Source code for mmdet.models.dense_heads.yolact_head

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmcv.runner import BaseModule, ModuleList, force_fp32

from mmdet.core import build_sampler, fast_nms, images_to_levels, multi_apply
from ..builder import HEADS, build_loss
from .anchor_head import AnchorHead


[docs]@HEADS.register_module() class YOLACTHead(AnchorHead): """YOLACT box head used in https://arxiv.org/abs/1904.02689. Note that YOLACT head is a light version of RetinaNet head. Four differences are described as follows: 1. YOLACT box head has three-times fewer anchors. 2. YOLACT box head shares the convs for box and cls branches. 3. YOLACT box head uses OHEM instead of Focal loss. 4. YOLACT box head predicts a set of mask coefficients for each box. Args: num_classes (int): Number of categories excluding the background category. in_channels (int): Number of channels in the input feature map. anchor_generator (dict): Config dict for anchor generator loss_cls (dict): Config of classification loss. loss_bbox (dict): Config of localization loss. num_head_convs (int): Number of the conv layers shared by box and cls branches. num_protos (int): Number of the mask coefficients. use_ohem (bool): If true, ``loss_single_OHEM`` will be used for cls loss calculation. If false, ``loss_single`` will be used. conv_cfg (dict): Dictionary to construct and config conv layer. norm_cfg (dict): Dictionary to construct and config norm layer. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, num_classes, in_channels, anchor_generator=dict( type='AnchorGenerator', octave_base_scale=3, scales_per_octave=1, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, reduction='none', loss_weight=1.0), loss_bbox=dict( type='SmoothL1Loss', beta=1.0, loss_weight=1.5), num_head_convs=1, num_protos=32, use_ohem=True, conv_cfg=None, norm_cfg=None, init_cfg=dict( type='Xavier', distribution='uniform', bias=0, layer='Conv2d'), **kwargs): self.num_head_convs = num_head_convs self.num_protos = num_protos self.use_ohem = use_ohem self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg super(YOLACTHead, self).__init__( num_classes, in_channels, loss_cls=loss_cls, loss_bbox=loss_bbox, anchor_generator=anchor_generator, init_cfg=init_cfg, **kwargs) if self.use_ohem: sampler_cfg = dict(type='PseudoSampler') self.sampler = build_sampler(sampler_cfg, context=self) self.sampling = False def _init_layers(self): """Initialize layers of the head.""" self.relu = nn.ReLU(inplace=True) self.head_convs = ModuleList() for i in range(self.num_head_convs): chn = self.in_channels if i == 0 else self.feat_channels self.head_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.conv_cls = nn.Conv2d( self.feat_channels, self.num_anchors * self.cls_out_channels, 3, padding=1) self.conv_reg = nn.Conv2d( self.feat_channels, self.num_anchors * 4, 3, padding=1) self.conv_coeff = nn.Conv2d( self.feat_channels, self.num_anchors * self.num_protos, 3, padding=1)
[docs] def forward_single(self, x): """Forward feature of a single scale level. Args: x (Tensor): Features of a single scale level. Returns: tuple: cls_score (Tensor): Cls scores for a single scale level \ the channels number is num_anchors * num_classes. bbox_pred (Tensor): Box energies / deltas for a single scale \ level, the channels number is num_anchors * 4. coeff_pred (Tensor): Mask coefficients for a single scale \ level, the channels number is num_anchors * num_protos. """ for head_conv in self.head_convs: x = head_conv(x) cls_score = self.conv_cls(x) bbox_pred = self.conv_reg(x) coeff_pred = self.conv_coeff(x).tanh() return cls_score, bbox_pred, coeff_pred
