Shortcuts

Source code for mmdet.models.dense_heads.anchor_head

# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.runner import force_fp32

from mmdet.core import (anchor_inside_flags, build_anchor_generator,
                        build_assigner, build_bbox_coder, build_sampler,
                        images_to_levels, multi_apply, multiclass_nms, unmap)
from ..builder import HEADS, build_loss
from .base_dense_head import BaseDenseHead
from .dense_test_mixins import BBoxTestMixin


[docs]@HEADS.register_module() class AnchorHead(BaseDenseHead, BBoxTestMixin): """Anchor-based head (RPN, RetinaNet, SSD, etc.). Args: num_classes (int): Number of categories excluding the background category. in_channels (int): Number of channels in the input feature map. feat_channels (int): Number of hidden channels. Used in child classes. anchor_generator (dict): Config dict for anchor generator bbox_coder (dict): Config of bounding box coder. reg_decoded_bbox (bool): If true, the regression loss would be applied directly on decoded bounding boxes, converting both the predicted boxes and regression targets to absolute coordinates format. Default False. It should be `True` when using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head. loss_cls (dict): Config of classification loss. loss_bbox (dict): Config of localization loss. train_cfg (dict): Training config of anchor head. test_cfg (dict): Testing config of anchor head. init_cfg (dict or list[dict], optional): Initialization config dict. """ # noqa: W605 def __init__(self, num_classes, in_channels, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8, 16, 32], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', clip_border=True, target_means=(.0, .0, .0, .0), target_stds=(1.0, 1.0, 1.0, 1.0)), reg_decoded_bbox=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), train_cfg=None, test_cfg=None, init_cfg=dict(type='Normal', layer='Conv2d', std=0.01)): super(AnchorHead, self).__init__(init_cfg) self.in_channels = in_channels self.num_classes = num_classes self.feat_channels = feat_channels self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) # TODO better way to determine whether sample or not self.sampling = loss_cls['type'] not in [ 'FocalLoss', 'GHMC', 'QualityFocalLoss' ] if self.use_sigmoid_cls: self.cls_out_channels = num_classes else: self.cls_out_channels = num_classes + 1 if self.cls_out_channels <= 0: raise ValueError(f'num_classes={num_classes} is too small') self.reg_decoded_bbox = reg_decoded_bbox self.bbox_coder = build_bbox_coder(bbox_coder) self.loss_cls = build_loss(loss_cls) self.loss_bbox = build_loss(loss_bbox) self.train_cfg = train_cfg self.test_cfg = test_cfg if self.train_cfg: self.assigner = build_assigner(self.train_cfg.assigner) # use PseudoSampler when sampling is False if self.sampling and hasattr(self.train_cfg, 'sampler'): sampler_cfg = self.train_cfg.sampler else: sampler_cfg = dict(type='PseudoSampler') self.sampler = build_sampler(sampler_cfg, context=self) self.fp16_enabled = False self.anchor_generator = build_anchor_generator(anchor_generator) # usually the numbers of anchors for each level are the same # except SSD detectors self.num_anchors = self.anchor_generator.num_base_anchors[0] self._init_layers() def _init_layers(self): """Initialize layers of the head.""" self.conv_cls = nn.Conv2d(self.in_channels, self.num_anchors * self.cls_out_channels, 1) self.conv_reg = nn.Conv2d(self.in_channels, self.num_anchors * 4, 1)
[docs] def forward_single(self, x): """Forward feature of a single scale level. Args: x (Tensor): Features of a single scale level. Returns: tuple: cls_score (Tensor): Cls scores for a single scale level \ the channels number is num_anchors * num_classes. bbox_pred (Tensor): Box energies / deltas for a single scale \ level, the channels number is num_anchors * 4. """ cls_score = self.conv_cls(x) bbox_pred = self.conv_reg(x) return cls_score, bbox_pred
