Shortcuts

Source code for mmdet.models.dense_heads.reppoints_head

# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmcv.ops import DeformConv2d

from mmdet.core import (build_assigner, build_sampler, images_to_levels,
                        multi_apply, multiclass_nms, unmap)
from mmdet.core.anchor.point_generator import MlvlPointGenerator
from ..builder import HEADS, build_loss
from .anchor_free_head import AnchorFreeHead


[docs]@HEADS.register_module() class RepPointsHead(AnchorFreeHead): """RepPoint head. Args: point_feat_channels (int): Number of channels of points features. gradient_mul (float): The multiplier to gradients from points refinement and recognition. point_strides (Iterable): points strides. point_base_scale (int): bbox scale for assigning labels. loss_cls (dict): Config of classification loss. loss_bbox_init (dict): Config of initial points loss. loss_bbox_refine (dict): Config of points loss in refinement. use_grid_points (bool): If we use bounding box representation, the reppoints is represented as grid points on the bounding box. center_init (bool): Whether to use center point assignment. transform_method (str): The methods to transform RepPoints to bbox. init_cfg (dict or list[dict], optional): Initialization config dict. """ # noqa: W605 def __init__(self, num_classes, in_channels, point_feat_channels=256, num_points=9, gradient_mul=0.1, point_strides=[8, 16, 32, 64, 128], point_base_scale=4, loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_init=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=0.5), loss_bbox_refine=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), use_grid_points=False, center_init=True, transform_method='moment', moment_mul=0.01, init_cfg=dict( type='Normal', layer='Conv2d', std=0.01, override=dict( type='Normal', name='reppoints_cls_out', std=0.01, bias_prob=0.01)), **kwargs): self.num_points = num_points self.point_feat_channels = point_feat_channels self.use_grid_points = use_grid_points self.center_init = center_init # we use deform conv to extract points features self.dcn_kernel = int(np.sqrt(num_points)) self.dcn_pad = int((self.dcn_kernel - 1) / 2) assert self.dcn_kernel * self.dcn_kernel == num_points, \ 'The points number should be a square number.' assert self.dcn_kernel % 2 == 1, \ 'The points number should be an odd square number.' dcn_base = np.arange(-self.dcn_pad, self.dcn_pad + 1).astype(np.float64) dcn_base_y = np.repeat(dcn_base, self.dcn_kernel) dcn_base_x = np.tile(dcn_base, self.dcn_kernel) dcn_base_offset = np.stack([dcn_base_y, dcn_base_x], axis=1).reshape( (-1)) self.dcn_base_offset = torch.tensor(dcn_base_offset).view(1, -1, 1, 1) super().__init__( num_classes, in_channels, loss_cls=loss_cls, init_cfg=init_cfg, **kwargs) self.gradient_mul = gradient_mul self.point_base_scale = point_base_scale self.point_strides = point_strides self.point_generator = MlvlPointGenerator( self.point_strides, offset=0.) self.sampling = loss_cls['type'] not in ['FocalLoss'] if self.train_cfg: self.init_assigner = build_assigner(self.train_cfg.init.assigner) self.refine_assigner = build_assigner( self.train_cfg.refine.assigner) # use PseudoSampler when sampling is False if self.sampling and hasattr(self.train_cfg, 'sampler'): sampler_cfg = self.train_cfg.sampler else: sampler_cfg = dict(type='PseudoSampler') self.sampler = build_sampler(sampler_cfg, context=self) self.transform_method = transform_method if self.transform_method == 'moment': self.moment_transfer = nn.Parameter( data=torch.zeros(2), requires_grad=True) self.moment_mul = moment_mul self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) if self.use_sigmoid_cls: self.cls_out_channels = self.num_classes else: self.cls_out_channels = self.num_classes + 1 self.loss_bbox_init = build_loss(loss_bbox_init) self.loss_bbox_refine = build_loss(loss_bbox_refine) def _init_layers(self): """Initialize