[docs] @force_fp32(apply_to=('cls_scores', 'bbox_preds')) def loss(self, cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore=None): """A combination of the func:``AnchorHead.loss`` and func:``SSDHead.loss``. When ``self.use_ohem == True``, it functions like ``SSDHead.loss``, otherwise, it follows ``AnchorHead.loss``. Besides, it additionally returns ``sampling_results``. Args: cls_scores (list[Tensor]): Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W) bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W) gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): Class indices corresponding to each box img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (None | list[Tensor]): Specify which bounding boxes can be ignored when computing the loss. Default: None Returns: tuple: dict[str, Tensor]: A dictionary of loss components. List[:obj:``SamplingResult``]: Sampler results for each image. """ featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] assert len(featmap_sizes) == self.anchor_generator.num_levels device = cls_scores[0].device anchor_list, valid_flag_list = self.get_anchors( featmap_sizes, img_metas, device=device) label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 cls_reg_targets = self.get_targets( anchor_list, valid_flag_list, gt_bboxes, img_metas, gt_bboxes_ignore_list=gt_bboxes_ignore, gt_labels_list=gt_labels, label_channels=label_channels, unmap_outputs=not self.use_ohem, return_sampling_results=True) if cls_reg_targets is None: return None (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos, num_total_neg, sampling_results) = cls_reg_targets if self.use_ohem: num_images = len(img_metas) all_cls_scores = torch.cat([ s.permute(0, 2, 3, 1).reshape( num_images, -1, self.cls_out_channels) for s in cls_scores ], 1) all_labels = torch.cat(labels_list, -1).view(num_images, -1) all_label_weights = torch.cat(label_weights_list, -1).view(num_images, -1) all_bbox_preds = torch.cat([ b.permute(0, 2, 3, 1).reshape(num_images, -1, 4) for b in bbox_preds ], -2) all_bbox_targets = torch.cat(bbox_targets_list, -2).view(num_images, -1, 4) all_bbox_weights = torch.cat(bbox_weights_list, -2).view(num_images, -1, 4) # concat all level anchors to a single tensor all_anchors = [] for i in range(num_images): all_anchors.append(torch.cat(anchor_list[i])) # check NaN and Inf assert torch.isfinite(all_cls_scores).all().item(), \ 'classification scores become infinite or NaN!' assert torch.isfinite(all_bbox_preds).all().item(), \ 'bbox predications become infinite or NaN!' losses_cls, losses_bbox = multi_apply( self.loss_single_OHEM, all_cls_scores, all_bbox_preds, all_anchors, all_labels, all_label_weights, all_bbox_targets, all_bbox_weights, num_total_samples=num_total_pos) else: num_total_samples = ( num_total_pos + num_total_neg if self.sampling else num_total_pos) # anchor number of multi levels num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] # concat all level anchors and flags to a single tensor concat_anchor_list = [] for i in range(len(anchor_list)): concat_anchor_list.append(torch.cat(anchor_list[i])) all_anchor_list = images_to_levels(concat_anchor_list, num_level_anchors) losses_cls, losses_bbox = multi_apply( self.loss_single, cls_scores, bbox_preds, all_anchor_list, labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_samples=num_total_samples) return dict( loss_cls=losses_cls, loss_bbox=losses_bbox), sampling_results