[docs] def forward(self, feats): """Forward features from the upstream network. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: A tuple of classification scores and bbox prediction. - cls_scores (list[Tensor]): Classification scores for all \ scale levels, each is a 4D-tensor, the channels number \ is num_anchors * num_classes. - bbox_preds (list[Tensor]): Box energies / deltas for all \ scale levels, each is a 4D-tensor, the channels number \ is num_anchors * 4. """ return multi_apply(self.forward_single, feats)
[docs] def get_anchors(self, featmap_sizes, img_metas, device='cuda'): """Get anchors according to feature map sizes. Args: featmap_sizes (list[tuple]): Multi-level feature map sizes. img_metas (list[dict]): Image meta info. device (torch.device | str): Device for returned tensors Returns: tuple: anchor_list (list[Tensor]): Anchors of each image. valid_flag_list (list[Tensor]): Valid flags of each image. """ num_imgs = len(img_metas) # since feature map sizes of all images are the same, we only compute # anchors for one time multi_level_anchors = self.anchor_generator.grid_anchors( featmap_sizes, device) anchor_list = [multi_level_anchors for _ in range(num_imgs)] # for each image, we compute valid flags of multi level anchors valid_flag_list = [] for img_id, img_meta in enumerate(img_metas): multi_level_flags = self.anchor_generator.valid_flags( featmap_sizes, img_meta['pad_shape'], device) valid_flag_list.append(multi_level_flags) return anchor_list, valid_flag_list
def _get_targets_single(self, flat_anchors, valid_flags, gt_bboxes, gt_bboxes_ignore, gt_labels, img_meta, label_channels=1, unmap_outputs=True): """Compute regression and classification targets for anchors in a single image. Args: flat_anchors (Tensor): Multi-level anchors of the image, which are concatenated into a single tensor of shape (num_anchors ,4) valid_flags (Tensor): Multi level valid flags of the image, which are concatenated into a single tensor of shape (num_anchors,). gt_bboxes (Tensor): Ground truth bboxes of the image, shape (num_gts, 4). gt_bboxes_ignore (Tensor): Ground truth bboxes to be ignored, shape (num_ignored_gts, 4). img_meta (dict): Meta info of the image. gt_labels (Tensor): Ground truth labels of each box, shape (num_gts,). label_channels (int): Channel of label. unmap_outputs (bool): Whether to map outputs back to the original set of anchors. Returns: tuple: labels_list (list[Tensor]): Labels of each level label_weights_list (list[Tensor]): Label weights of each level bbox_targets_list (list[Tensor]): BBox targets of each level bbox_weights_list (list[Tensor]): BBox weights of each level num_total_pos (int): Number of positive samples in all images num_total_neg (int): Number of negative samples in all images """ inside_flags = anchor_inside_flags(flat_anchors, valid_flags, img_meta['img_shape'][:2], self.train_cfg.allowed_border) if not inside_flags.any(): return (None, ) * 7 # assign gt and sample anchors anchors = flat_anchors[inside_flags, :] assign_result = self.assigner.assign( anchors, gt_bboxes, gt_bboxes_ignore, None if self.sampling else gt_labels) sampling_result = self.sampler.sample(assign_result, anchors, gt_bboxes) num_valid_anchors = anchors.shape[0] bbox_targets = torch.zeros_like(anchors) bbox_weights = torch.zeros_like(anchors) labels = anchors.new_full((num_valid_anchors, ), self.num_classes, dtype=torch.long) label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) pos_inds = sampling_result.pos_inds neg_inds = sampling_result.neg_inds if len(pos_inds) > 0: if not self.reg_decoded_bbox: pos_bbox_targets = self.bbox_coder.encode( sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) else: pos_bbox_targets = sampling_result.pos_gt_bboxes bbox_targets[pos_inds, :] = pos_bbox_targets bbox_weights[pos_inds, :] = 1.0 if gt_labels is None: # Only rpn gives gt_labels as None # Foreground is the first class since v2.5.0 labels[pos_inds] = 0 else: labels[pos_inds] = gt_labels[ sampling_result.pos_assigned_gt_inds] if self.train_cfg.pos_weight <= 0: label_weights[pos_inds] = 1.0 else: label_weights[pos_inds] = self.train_cfg.pos_weight if len(neg_inds) > 0: label_weights[neg_inds] = 1.0 # map up to original set of anchors if unmap_outputs: num_total_anchors = flat_anchors.size(0) labels = unmap( labels, num_total_anchors, inside_flags, fill=self.num_classes) # fill bg label label_weights = unmap(label_weights, num_total_anchors, inside_flags) bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, neg_inds, sampling_result)
