Source code for mmdet.models.roi_heads.bbox_heads.dii_head

import torch
import torch.nn as nn
from mmcv.cnn import (bias_init_with_prob, build_activation_layer,
                      build_norm_layer)
from mmcv.cnn.bricks.transformer import FFN, MultiheadAttention
from mmcv.runner import auto_fp16, force_fp32

from mmdet.core import multi_apply
from mmdet.models.builder import HEADS, build_loss
from mmdet.models.dense_heads.atss_head import reduce_mean
from mmdet.models.losses import accuracy
from mmdet.models.utils import build_transformer
from .bbox_head import BBoxHead


[docs]@HEADS.register_module() class DIIHead(BBoxHead): r"""Dynamic Instance Interactive Head for `Sparse R-CNN: End-to-End Object Detection with Learnable Proposals <https://arxiv.org/abs/2011.12450>`_ Args: num_classes (int): Number of class in dataset. Defaults to 80. num_ffn_fcs (int): The number of fully-connected layers in FFNs. Defaults to 2. num_heads (int): The hidden dimension of FFNs. Defaults to 8. num_cls_fcs (int): The number of fully-connected layers in classification subnet. Defaults to 1. num_reg_fcs (int): The number of fully-connected layers in regression subnet. Defaults to 3. feedforward_channels (int): The hidden dimension of FFNs. Defaults to 2048 in_channels (int): Hidden_channels of MultiheadAttention. Defaults to 256. dropout (float): Probability of drop the channel. Defaults to 0.0 ffn_act_cfg (dict): The activation config for FFNs. dynamic_conv_cfg (dict): The convolution config for DynamicConv. loss_iou (dict): The config for iou or giou loss. """ def __init__(self, num_classes=80, num_ffn_fcs=2, num_heads=8, num_cls_fcs=1, num_reg_fcs=3, feedforward_channels=2048, in_channels=256, dropout=0.0, ffn_act_cfg=dict(type='ReLU', inplace=True), dynamic_conv_cfg=dict( type='DynamicConv', in_channels=256, feat_channels=64, out_channels=256, input_feat_shape=7, act_cfg=dict(type='ReLU', inplace=True), norm_cfg=dict(type='LN')), loss_iou=dict(type='GIoULoss', loss_weight=2.0), init_cfg=None, **kwargs): assert init_cfg is None, 'To prevent abnormal initialization ' \ 'behavior, init_cfg is not allowed to be set' super(DIIHead, self).__init__( num_classes=num_classes, reg_decoded_bbox=True, reg_class_agnostic=True, init_cfg=init_cfg, **kwargs) self.loss_iou = build_loss(loss_iou) self.in_channels = in_channels self.fp16_enabled = False self.attention = MultiheadAttention(in_channels, num_heads, dropout) self.attention_norm = build_norm_layer(dict(type='LN'), in_channels)[1] self.instance_interactive_conv = build_transformer(dynamic_conv_cfg) self.instance_interactive_conv_dropout = nn.Dropout(dropout) self.instance_interactive_conv_norm = build_norm_layer( dict(type='LN'), in_channels)[1] self.ffn = FFN( in_channels, feedforward_channels, num_ffn_fcs, act_cfg=ffn_act_cfg, dropout=dropout) self.ffn_norm = build_norm_layer(dict(type='LN'), in_channels)[1] self.cls_fcs = nn.ModuleList() for _ in range(num_cls_fcs): self.cls_fcs.append( nn.Linear(in_channels, in_channels, bias=False)) self.cls_fcs.append( build_norm_layer(dict(type='LN'), in_channels)[1]) self.cls_fcs.append( build_activation_layer(dict(type='ReLU', inplace=True))) # over load the self.fc_cls in BBoxHead if self.loss_cls.use_sigmoid: self.fc_cls = nn.Linear(in_channels, self.num_classes) else: self.fc_cls = nn.Linear(in_channels, self.num_classes + 1) self.reg_fcs = nn.ModuleList() for _ in range(num_reg_fcs): self.reg_fcs.append( nn.Linear(in_channels, in_channels, bias=False)) self.reg_fcs.append( build_norm_layer(dict(type='LN'), in_channels)[1]) self.reg_fcs.append( build_activation_layer(dict(type='ReLU', inplace=True))) # over load the self.fc_cls in BBoxHead self.fc_reg = nn.Linear(in_channels, 4) assert self.reg_class_agnostic, 'DIIHead only ' \ 'suppport `reg_class_agnostic=True` ' assert self.reg_decoded_bbox, 'DIIHead only ' \ 'suppport `reg_decoded_bbox=True`'