[docs] def loss_single_OHEM(self, cls_score, bbox_pred, anchors, labels, label_weights, bbox_targets, bbox_weights, num_total_samples): """"See func:``SSDHead.loss``.""" loss_cls_all = self.loss_cls(cls_score, labels, label_weights) # FG cat_id: [0, num_classes -1], BG cat_id: num_classes pos_inds = ((labels >= 0) & (labels < self.num_classes)).nonzero( as_tuple=False).reshape(-1) neg_inds = (labels == self.num_classes).nonzero( as_tuple=False).view(-1) num_pos_samples = pos_inds.size(0) if num_pos_samples == 0: num_neg_samples = neg_inds.size(0) else: num_neg_samples = self.train_cfg.neg_pos_ratio * num_pos_samples if num_neg_samples > neg_inds.size(0): num_neg_samples = neg_inds.size(0) topk_loss_cls_neg, _ = loss_cls_all[neg_inds].topk(num_neg_samples) loss_cls_pos = loss_cls_all[pos_inds].sum() loss_cls_neg = topk_loss_cls_neg.sum() loss_cls = (loss_cls_pos + loss_cls_neg) / num_total_samples if self.reg_decoded_bbox: # When the regression loss (e.g. `IouLoss`, `GIouLoss`) # is applied directly on the decoded bounding boxes, it # decodes the already encoded coordinates to absolute format. bbox_pred = self.bbox_coder.decode(anchors, bbox_pred) loss_bbox = self.loss_bbox( bbox_pred, bbox_targets, bbox_weights, avg_factor=num_total_samples) return loss_cls[None], loss_bbox
[docs] @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'coeff_preds')) def get_bboxes(self, cls_scores, bbox_preds, coeff_preds, img_metas, cfg=None, rescale=False): """"Similiar to func:``AnchorHead.get_bboxes``, but additionally processes coeff_preds. Args: cls_scores (list[Tensor]): Box scores for each scale level with shape (N, num_anchors * num_classes, H, W) bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W) coeff_preds (list[Tensor]): Mask coefficients for each scale level with shape (N, num_anchors * num_protos, H, W) img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. cfg (mmcv.Config | None): Test / postprocessing configuration, if None, test_cfg would be used rescale (bool): If True, return boxes in original image space. Default: False. Returns: list[tuple[Tensor, Tensor, Tensor]]: Each item in result_list is a 3-tuple. The first item is an (n, 5) tensor, where the first 4 columns are bounding box positions (tl_x, tl_y, br_x, br_y) and the 5-th column is a score between 0 and 1. The second item is an (n,) tensor where each item is the predicted class label of the corresponding box. The third item is an (n, num_protos) tensor where each item is the predicted mask coefficients of instance inside the corresponding box. """ assert len(cls_scores) == len(bbox_preds) num_levels = len(cls_scores) device = cls_scores[0].device featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] mlvl_anchors = self.anchor_generator.grid_anchors( featmap_sizes, device=device) det_bboxes = [] det_labels = [] det_coeffs = [] for img_id in range(len(img_metas)): cls_score_list = [ cls_scores[i][img_id].detach() for i in range(num_levels) ] bbox_pred_list = [ bbox_preds[i][img_id].detach() for i in range(num_levels) ] coeff_pred_list = [ coeff_preds[i][img_id].detach() for i in range(num_levels) ] img_shape = img_metas[img_id]['img_shape'] scale_factor = img_metas[img_id]['scale_factor'] bbox_res = self._get_bboxes_single(cls_score_list, bbox_pred_list, coeff_pred_list, mlvl_anchors, img_shape, scale_factor, cfg, rescale) det_bboxes.append(bbox_res[0]) det_labels.append(bbox_res[1]) det_coeffs.append(bbox_res[2]) return det_bboxes, det_labels, det_coeffs
def _get_bboxes_single(self, cls_score_list, bbox_pred_list, coeff_preds_list, mlvl_anchors, img_shape, scale_factor, cfg, rescale=False): """"Similiar to func:``AnchorHead._get_bboxes_single``, but additionally processes coeff_preds_list and uses fast NMS instead of traditional NMS. Args: cls_score_list (list[Tensor]): Box scores for a single scale level Has shape (num_anchors * num_classes, H, W). bbox_pred_list (list[Tensor]): Box energies / deltas for a single scale level with shape (num_anchors * 4, H, W). coeff_preds_list (list[Tensor]): Mask coefficients for a single scale level with shape (num_anchors * num_protos, H, W). mlvl_anchors (list[Tensor]): Box reference for a single scale level with shape (num_total_anchors, 4). img_shape (tuple[int]): Shape of the input image, (height, width, 3). scale_factor (ndarray): Scale factor of the image