[docs] def get_targets(self, anchor_list, valid_flag_list, gt_bboxes_list, img_metas, gt_bboxes_ignore_list=None, gt_labels_list=None, label_channels=1, unmap_outputs=True, return_sampling_results=False): """Compute regression and classification targets for anchors in multiple images. Args: anchor_list (list[list[Tensor]]): Multi level anchors of each image. The outer list indicates images, and the inner list corresponds to feature levels of the image. Each element of the inner list is a tensor of shape (num_anchors, 4). valid_flag_list (list[list[Tensor]]): Multi level valid flags of each image. The outer list indicates images, and the inner list corresponds to feature levels of the image. Each element of the inner list is a tensor of shape (num_anchors, ) gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. img_metas (list[dict]): Meta info of each image. gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be ignored. gt_labels_list (list[Tensor]): Ground truth labels of each box. label_channels (int): Channel of label. unmap_outputs (bool): Whether to map outputs back to the original set of anchors. Returns: tuple: Usually returns a tuple containing learning targets. - labels_list (list[Tensor]): Labels of each level. - label_weights_list (list[Tensor]): Label weights of each level. - bbox_targets_list (list[Tensor]): BBox targets of each level. - bbox_weights_list (list[Tensor]): BBox weights of each level. - num_total_pos (int): Number of positive samples in all images. - num_total_neg (int): Number of negative samples in all images. additional_returns: This function enables user-defined returns from `self._get_targets_single`. These returns are currently refined to properties at each feature map (i.e. having HxW dimension). The results will be concatenated after the end """ num_imgs = len(img_metas) assert len(anchor_list) == len(valid_flag_list) == num_imgs # anchor number of multi levels num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] # concat all level anchors to a single tensor concat_anchor_list = [] concat_valid_flag_list = [] for i in range(num_imgs): assert len(anchor_list[i]) == len(valid_flag_list[i]) concat_anchor_list.append(torch.cat(anchor_list[i])) concat_valid_flag_list.append(torch.cat(valid_flag_list[i])) # compute targets for each image if gt_bboxes_ignore_list is None: gt_bboxes_ignore_list = [None for _ in range(num_imgs)] if gt_labels_list is None: gt_labels_list = [None for _ in range(num_imgs)] results = multi_apply( self._get_targets_single, concat_anchor_list, concat_valid_flag_list, gt_bboxes_list, gt_bboxes_ignore_list, gt_labels_list, img_metas, label_channels=label_channels, unmap_outputs=unmap_outputs) (all_labels, all_label_weights, all_bbox_targets, all_bbox_weights, pos_inds_list, neg_inds_list, sampling_results_list) = results[:7] rest_results = list(results[7:]) # user-added return values # no valid anchors if any([labels is None for labels in all_labels]): return None # sampled anchors of all images num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) # split targets to a list w.r.t. multiple levels labels_list = images_to_levels(all_labels, num_level_anchors) label_weights_list = images_to_levels(all_label_weights, num_level_anchors) bbox_targets_list = images_to_levels(all_bbox_targets, num_level_anchors) bbox_weights_list = images_to_levels(all_bbox_weights, num_level_anchors) res = (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos, num_total_neg) if return_sampling_results: res = res + (sampling_results_list, ) for i, r in enumerate(rest_results): # user-added return values rest_results[i] = images_to_levels(r, num_level_anchors) return res + tuple(rest_results)
