares = squares.shape[0] bbox_cls_targets = squares.new_zeros( (num_valid_squares, self.side_num * 4)) bbox_cls_weights = squares.new_zeros( (num_valid_squares, self.side_num * 4)) bbox_reg_targets = squares.new_zeros( (num_valid_squares, self.side_num * 4)) bbox_reg_weights = squares.new_zeros( (num_valid_squares, self.side_num * 4)) labels = squares.new_full((num_valid_squares, ), self.num_classes, dtype=torch.long) label_weights = squares.new_zeros(num_valid_squares, dtype=torch.float) pos_inds = sampling_result.pos_inds neg_inds = sampling_result.neg_inds if len(pos_inds) > 0: (pos_bbox_reg_targets, pos_bbox_reg_weights, pos_bbox_cls_targets, pos_bbox_cls_weights) = self.bbox_coder.encode( sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) bbox_cls_targets[pos_inds, :] = pos_bbox_cls_targets bbox_reg_targets[pos_inds, :] = pos_bbox_reg_targets bbox_cls_weights[pos_inds, :] = pos_bbox_cls_weights bbox_reg_weights[pos_inds, :] = pos_bbox_reg_weights if gt_labels is None: # Only rpn gives gt_labels as None # Foreground is the first class labels[pos_inds] = 0 else: labels[pos_inds] = gt_labels[ sampling_result.pos_assigned_gt_inds] if self.train_cfg.pos_weight <= 0: label_weights[pos_inds] = 1.0 else: label_weights[pos_inds] = self.train_cfg.pos_weight if len(neg_inds) > 0: label_weights[neg_inds] = 1.0 # map up to original set of anchors if unmap_outputs: num_total_anchors = flat_squares.size(0) labels = unmap( labels, num_total_anchors, inside_flags, fill=self.num_classes) label_weights = unmap(label_weights, num_total_anchors, inside_flags) bbox_cls_targets = unmap(bbox_cls_targets, num_total_anchors, inside_flags) bbox_cls_weights = unmap(bbox_cls_weights, num_total_anchors, inside_flags) bbox_reg_targets = unmap(bbox_reg_targets, num_total_anchors, inside_flags) bbox_reg_weights = unmap(bbox_reg_weights, num_total_anchors, inside_flags) return (labels, label_weights, bbox_cls_targets, bbox_cls_weights, bbox_reg_targets, bbox_reg_weights, pos_inds, neg_inds) def loss_single(self, cls_score, bbox_pred, labels, label_weights, bbox_cls_targets, bbox_cls_weights, bbox_reg_targets, bbox_reg_weights, num_total_samples): # classification loss labels = labels.reshape(-1) label_weights = label_weights.reshape(-1) cls_score = cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) loss_cls = self.loss_cls( cls_score, labels, label_weights, avg_factor=num_total_samples) # regression loss bbox_cls_targets = bbox_cls_targets.reshape(-1, self.side_num * 4) bbox_cls_weights = bbox_cls_weights.reshape(-1, self.side_num * 4) bbox_reg_targets = bbox_reg_targets.reshape(-1, self.side_num * 4) bbox_reg_weights = bbox_reg_weights.reshape(-1, self.side_num * 4) (bbox_cls_pred, bbox_reg_pred) = bbox_pred bbox_cls_pred = bbox_cls_pred.permute(0, 2, 3, 1).reshape( -1, self.side_num * 4) bbox_reg_pred = bbox_reg_pred.permute(0, 2, 3, 1).reshape( -1, self.side_num * 4) loss_bbox_cls = self.loss_bbox_cls( bbox_cls_pred, bbox_cls_targets.long(), bbox_cls_weights, avg_factor=num_total_samples * 4 * self.side_num) loss_bbox_reg = self.loss_bbox_reg( bbox_reg_pred, bbox_reg_targets, bbox_reg_weights, avg_factor=num_total_samples * 4 * self.bbox_coder.offset_topk) return loss_cls, loss_bbox_cls, loss_bbox_reg