arange as (w_scale, h_scale, w_scale, h_scale). cfg (mmcv.Config): Test / postprocessing configuration, if None, test_cfg would be used. rescale (bool): If True, return boxes in original image space. Returns: tuple[Tensor, Tensor, Tensor]: The first item is an (n, 5) tensor, where the first 4 columns are bounding box positions (tl_x, tl_y, br_x, br_y) and the 5-th column is a score between 0 and 1. The second item is an (n,) tensor where each item is the predicted class label of the corresponding box. The third item is an (n, num_protos) tensor where each item is the predicted mask coefficients of instance inside the corresponding box. """ cfg = self.test_cfg if cfg is None else cfg assert len(cls_score_list) == len(bbox_pred_list) == len(mlvl_anchors) mlvl_bboxes = [] mlvl_scores = [] mlvl_coeffs = [] for cls_score, bbox_pred, coeff_pred, anchors in \ zip(cls_score_list, bbox_pred_list, coeff_preds_list, mlvl_anchors): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] cls_score = cls_score.permute(1, 2, 0).reshape(-1, self.cls_out_channels) if self.use_sigmoid_cls: scores = cls_score.sigmoid() else: scores = cls_score.softmax(-1) bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) coeff_pred = coeff_pred.permute(1, 2, 0).reshape(-1, self.num_protos) nms_pre = cfg.get('nms_pre', -1) if nms_pre > 0 and scores.shape[0] > nms_pre: # Get maximum scores for foreground classes. if self.use_sigmoid_cls: max_scores, _ = scores.max(dim=1) else: # remind that we set FG labels to [0, num_class-1] # since mmdet v2.0 # BG cat_id: num_class max_scores, _ = scores[:, :-1].max(dim=1) _, topk_inds = max_scores.topk(nms_pre) anchors = anchors[topk_inds, :] bbox_pred = bbox_pred[topk_inds, :] scores = scores[topk_inds, :] coeff_pred = coeff_pred[topk_inds, :] bboxes = self.bbox_coder.decode( anchors, bbox_pred, max_shape=img_shape) mlvl_bboxes.append(bboxes) mlvl_scores.append(scores) mlvl_coeffs.append(coeff_pred) mlvl_bboxes = torch.cat(mlvl_bboxes) if rescale: mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor) mlvl_scores = torch.cat(mlvl_scores) mlvl_coeffs = torch.cat(mlvl_coeffs) if self.use_sigmoid_cls: # Add a dummy background class to the backend when using sigmoid # remind that we set FG labels to [0, num_class-1] since mmdet v2.0 # BG cat_id: num_class padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) det_bboxes, det_labels, det_coeffs = fast_nms(mlvl_bboxes, mlvl_scores, mlvl_coeffs, cfg.score_thr, cfg.iou_thr, cfg.top_k, cfg.max_per_img) return det_bboxes, det_labels, det_coeffs
[docs]@HEADS.register_module() class YOLACTSegmHead(BaseModule): """YOLACT segmentation head used in https://arxiv.org/abs/1904.02689. Apply a semantic segmentation loss on feature space using layers that are only evaluated during training to increase performance with no speed penalty. Args: in_channels (int): Number of channels in the input feature map. num_classes (int): Number of categories excluding the background category. loss_segm (dict): Config of semantic segmentation loss. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, num_classes, in_channels=256, loss_segm=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), init_cfg=dict( type='Xavier', distribution='uniform', override=dict(name='segm_conv'))): super(YOLACTSegmHead, self).__init__(init_cfg) self.in_channels = in_channels self.num_classes = num_classes self.loss_segm = build_loss(loss_segm) self._init_layers() self.fp16_enabled = False def _init_layers(self): """Initialize layers of the head.""" self.segm_conv = nn.Conv2d( self.in_channels, self.num_classes, kernel_size=1)
[docs] def forward(self, x): """Forward feature from the upstream network. Args: x (Tensor): Feature from the upstream network, which is a 4D-tensor. Returns: Tensor: Predicted semantic segmentation map with shape (N, num_classes, H, W). """ return self.segm_conv(x)