[docs] def loss_single(self, cls_score, bbox_pred, anchors, labels, label_weights, bbox_targets, bbox_weights, num_total_samples): """Compute loss of a single scale level. Args: cls_score (Tensor): Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W). bbox_pred (Tensor): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W). anchors (Tensor): Box reference for each scale level with shape (N, num_total_anchors, 4). labels (Tensor): Labels of each anchors with shape (N, num_total_anchors). label_weights (Tensor): Label weights of each anchor with shape (N, num_total_anchors) bbox_targets (Tensor): BBox regression targets of each anchor wight shape (N, num_total_anchors, 4). bbox_weights (Tensor): BBox regression loss weights of each anchor with shape (N, num_total_anchors, 4). num_total_samples (int): If sampling, num total samples equal to the number of total anchors; Otherwise, it is the number of positive anchors. Returns: dict[str, Tensor]: A dictionary of loss components. """ # classification loss labels = labels.reshape(-1) label_weights = label_weights.reshape(-1) cls_score = cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) loss_cls = self.loss_cls( cls_score, labels, label_weights, avg_factor=num_total_samples) # regression loss bbox_targets = bbox_targets.reshape(-1, 4) bbox_weights = bbox_weights.reshape(-1, 4) bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) if self.reg_decoded_bbox: # When the regression loss (e.g. `IouLoss`, `GIouLoss`) # is applied directly on the decoded bounding boxes, it # decodes the already encoded coordinates to absolute format. anchors = anchors.reshape(-1, 4) bbox_pred = self.bbox_coder.decode(anchors, bbox_pred) loss_bbox = self.loss_bbox( bbox_pred, bbox_targets, bbox_weights, avg_factor=num_total_samples) return loss_cls, loss_bbox
[docs] @force_fp32(apply_to=('cls_scores', 'bbox_preds')) def loss(self, cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore=None): """Compute losses of the head. Args: cls_scores (list[Tensor]): Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W) bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W) gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. Default: None Returns: dict[str, Tensor]: A dictionary of loss components. """ featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] assert len(featmap_sizes) == self.anchor_generator.num_levels device = cls_scores[0].device anchor_list, valid_flag_list = self.get_anchors( featmap_sizes, img_metas, device=device) label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 cls_reg_targets = self.get_targets( anchor_list, valid_flag_list, gt_bboxes, img_metas, gt_bboxes_ignore_list=gt_bboxes_ignore, gt_labels_list=gt_labels, label_channels=label_channels) if cls_reg_targets is None: return None (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos, num_total_neg) = cls_reg_targets num_total_samples = ( num_total_pos + num_total_neg if self.sampling else num_total_pos) # anchor number of multi levels num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] # concat all level anchors and flags to a single tensor concat_anchor_list = [] for i in range(len(anchor_list)): concat_anchor_list.append(torch.cat(anchor_list[i])) all_anchor_list = images_to_levels(concat_anchor_list, num_level_anchors) losses_cls, losses_bbox = multi_apply( self.loss_single, cls_scores, bbox_preds, all_anchor_list, labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_samples=num_total_samples) return dict(loss_cls=losses_cls, loss_bbox=losses_bbox)