[docs] def init_weights(self): """Use xavier initialization for all weight parameter and set classification head bias as a specific value when use focal loss.""" super(DIIHead, self).init_weights() for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) else: # adopt the default initialization for # the weight and bias of the layer norm pass if self.loss_cls.use_sigmoid: bias_init = bias_init_with_prob(0.01) nn.init.constant_(self.fc_cls.bias, bias_init)
[docs] @auto_fp16() def forward(self, roi_feat, proposal_feat): """Forward function of Dynamic Instance Interactive Head. Args: roi_feat (Tensor): Roi-pooling features with shape (batch_size*num_proposals, feature_dimensions, pooling_h , pooling_w). proposal_feat (Tensor): Intermediate feature get from diihead in last stage, has shape (batch_size, num_proposals, feature_dimensions) Returns: tuple[Tensor]: Usually a tuple of classification scores and bbox prediction and a intermediate feature. - cls_scores (Tensor): Classification scores for all proposals, has shape (batch_size, num_proposals, num_classes). - bbox_preds (Tensor): Box energies / deltas for all proposals, has shape (batch_size, num_proposals, 4). - obj_feat (Tensor): Object feature before classification and regression subnet, has shape (batch_size, num_proposal, feature_dimensions). """ N, num_proposals = proposal_feat.shape[:2] # Self attention proposal_feat = proposal_feat.permute(1, 0, 2) proposal_feat = self.attention_norm(self.attention(proposal_feat)) # instance interactive proposal_feat = proposal_feat.permute(1, 0, 2).reshape(-1, self.in_channels) proposal_feat_iic = self.instance_interactive_conv( proposal_feat, roi_feat) proposal_feat = proposal_feat + self.instance_interactive_conv_dropout( proposal_feat_iic) obj_feat = self.instance_interactive_conv_norm(proposal_feat) # FFN obj_feat = self.ffn_norm(self.ffn(obj_feat)) cls_feat = obj_feat reg_feat = obj_feat for cls_layer in self.cls_fcs: cls_feat = cls_layer(cls_feat) for reg_layer in self.reg_fcs: reg_feat = reg_layer(reg_feat) cls_score = self.fc_cls(cls_feat).view(N, num_proposals, -1) bbox_delta = self.fc_reg(reg_feat).view(N, num_proposals, -1) return cls_score, bbox_delta, obj_feat.view(N, num_proposals, -1)
[docs] @force_fp32(apply_to=('cls_score', 'bbox_pred')) def loss(self, cls_score, bbox_pred, labels, label_weights, bbox_targets, bbox_weights, imgs_whwh=None, reduction_override=None, **kwargs): """"Loss function of DIIHead, get loss of all images. Args: cls_score (Tensor): Classification prediction results of all class, has shape (batch_size * num_proposals_single_image, num_classes) bbox_pred (Tensor): Regression prediction results, has shape (batch_size * num_proposals_single_image, 4), the last dimension 4 represents [tl_x, tl_y, br_x, br_y]. labels (Tensor): Label of each proposals, has shape (batch_size * num_proposals_single_image label_weights (Tensor): Classification loss weight of each proposals, has shape (batch_size * num_proposals_single_image bbox_targets (Tensor): Regression targets of each proposals, has shape (batch_size * num_proposals_single_image, 4), the last dimension 4 represents [tl_x, tl_y, br_x, br_y]. bbox_weights (Tensor): Regression loss weight of each proposals's coordinate, has shape (batch_size * num_proposals_single_image, 4), imgs_whwh (Tensor): imgs_whwh (Tensor): Tensor with\ shape (batch_size, num_proposals, 4), the last dimension means [img_width,img_height, img_width, img_height]. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Options are "none", "mean" and "sum". Defaults to None, Returns: dict[str, Tensor]: Dictionary of loss components """ losses = dict() bg_class_ind = self.num_classes # note in spare rcnn num_gt == num_pos pos_inds = (labels >= 0) & (labels < bg_class_ind) num_pos = pos_inds.sum().float() avg_factor = reduce_mean(num_pos) if cls_score is not None: if cls_score.numel() > 0: losses['loss_cls'] = self.loss_cls( cls_score, labels, label_weights, avg_factor=avg_factor, reduction_override=reduction_override) losses['pos_acc'] = accuracy(cls_score[pos_inds], labels[pos_inds]) if bbox_pred is not None: # 0~self.num_classes-1 are FG, self.num_classes is BG # do not perform bounding box regression for BG anymore. if pos_inds.any(): pos_bbox_pred = bbox_pred.reshape(bbox_pred.size(0), 4)[pos_inds.type(torch.bool)] imgs_whwh = imgs_whwh.reshape(bbox_pred.size(0), 4)[pos_inds.type(torch.bool)] losses['loss_bbox'] = self.loss_bbox( pos_bbox_pred / imgs_whwh, bbox_targets[pos_inds.type(torch.bool)] / imgs_whwh, bbox_weights[pos_inds.type(torch.bool)], avg_factor=avg_factor) losses['loss_iou'] = self.loss_iou( pos_bbox_pred, bbox_targets[pos_inds.type(torch.bool)], bbox_weights[pos_inds.type(torch.bool)], avg_factor=avg_factor) else: losses['loss_bbox'] = bbox_pred.sum() * 0 losses['loss_iou'] = bbox_pred.sum() * 0 return losses
def _get_target_single(self, pos_inds, neg_inds, pos_bboxes, neg_bboxes, pos_gt_bboxes, pos_gt_labels, cfg): """Calculate the ground truth for proposals in the single image according to the sampling results. Almost the same as the implementation in `bbox_head`, we add pos_inds and neg_inds to select positive and negative samples instead of selecting the first num_pos as positive samples. Args: pos_inds (Tensor): The length is equal to the positive sample numbers contain all index of the positive sample in the origin proposal set. neg_inds (Tensor): The length is equal to the negative sample numbers contain all index of the negative sample in the origin proposal set. pos_bboxes (Tensor): Contains all the positive boxes, has shape (num_pos, 4), the last dimension 4 represents [tl_x, tl_y, br_x, br_y]. neg_bboxes (Tensor): Contains all the negative boxes, has shape (num_neg, 4), the last dimension 4 represents [tl_x, tl_y, br_x, br_y]. pos_gt_bboxes (Tensor): Contains all the gt_boxes, has shape (num_gt, 4), the last dimension 4 represents [tl_x, tl_y, br_x, br_y]. pos_gt_labels (Tensor): Contains all the gt_labels, has shape (num_gt). cfg (obj:`ConfigDict`): `train_cfg` of R-CNN. Returns: Tuple[Tensor]: Ground truth for proposals in a single image. Containing the following Tensors: - labels(Tensor): Gt_labels for all proposals, has shape (num_proposals,). - label_weights(Tensor): Labels_weights for all proposals, has shape (num_proposals,). - bbox_targets(Tensor):Regression target for all proposals, has shape (num_proposals, 4), the last dimension 4 represents [tl_x, tl_y, br_x, br_y]. - bbox_weights(Tensor):Regression weights for all proposals, has shape (num_proposals, 4). """ num_pos = pos_bboxes.size(0) num_neg = neg_bboxes.size(0) num_samples = num_pos + num_neg # original implementation