[docs] @force_fp32(apply_to=('segm_pred', )) def loss(self, segm_pred, gt_masks, gt_labels): """Compute loss of the head. Args: segm_pred (list[Tensor]): Predicted semantic segmentation map with shape (N, num_classes, H, W). gt_masks (list[Tensor]): Ground truth masks for each image with the same shape of the input image. gt_labels (list[Tensor]): Class indices corresponding to each box. Returns: dict[str, Tensor]: A dictionary of loss components. """ loss_segm = [] num_imgs, num_classes, mask_h, mask_w = segm_pred.size() for idx in range(num_imgs): cur_segm_pred = segm_pred[idx] cur_gt_masks = gt_masks[idx].float() cur_gt_labels = gt_labels[idx] segm_targets = self.get_targets(cur_segm_pred, cur_gt_masks, cur_gt_labels) if segm_targets is None: loss = self.loss_segm(cur_segm_pred, torch.zeros_like(cur_segm_pred), torch.zeros_like(cur_segm_pred)) else: loss = self.loss_segm( cur_segm_pred, segm_targets, avg_factor=num_imgs * mask_h * mask_w) loss_segm.append(loss) return dict(loss_segm=loss_segm)
[docs] def get_targets(self, segm_pred, gt_masks, gt_labels): """Compute semantic segmentation targets for each image. Args: segm_pred (Tensor): Predicted semantic segmentation map with shape (num_classes, H, W). gt_masks (Tensor): Ground truth masks for each image with the same shape of the input image. gt_labels (Tensor): Class indices corresponding to each box. Returns: Tensor: Semantic segmentation targets with shape (num_classes, H, W). """ if gt_masks.size(0) == 0: return None num_classes, mask_h, mask_w = segm_pred.size() with torch.no_grad(): downsampled_masks = F.interpolate( gt_masks.unsqueeze(0), (mask_h, mask_w), mode='bilinear', align_corners=False).squeeze(0) downsampled_masks = downsampled_masks.gt(0.5).float() segm_targets = torch.zeros_like(segm_pred, requires_grad=False) for obj_idx in range(downsampled_masks.size(0)): segm_targets[gt_labels[obj_idx] - 1] = torch.max( segm_targets[gt_labels[obj_idx] - 1], downsampled_masks[obj_idx]) return segm_targets
[docs] def simple_test(self, feats, img_metas, rescale=False): """Test function without test-time augmentation.""" raise NotImplementedError( 'simple_test of YOLACTSegmHead is not implemented ' 'because this head is only evaluated during training')
[docs]@HEADS.register_module() class YOLACTProtonet(BaseModule): """YOLACT mask head used in https://arxiv.org/abs/1904.02689. This head outputs the mask prototypes for YOLACT. Args: in_channels (int): Number of channels in the input feature map. proto_channels (tuple[int]): Output channels of protonet convs. proto_kernel_sizes (tuple[int]): Kernel sizes of protonet convs. include_last_relu (Bool): If keep the last relu of protonet. num_protos (int): Number of prototypes. num_classes (int): Number of categories excluding the background category. loss_mask_weight (float): Reweight the mask loss by this factor. max_masks_to_train (int): Maximum number of masks to train for each image. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, num_classes, in_channels=256, proto_channels=(256, 256, 256, None, 256, 32), proto_kernel_sizes=(3, 3, 3, -2, 3, 1), include_last_relu=True, num_protos=32, loss_mask_weight=1.0, max_masks_to_train=100, init_cfg=dict( type='Xavier', distribution='uniform', override=dict(name='protonet'))): super(YOLACTProtonet, self).