[docs] @force_fp32(apply_to=('cls_scores', 'bbox_preds')) def get_bboxes(self, cls_scores, bbox_preds, img_metas, cfg=None, rescale=False, with_nms=True): """Transform network output for a batch into bbox predictions. Args: cls_scores (list[Tensor]): Box scores for each level in the feature pyramid, has shape (N, num_anchors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for each level in the feature pyramid, has shape (N, num_anchors * 4, H, W). img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. cfg (mmcv.Config | None): Test / postprocessing configuration, if None, test_cfg would be used rescale (bool): If True, return boxes in original image space. Default: False. with_nms (bool): If True, do nms before return boxes. Default: True. Returns: list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. The first item is an (n, 5) tensor, where 5 represent (tl_x, tl_y, br_x, br_y, score) and the score between 0 and 1. The shape of the second tensor in the tuple is (n,), and each element represents the class label of the corresponding box. Example: >>> import mmcv >>> self = AnchorHead( >>> num_classes=9, >>> in_channels=1, >>> anchor_generator=dict( >>> type='AnchorGenerator', >>> scales=[8], >>> ratios=[0.5, 1.0, 2.0], >>> strides=[4,])) >>> img_metas = [{'img_shape': (32, 32, 3), 'scale_factor': 1}] >>> cfg = mmcv.Config(dict( >>> score_thr=0.00, >>> nms=dict(type='nms', iou_thr=1.0), >>> max_per_img=10)) >>> feat = torch.rand(1, 1, 3, 3) >>> cls_score, bbox_pred = self.forward_single(feat) >>> # note the input lists are over different levels, not images >>> cls_scores, bbox_preds = [cls_score], [bbox_pred] >>> result_list = self.get_bboxes(cls_scores, bbox_preds, >>> img_metas, cfg) >>> det_bboxes, det_labels = result_list[0] >>> assert len(result_list) == 1 >>> assert det_bboxes.shape[1] == 5 >>> assert len(det_bboxes) == len(det_labels) == cfg.max_per_img """ assert len(cls_scores) == len(bbox_preds) num_levels = len(cls_scores) device = cls_scores[0].device featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] mlvl_anchors = self.anchor_generator.grid_anchors( featmap_sizes, device=device) mlvl_cls_scores = [cls_scores[i].detach() for i in range(num_levels)] mlvl_bbox_preds = [bbox_preds[i].detach() for i in range(num_levels)] if torch.onnx.is_in_onnx_export(): assert len( img_metas ) == 1, 'Only support one input image while in exporting to ONNX' img_shapes = img_metas[0]['img_shape_for_onnx'] else: img_shapes = [ img_metas[i]['img_shape'] for i in range(cls_scores[0].shape[0]) ] scale_factors = [ img_metas[i]['scale_factor'] for i in range(cls_scores[0].shape[0]) ] if with_nms: # some heads don't support with_nms argument result_list = self._get_bboxes(mlvl_cls_scores, mlvl_bbox_preds, mlvl_anchors, img_shapes, scale_factors, cfg, rescale) else: result_list = self._get_bboxes(mlvl_cls_scores, mlvl_bbox_preds, mlvl_anchors, img_shapes, scale_factors, cfg, rescale, with_nms) return result_list
def _get_bboxes(self, mlvl_cls_scores, mlvl_bbox_preds, mlvl_anchors, img_shapes, scale_factors, cfg, rescale=False, with_nms=True): """Transform outputs for a batch item into bbox predictions. Args: mlvl_cls_scores (list[Tensor]): Each element in the list is the scores of bboxes of single level in the feature pyramid, has shape (N, num_anchors * num_classes, H, W). mlvl_bbox_preds (list[Tensor]): Each element in the list is the bboxes predictions of single level in the feature pyramid, has shape (N, num_anchors * 4, H, W). mlvl_anchors (list[Tensor]): Each element in the list is the anchors of single level in feature pyramid, has shape (num_anchors, 4). img_shapes (list[tuple[int]]): Each tuple in the list represent the shape(height, width, 3) of single image in the batch. scale_factors (list[ndarray]): Scale factor of the batch image arange as list[(w_scale, h_scale, w_scale, h_scale)]. cfg (mmcv.Config): Test / postprocessing configuration, if None, test_cfg would be used. rescale (bool): If True, return boxes in original image space. Default: False. with_nms (bool): If True, do nms before return boxes. Default: True. Returns: list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. The first item is an (n, 5) tensor, where 5 represent (tl_x, tl_y, br_x, br_y, score) and the score between 0 and 1. The shape of the second tensor in the tuple is (n,), and each element represents the class label of the corresponding box. """ cfg = self.test_cfg if cfg is None else cfg assert len(mlvl_cls_scores) == len(mlvl_bbox_preds) == len( mlvl_anchors) batch_size = mlvl_cls_scores[0].shape[0] # convert