layers of the head.""" self.relu = nn.ReLU(inplace=True) self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels self.cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.reg_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) pts_out_dim = 4 if self.use_grid_points else 2 * self.num_points self.reppoints_cls_conv = DeformConv2d(self.feat_channels, self.point_feat_channels, self.dcn_kernel, 1, self.dcn_pad) self.reppoints_cls_out = nn.Conv2d(self.point_feat_channels, self.cls_out_channels, 1, 1, 0) self.reppoints_pts_init_conv = nn.Conv2d(self.feat_channels, self.point_feat_channels, 3, 1, 1) self.reppoints_pts_init_out = nn.Conv2d(self.point_feat_channels, pts_out_dim, 1, 1, 0) self.reppoints_pts_refine_conv = DeformConv2d(self.feat_channels, self.point_feat_channels, self.dcn_kernel, 1, self.dcn_pad) self.reppoints_pts_refine_out = nn.Conv2d(self.point_feat_channels, pts_out_dim, 1, 1, 0)
[docs] def points2bbox(self, pts, y_first=True): """Converting the points set into bounding box. :param pts: the input points sets (fields), each points set (fields) is represented as 2n scalar. :param y_first: if y_first=True, the point set is represented as [y1, x1, y2, x2 ... yn, xn], otherwise the point set is represented as [x1, y1, x2, y2 ... xn, yn]. :return: each points set is converting to a bbox [x1, y1, x2, y2]. """ pts_reshape = pts.view(pts.shape[0], -1, 2, *pts.shape[2:]) pts_y = pts_reshape[:, :, 0, ...] if y_first else pts_reshape[:, :, 1, ...] pts_x = pts_reshape[:, :, 1, ...] if y_first else pts_reshape[:, :, 0, ...] if self.transform_method == 'minmax': bbox_left = pts_x.min(dim=1, keepdim=True)[0] bbox_right = pts_x.max(dim=1, keepdim=True)[0] bbox_up = pts_y.min(dim=1, keepdim=True)[0] bbox_bottom = pts_y.max(dim=1, keepdim=True)[0] bbox = torch.cat([bbox_left, bbox_up, bbox_right, bbox_bottom], dim=1) elif self.transform_method == 'partial_minmax': pts_y = pts_y[:, :4, ...] pts_x = pts_x[:, :4, ...] bbox_left = pts_x.min(dim=1, keepdim=True)[0] bbox_right = pts_x.max(dim=1, keepdim=True)[0] bbox_up = pts_y.min(dim=1, keepdim=True)[0] bbox_bottom = pts_y.max(dim=1, keepdim=True)[0] bbox = torch.cat([bbox_left, bbox_up, bbox_right, bbox_bottom], dim=1) elif self.transform_method == 'moment': pts_y_mean = pts_y.mean(dim=1, keepdim=True) pts_x_mean = pts_x.mean(dim=1, keepdim=True) pts_y_std = torch.std(pts_y - pts_y_mean, dim=1, keepdim=True) pts_x_std = torch.std(pts_x - pts_x_mean, dim=1, keepdim=True) moment_transfer = (self.moment_transfer * self.moment_mul) + ( self.moment_transfer.detach() * (1 - self.moment_mul)) moment_width_transfer = moment_transfer[0] moment_height_transfer = moment_transfer[1] half_width = pts_x_std * torch.exp(moment_width_transfer) half_height = pts_y_std * torch.exp(moment_height_transfer) bbox = torch.cat([ pts_x_mean - half_width, pts_y_mean - half_height, pts_x_mean + half_width, pts_y_mean + half_height ], dim=1) else: raise NotImplementedError return bbox
[docs] def gen_grid_from_reg(self, reg, previous_boxes): """Base on the previous bboxes and regression values, we compute the regressed bboxes and generate the grids on the bboxes. :param reg: the regression value to previous bboxes. :param previous_boxes: previous bboxes. :return: generate grids on the regressed bboxes. """ b, _, h, w = reg.shape bxy = (previous_boxes[:, :2, ...] + previous_boxes[:, 2:, ...]) / 2. bwh = (previous_boxes[:, 2:, ...] - previous_boxes[:, :2, ...]).clamp(min=1e-6) grid_topleft = bxy + bwh * reg[:, :2, ...] - 0.5 * bwh * torch.exp( reg[:, 2:, ...]) grid_wh = bwh * torch.exp(reg[:, 2:, ...]) grid_left = grid_topleft[:, [0], ...] grid_top = grid_topleft[:, [1], ...] grid_width = grid_wh[:, [0], ...] grid_height = grid_wh[:, [1], ...] intervel = torch.linspace(0., 1., self.dcn_kernel).view( 1, self.dcn_kernel, 1, 1).type_as(reg) grid_x = grid_left + grid_width * intervel grid_x = grid_x.unsqueeze(1).repeat(1, self.dcn_kernel, 1, 1, 1) grid_x = grid_x.view(b, -1, h, w) grid_y = grid_top + grid_height * intervel grid_y = grid_y.unsqueeze(2).repeat(1, 1, self.dcn_kernel, 1, 1) grid_y = grid_y.view(b, -1, h, w) grid_yx = torch.stack([grid_y, grid_x], dim=2) grid_yx = grid_yx.view(b, -1, h, w) regressed_bbox = torch.cat([ grid_left, grid_top, grid_left + grid_width, grid_top + grid_height ], 1) return grid_yx, regressed_bbox