__init__(init_cfg) self.in_channels = in_channels self.proto_channels = proto_channels self.proto_kernel_sizes = proto_kernel_sizes self.include_last_relu = include_last_relu self.protonet = self._init_layers() self.loss_mask_weight = loss_mask_weight self.num_protos = num_protos self.num_classes = num_classes self.max_masks_to_train = max_masks_to_train self.fp16_enabled = False def _init_layers(self): """A helper function to take a config setting and turn it into a network.""" # Possible patterns: # ( 256, 3) -> conv # ( 256,-2) -> deconv # (None,-2) -> bilinear interpolate in_channels = self.in_channels protonets = ModuleList() for num_channels, kernel_size in zip(self.proto_channels, self.proto_kernel_sizes): if kernel_size > 0: layer = nn.Conv2d( in_channels, num_channels, kernel_size, padding=kernel_size // 2) else: if num_channels is None: layer = InterpolateModule( scale_factor=-kernel_size, mode='bilinear', align_corners=False) else: layer = nn.ConvTranspose2d( in_channels, num_channels, -kernel_size, padding=kernel_size // 2) protonets.append(layer) protonets.append(nn.ReLU(inplace=True)) in_channels = num_channels if num_channels is not None \ else in_channels if not self.include_last_relu: protonets = protonets[:-1] return nn.Sequential(*protonets)
[docs] def forward(self, x, coeff_pred, bboxes, img_meta, sampling_results=None): """Forward feature from the upstream network to get prototypes and linearly combine the prototypes, using masks coefficients, into instance masks. Finally, crop the instance masks with given bboxes. Args: x (Tensor): Feature from the upstream network, which is a 4D-tensor. coeff_pred (list[Tensor]): Mask coefficients for each scale level with shape (N, num_anchors * num_protos, H, W). bboxes (list[Tensor]): Box used for cropping with shape (N, num_anchors * 4, H, W). During training, they are ground truth boxes. During testing, they are predicted boxes. img_meta (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. sampling_results (List[:obj:``SamplingResult``]): Sampler results for each image. Returns: list[Tensor]: Predicted instance segmentation masks. """ prototypes = self.protonet(x) prototypes = prototypes.permute(0, 2, 3, 1).contiguous() num_imgs = x.size(0) # Training state if self.training: coeff_pred_list = [] for coeff_pred_per_level in coeff_pred: coeff_pred_per_level = \ coeff_pred_per_level.permute( 0, 2, 3, 1).reshape(num_imgs, -1, self.num_protos) coeff_pred_list.append(coeff_pred_per_level) coeff_pred = torch.cat(coeff_pred_list, dim=1) mask_pred_list = [] for idx in range(num_imgs): cur_prototypes = prototypes[idx] cur_coeff_pred = coeff_pred[idx] cur_bboxes = bboxes[idx] cur_img_meta = img_meta[idx] # Testing state if not self.training: bboxes_for_cropping = cur_bboxes else: cur_sampling_results = sampling_results[idx] pos_assigned_gt_inds = \ cur_sampling_results.pos_assigned_gt_inds bboxes_for_cropping = cur_bboxes[pos_assigned_gt_inds].clone() pos_inds = cur_sampling_results.pos_inds cur_coeff_pred = cur_coeff_pred[pos_inds] # Linearly combine the prototypes with the mask coefficients mask_pred = cur_prototypes @ cur_coeff_pred.t() mask_pred = torch.sigmoid(mask_pred) h, w = cur_img_meta['img_shape'][:2] bboxes_for_cropping[:, 0] /= w bboxes_for_cropping[:, 1] /= h bboxes_for_cropping[:, 2] /= w bboxes_for_cropping[:, 3] /= h mask_pred = self.crop(mask_pred, bboxes_for_cropping) mask_pred = mask_pred.permute(2, 0, 1).contiguous() mask_pred_list.append(mask_pred) return mask_pred_list
[docs] @force_fp32(apply_to=('mask_pred', )) def loss(self, mask_pred, gt_masks, gt_bboxes, img_meta, sampling_results): """Compute loss of the head. Args: mask_pred (list[Tensor]): Predicted prototypes with shape (num_classes, H, W). gt_masks (list[Tensor]): Ground truth masks for each image with the same shape of the input image. gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. img_meta (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. sampling_results (List[:obj:``SamplingResult``]): Sampler results for each image. Returns: dict[str, Tensor]: A dictionary of loss components. """ loss_mask = [] num_imgs = len(mask_pred) total_pos = 0 for idx in range(num_imgs): cur_mask_pred = mask_pred[idx] cur_gt_masks = gt_masks[idx].float() cur_gt_bboxes = gt_bboxes[idx] cur_img_meta = img_meta[idx] cur_sampling_results = sampling_results[idx] pos_assigned_gt_inds = cur_sampling_results.pos_assigned_gt_inds num_pos = pos_assigned_gt_inds.size(0) # Since we're producing (near) full image masks, # it'd take too much vram to backprop on every single mask. # Thus we select only a subset. if num_pos > self.max_masks_to_train: perm = torch.randperm(num_pos) select = perm[:self.max_masks_to_train] cur_mask_pred = cur_mask_pred[select] pos_assigned_gt_inds = pos_assigned_gt_inds[select] num_pos = self.max_masks_to_train total_pos += num_pos gt_bboxes_for_reweight = cur_gt_bboxes[pos_assigned_gt_inds] mask_targets = self.get_targets(cur_mask_pred, cur_gt_masks, pos_assigned_gt_inds) if num_pos == 0: loss = cur_mask_pred.sum() * 0. elif mask_targets is None: loss = F.binary_cross_entropy(cur_mask_pred, torch.zeros_like(cur_mask_pred), torch.zeros_like(cur_mask_pred)) else: cur_mask_pred = torch.clamp(cur_mask_pred, 0, 1) loss = F.binary_cross_entropy( cur_mask_pred, mask_targets, reduction='none') * self.loss_mask_weight h, w = cur_img_meta['img_shape'][:2] gt_bboxes_width = (gt_bboxes_for_reweight[:, 2] - gt_bboxes_for_reweight[:, 0]) / w gt_bboxes_height = (gt_bboxes_for_reweight[:, 3] - gt_bboxes_for_reweight[:, 1]) / h loss = loss.mean(dim=(1, 2)) / gt_bboxes_width / gt_bboxes_height loss = torch.sum(loss) loss_mask.append(loss) if total_pos == 0: total_pos += 1 # avoid nan loss_mask = [x / total_pos for x in loss_mask] return dict(loss_mask=loss_mask)
[docs] def get_targets(self, mask_pred, gt_masks, pos_assigned_gt_inds): """Compute instance segmentation targets for each image. Args: mask_pred (Tensor): Predicted prototypes with shape (num_classes, H, W). gt_masks (Tensor): Ground truth masks for each image with the same shape of the input image. pos_assigned_gt_inds (Tensor): GT indices of the corresponding positive samples. Returns: Tensor: Instance segmentation targets with shape (num_instances, H, W). """ if gt_masks.size(0) == 0: return None mask_h, mask_w = mask_pred.shape[-2:] gt_masks = F.interpolate( gt_masks.unsqueeze(0), (mask_h, mask_w), mode='bilinear', align_corners=False).squeeze(0) gt_masks = gt_masks.gt(0.5).float() mask_targets = gt_masks[pos_assigned_gt_inds] return mask_targets
[docs] def get_seg_masks(self, mask_pred, label_pred, img_meta, rescale): """Resize, binarize, and format the instance mask predictions. Args: mask_pred (Tensor): shape (N, H, W). label_pred (Tensor): shape (N, ). img_meta (dict): Meta information of each image, e.g., image size, scaling factor, etc. rescale (bool): If rescale is False, then returned masks will fit the scale of imgs[0]. Returns: list[ndarray]: Mask predictions grouped by their predicted classes. """ ori_shape = img_meta['ori_shape'] scale_factor = img_meta['scale_factor'] if rescale: img_h, img_w = ori_shape[:2] else: img_h = np.round(ori_shape[0] * scale_factor[1]).astype(np.int32) img_w = np.round(ori_shape[1] * scale_factor[0]).astype(np.int32) cls_segms = [[] for _ in range(self.num_classes)] if mask_pred.size(0) == 0: return cls_segms mask_pred = F.interpolate( mask_pred.unsqueeze(0), (img_h, img_w), mode='bilinear', align_corners=False).squeeze(0) > 0.5 mask_pred = mask_pred.cpu().numpy().astype(np.uint8) for m, l in zip(mask_pred, label_pred): cls_segms[l].append(m) return cls_segms