to tensor to keep tracing nms_pre_tensor = torch.tensor( cfg.get('nms_pre', -1), device=mlvl_cls_scores[0].device, dtype=torch.long) mlvl_bboxes = [] mlvl_scores = [] for cls_score, bbox_pred, anchors in zip(mlvl_cls_scores, mlvl_bbox_preds, mlvl_anchors): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] cls_score = cls_score.permute(0, 2, 3, 1).reshape(batch_size, -1, self.cls_out_channels) if self.use_sigmoid_cls: scores = cls_score.sigmoid() else: scores = cls_score.softmax(-1) bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(batch_size, -1, 4) anchors = anchors.expand_as(bbox_pred) # Always keep topk op for dynamic input in onnx from mmdet.core.export import get_k_for_topk nms_pre = get_k_for_topk(nms_pre_tensor, bbox_pred.shape[1]) if nms_pre > 0: # Get maximum scores for foreground classes. if self.use_sigmoid_cls: max_scores, _ = scores.max(-1) else: # remind that we set FG labels to [0, num_class-1] # since mmdet v2.0 # BG cat_id: num_class max_scores, _ = scores[..., :-1].max(-1) _, topk_inds = max_scores.topk(nms_pre) batch_inds = torch.arange(batch_size).view( -1, 1).expand_as(topk_inds) anchors = anchors[batch_inds, topk_inds, :] bbox_pred = bbox_pred[batch_inds, topk_inds, :] scores = scores[batch_inds, topk_inds, :] bboxes = self.bbox_coder.decode( anchors, bbox_pred, max_shape=img_shapes) mlvl_bboxes.append(bboxes) mlvl_scores.append(scores) batch_mlvl_bboxes = torch.cat(mlvl_bboxes, dim=1) if rescale: batch_mlvl_bboxes /= batch_mlvl_bboxes.new_tensor( scale_factors).unsqueeze(1) batch_mlvl_scores = torch.cat(mlvl_scores, dim=1) # Replace multiclass_nms with ONNX::NonMaxSuppression in deployment if torch.onnx.is_in_onnx_export() and with_nms: from mmdet.core.export import add_dummy_nms_for_onnx # ignore background class if not self.use_sigmoid_cls: num_classes = batch_mlvl_scores.shape[2] - 1 batch_mlvl_scores = batch_mlvl_scores[..., :num_classes] max_output_boxes_per_class = cfg.nms.get( 'max_output_boxes_per_class', 200) iou_threshold = cfg.nms.get('iou_threshold', 0.5) score_threshold = cfg.score_thr nms_pre = cfg.get('deploy_nms_pre', -1) return add_dummy_nms_for_onnx(batch_mlvl_bboxes, batch_mlvl_scores, max_output_boxes_per_class, iou_threshold, score_threshold, nms_pre, cfg.max_per_img) if self.use_sigmoid_cls: # Add a dummy background class to the backend when using sigmoid # remind that we set FG labels to [0, num_class-1] since mmdet v2.0 # BG cat_id: num_class padding = batch_mlvl_scores.new_zeros(batch_size, batch_mlvl_scores.shape[1], 1) batch_mlvl_scores = torch.cat([batch_mlvl_scores, padding], dim=-1) if with_nms: det_results = [] for (mlvl_bboxes, mlvl_scores) in zip(batch_mlvl_bboxes, batch_mlvl_scores): det_bbox, det_label = multiclass_nms(mlvl_bboxes, mlvl_scores, cfg.score_thr, cfg.nms, cfg.max_per_img) det_results.append(tuple([det_bbox, det_label])) else: det_results = [ tuple(mlvl_bs) for mlvl_bs in zip(batch_mlvl_bboxes, batch_mlvl_scores) ] return det_results
[docs] def aug_test(self, feats, img_metas, rescale=False): """Test function with test time augmentation. Args: feats (list[Tensor]): the outer list indicates test-time augmentations and inner Tensor should have a shape NxCxHxW, which contains features for all images in the batch. img_metas (list[list[dict]]): the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. each dict has image information. rescale (bool, optional): Whether to rescale the results. Defaults to False. Returns: list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. The first item is ``bboxes`` with shape (n, 5), where 5 represent (tl_x, tl_y, br_x, br_y, score). The shape of the second tensor in the tuple is ``labels`` with shape (n,), The length of list should always be 1. """ return self.aug_test_bboxes(feats, img_metas, rescale=rescale)
Read the Docs v: v2.17.0
Versions
latest
stable
v2.17.0
v2.16.0
v2.15.1
v2.15.0
v2.14.0
v2.13.0
v2.12.0
v2.11.0
v2.10.0
v2.9.0
v2.8.0
v2.7.0
v2.6.0
v2.5.0
v2.4.0
v2.3.0
v2.2.1
v2.2.0
v2.1.0
v2.0.0
v1.2.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.