uses new_zeros since BG are set to be 0 # now use empty & fill because BG cat_id = num_classes, # FG cat_id = [0, num_classes-1] labels = pos_bboxes.new_full((num_samples, ), self.num_classes, dtype=torch.long) label_weights = pos_bboxes.new_zeros(num_samples) bbox_targets = pos_bboxes.new_zeros(num_samples, 4) bbox_weights = pos_bboxes.new_zeros(num_samples, 4) if num_pos > 0: labels[pos_inds] = pos_gt_labels pos_weight = 1.0 if cfg.pos_weight <= 0 else cfg.pos_weight label_weights[pos_inds] = pos_weight if not self.reg_decoded_bbox: pos_bbox_targets = self.bbox_coder.encode( pos_bboxes, pos_gt_bboxes) else: pos_bbox_targets = pos_gt_bboxes bbox_targets[pos_inds, :] = pos_bbox_targets bbox_weights[pos_inds, :] = 1 if num_neg > 0: label_weights[neg_inds] = 1.0 return labels, label_weights, bbox_targets, bbox_weights
[docs] def get_targets(self, sampling_results, gt_bboxes, gt_labels, rcnn_train_cfg, concat=True): """Calculate the ground truth for all samples in a batch according to the sampling_results. Almost the same as the implementation in bbox_head, we passed additional parameters pos_inds_list and neg_inds_list to `_get_target_single` function. Args: sampling_results (List[obj:SamplingResults]): Assign results of all images in a batch after sampling. gt_bboxes (list[Tensor]): Gt_bboxes of all images in a batch, each tensor has shape (num_gt, 4), the last dimension 4 represents [tl_x, tl_y, br_x, br_y]. gt_labels (list[Tensor]): Gt_labels of all images in a batch, each tensor has shape (num_gt,). rcnn_train_cfg (obj:`ConfigDict`): `train_cfg` of RCNN. concat (bool): Whether to concatenate the results of all the images in a single batch. Returns: Tuple[Tensor]: Ground truth for proposals in a single image. Containing the following list of Tensors: - labels (list[Tensor],Tensor): Gt_labels for all proposals in a batch, each tensor in list has shape (num_proposals,) when `concat=False`, otherwise just a single tensor has shape (num_all_proposals,). - label_weights (list[Tensor]): Labels_weights for all proposals in a batch, each tensor in list has shape (num_proposals,) when `concat=False`, otherwise just a single tensor has shape (num_all_proposals,). - bbox_targets (list[Tensor],Tensor): Regression target for all proposals in a batch, each tensor in list has shape (num_proposals, 4) when `concat=False`, otherwise just a single tensor has shape (num_all_proposals, 4), the last dimension 4 represents [tl_x, tl_y, br_x, br_y]. - bbox_weights (list[tensor],Tensor): Regression weights for all proposals in a batch, each tensor in list has shape (num_proposals, 4) when `concat=False`, otherwise just a single tensor has shape (num_all_proposals, 4). """ pos_inds_list = [res.pos_inds for res in sampling_results] neg_inds_list = [res.neg_inds for res in sampling_results] pos_bboxes_list = [res.pos_bboxes for res in sampling_results] neg_bboxes_list = [res.neg_bboxes for res in sampling_results] pos_gt_bboxes_list = [res.pos_gt_bboxes for res in sampling_results] pos_gt_labels_list = [res.pos_gt_labels for res in sampling_results] labels, label_weights, bbox_targets, bbox_weights = multi_apply( self._get_target_single, pos_inds_list, neg_inds_list, pos_bboxes_list, neg_bboxes_list, pos_gt_bboxes_list, pos_gt_labels_list, cfg=rcnn_train_cfg) if concat: labels = torch.cat(labels, 0) label_weights = torch.cat(label_weights, 0) bbox_targets = torch.cat(bbox_targets, 0) bbox_weights = torch.cat(bbox_weights, 0) return labels, label_weights, bbox_targets, bbox_weights