[docs] def crop(self, masks, boxes, padding=1): """Crop predicted masks by zeroing out everything not in the predicted bbox. Args: masks (Tensor): shape [H, W, N]. boxes (Tensor): bbox coords in relative point form with shape [N, 4]. Return: Tensor: The cropped masks. """ h, w, n = masks.size() x1, x2 = self.sanitize_coordinates( boxes[:, 0], boxes[:, 2], w, padding, cast=False) y1, y2 = self.sanitize_coordinates( boxes[:, 1], boxes[:, 3], h, padding, cast=False) rows = torch.arange( w, device=masks.device, dtype=x1.dtype).view(1, -1, 1).expand(h, w, n) cols = torch.arange( h, device=masks.device, dtype=x1.dtype).view(-1, 1, 1).expand(h, w, n) masks_left = rows >= x1.view(1, 1, -1) masks_right = rows < x2.view(1, 1, -1) masks_up = cols >= y1.view(1, 1, -1) masks_down = cols < y2.view(1, 1, -1) crop_mask = masks_left * masks_right * masks_up * masks_down return masks * crop_mask.float()
[docs] def sanitize_coordinates(self, x1, x2, img_size, padding=0, cast=True): """Sanitizes the input coordinates so that x1 < x2, x1 != x2, x1 >= 0, and x2 <= image_size. Also converts from relative to absolute coordinates and casts the results to long tensors. Warning: this does things in-place behind the scenes so copy if necessary. Args: _x1 (Tensor): shape (N, ). _x2 (Tensor): shape (N, ). img_size (int): Size of the input image. padding (int): x1 >= padding, x2 <= image_size-padding. cast (bool): If cast is false, the result won't be cast to longs. Returns: tuple: x1 (Tensor): Sanitized _x1. x2 (Tensor): Sanitized _x2. """ x1 = x1 * img_size x2 = x2 * img_size if cast: x1 = x1.long() x2 = x2.long() x1 = torch.min(x1, x2) x2 = torch.max(x1, x2) x1 = torch.clamp(x1 - padding, min=0) x2 = torch.clamp(x2 + padding, max=img_size) return x1, x2
[docs] def simple_test(self, feats, det_bboxes, det_labels, det_coeffs, img_metas, rescale=False): """Test function without test-time augmentation. Args: feats (tuple[torch.Tensor]): Multi-level features from the upstream network, each is a 4D-tensor. det_bboxes (list[Tensor]): BBox results of each image. each element is (n, 5) tensor, where 5 represent (tl_x, tl_y, br_x, br_y, score) and the score between 0 and 1. det_labels (list[Tensor]): BBox results of each image. each element is (n, ) tensor, each element represents the class label of the corresponding box. det_coeffs (list[Tensor]): BBox coefficient of each image. each element is (n, m) tensor, m is vector length. img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. rescale (bool, optional): Whether to rescale the results. Defaults to False. Returns: list[list]: encoded masks. The c-th item in the outer list corresponds to the c-th class. Given the c-th outer list, the i-th item in that inner list is the mask for the i-th box with class label c. """ num_imgs = len(img_metas) scale_factors = tuple(meta['scale_factor'] for meta in img_metas) if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): segm_results = [[[] for _ in range(self.num_classes)] for _ in range(num_imgs)] else: # if det_bboxes is rescaled to the original image size, we need to # rescale it back to the testing scale to obtain RoIs. if rescale and not isinstance(scale_factors[0], float): scale_factors = [ torch.from_numpy(scale_factor).to(det_bboxes[0].device) for scale_factor in scale_factors ] _bboxes = [ det_bboxes[i][:, :4] * scale_factors[i] if rescale else det_bboxes[i][:, :4] for i in range(len(det_bboxes)) ] mask_preds = self.forward(feats[0], det_coeffs, _bboxes, img_metas) # apply mask post-processing to each image individually segm_results = [] for i in range(num_imgs): if det_bboxes[i].shape[0] == 0: segm_results.append([[] for _ in range(self.num_classes)]) else: segm_result = self.get_seg_masks(mask_preds[i], det_labels[i], img_metas[i], rescale) segm_results.append(segm_result) return segm_results
class InterpolateModule(BaseModule): """This is a module version of F.interpolate. Any arguments you give it just get passed along for the ride. """ def __init__(self, *args, init_cfg=None, **kwargs): super().__init__(init_cfg) self.args = args self.kwargs = kwargs def forward(self, x): """Forward features from the upstream network.""" return F.interpolate(x, *self.args, **self.kwargs)