[docs] @force_fp32(apply_to=('cls_scores', 'bbox_preds')) def loss(self, cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore=None): featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] assert len(featmap_sizes) == self.approx_anchor_generator.num_levels device = cls_scores[0].device # get sampled approxes approxs_list, inside_flag_list = GuidedAnchorHead.get_sampled_approxs( self, featmap_sizes, img_metas, device=device) square_list = self.get_anchors(featmap_sizes, img_metas, device=device) label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 cls_reg_targets = self.get_target( approxs_list, inside_flag_list, square_list, gt_bboxes, img_metas, gt_bboxes_ignore_list=gt_bboxes_ignore, gt_labels_list=gt_labels, label_channels=label_channels, sampling=self.sampling) if cls_reg_targets is None: return None (labels_list, label_weights_list, bbox_cls_targets_list, bbox_cls_weights_list, bbox_reg_targets_list, bbox_reg_weights_list, num_total_pos, num_total_neg) = cls_reg_targets num_total_samples = ( num_total_pos + num_total_neg if self.sampling else num_total_pos) losses_cls, losses_bbox_cls, losses_bbox_reg = multi_apply( self.loss_single, cls_scores, bbox_preds, labels_list, label_weights_list, bbox_cls_targets_list, bbox_cls_weights_list, bbox_reg_targets_list, bbox_reg_weights_list, num_total_samples=num_total_samples) return dict( loss_cls=losses_cls, loss_bbox_cls=losses_bbox_cls, loss_bbox_reg=losses_bbox_reg)
[docs] @force_fp32(apply_to=('cls_scores', 'bbox_preds')) def get_bboxes(self, cls_scores, bbox_preds, img_metas, cfg=None, rescale=False): assert len(cls_scores) == len(bbox_preds) num_levels = len(cls_scores) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] device = cls_scores[0].device mlvl_anchors = self.get_anchors( featmap_sizes, img_metas, device=device) result_list = [] for img_id in range(len(img_metas)): cls_score_list = [ cls_scores[i][img_id].detach() for i in range(num_levels) ] bbox_cls_pred_list = [ bbox_preds[i][0][img_id].detach() for i in range(num_levels) ] bbox_reg_pred_list = [ bbox_preds[i][1][img_id].detach() for i in range(num_levels) ] img_shape = img_metas[img_id]['img_shape'] scale_factor = img_metas[img_id]['scale_factor'] proposals = self.get_bboxes_single(cls_score_list, bbox_cls_pred_list, bbox_reg_pred_list, mlvl_anchors[img_id], img_shape, scale_factor, cfg, rescale) result_list.append(proposals) return result_list
def get_bboxes_single(self, cls_scores, bbox_cls_preds, bbox_reg_preds, mlvl_anchors, img_shape, scale_factor, cfg, rescale=False): cfg = self.test_cfg if cfg is None else cfg mlvl_bboxes = [] mlvl_scores = [] mlvl_confids = [] assert len(cls_scores) == len(bbox_cls_preds) == len( bbox_reg_preds) == len(mlvl_anchors) for cls_score, bbox_cls_pred, bbox_reg_pred, anchors in zip( cls_scores, bbox_cls_preds, bbox_reg_preds, mlvl_anchors): assert cls_score.size()[-2:] == bbox_cls_pred.size( )[-2:] == bbox_reg_pred.size()[-2::] cls_score = cls_score.permute(1, 2, 0).reshape(-1, self.cls_out_channels) if self.use_sigmoid_cls: scores = cls_score.sigmoid() else: scores = cls_score.softmax(-1) bbox_cls_pred = bbox_cls_pred.permute(1, 2, 0).reshape( -1, self.side_num * 4) bbox_reg_pred = bbox_reg_pred.permute(1, 2, 0).reshape( -1, self.side_num * 4) nms_pre = cfg.get('nms_pre', -1) if nms_pre > 0 and scores.shape[0] > nms_pre: if self.use_sigmoid_cls: max_scores, _ = scores.max(dim=1) else: max_scores, _ = scores[:, :-1].max(dim=1) _, topk_inds = max_scores.topk(nms_pre) anchors = anchors[topk_inds, :] bbox_cls_pred = bbox_cls_pred[topk_inds, :] bbox_reg_pred = bbox_reg_pred[topk_inds, :] scores = scores[topk_inds, :] bbox_preds = [ bbox_cls_pred.contiguous(), bbox_reg_pred.contiguous() ] bboxes, confids = self.bbox_coder.decode( anchors.contiguous(), bbox_preds, max_shape=img_shape) mlvl_bboxes.append(bboxes) mlvl_scores.append(scores) mlvl_confids.append(confids) mlvl_bboxes = torch.cat(mlvl_bboxes) if rescale: mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor) mlvl_scores = torch.cat(mlvl_scores) mlvl_confids = torch.cat(mlvl_confids) if self.use_sigmoid_cls: padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) det_bboxes, det_labels = multiclass_nms( mlvl_bboxes, mlvl_scores, cfg.score_thr, cfg.nms, cfg.max_per_img, score_factors=mlvl_confids) return det_bboxes, det_labels