[docs] def forward(self, feats): return multi_apply(self.forward_single, feats)
[docs] def forward_single(self, x): """Forward feature map of a single FPN level.""" dcn_base_offset = self.dcn_base_offset.type_as(x) # If we use center_init, the initial reppoints is from center points. # If we use bounding bbox representation, the initial reppoints is # from regular grid placed on a pre-defined bbox. if self.use_grid_points or not self.center_init: scale = self.point_base_scale / 2 points_init = dcn_base_offset / dcn_base_offset.max() * scale bbox_init = x.new_tensor([-scale, -scale, scale, scale]).view(1, 4, 1, 1) else: points_init = 0 cls_feat = x pts_feat = x for cls_conv in self.cls_convs: cls_feat = cls_conv(cls_feat) for reg_conv in self.reg_convs: pts_feat = reg_conv(pts_feat) # initialize reppoints pts_out_init = self.reppoints_pts_init_out( self.relu(self.reppoints_pts_init_conv(pts_feat))) if self.use_grid_points: pts_out_init, bbox_out_init = self.gen_grid_from_reg( pts_out_init, bbox_init.detach()) else: pts_out_init = pts_out_init + points_init # refine and classify reppoints pts_out_init_grad_mul = (1 - self.gradient_mul) * pts_out_init.detach( ) + self.gradient_mul * pts_out_init dcn_offset = pts_out_init_grad_mul - dcn_base_offset cls_out = self.reppoints_cls_out( self.relu(self.reppoints_cls_conv(cls_feat, dcn_offset))) pts_out_refine = self.reppoints_pts_refine_out( self.relu(self.reppoints_pts_refine_conv(pts_feat, dcn_offset))) if self.use_grid_points: pts_out_refine, bbox_out_refine = self.gen_grid_from_reg( pts_out_refine, bbox_out_init.detach()) else: pts_out_refine = pts_out_refine + pts_out_init.detach() return cls_out, pts_out_init, pts_out_refine
[docs] def get_points(self, featmap_sizes, img_metas, device): """Get points according to feature map sizes. Args: featmap_sizes (list[tuple]): Multi-level feature map sizes. img_metas (list[dict]): Image meta info. Returns: tuple: points of each image, valid flags of each image """ num_imgs = len(img_metas) # since feature map sizes of all images are the same, we only compute # points center for one time multi_level_points = self.point_generator.grid_priors( featmap_sizes, device, with_stride=True) points_list = [[point.clone() for point in multi_level_points] for _ in range(num_imgs)] # for each image, we compute valid flags of multi level grids valid_flag_list = [] for img_id, img_meta in enumerate(img_metas): multi_level_flags = self.point_generator.valid_flags( featmap_sizes, img_meta['pad_shape']) valid_flag_list.append(multi_level_flags) return points_list, valid_flag_list
[docs] def centers_to_bboxes(self, point_list): """Get bboxes according to center points. Only used in :class:`MaxIoUAssigner`. """ bbox_list = [] for i_img, point in enumerate(point_list): bbox = [] for i_lvl in range(len(self.point_strides)): scale = self.point_base_scale * self.point_strides[i_lvl] * 0.5 bbox_shift = torch.Tensor([-scale, -scale, scale, scale]).view(1, 4).type_as(point[0]) bbox_center = torch.cat( [point[i_lvl][:, :2], point[i_lvl][:, :2]], dim=1) bbox.append(bbox_center + bbox_shift) bbox_list.append(bbox) return bbox_list
[docs] def offset_to_pts(self, center_list, pred_list): """Change from point offset to point coordinate.""" pts_list = [] for i_lvl in range(len(self.point_strides)): pts_lvl = [] for i_img in range(len(center_list)): pts_center = center_list[i_img][i_lvl][:, :2].repeat( 1, self.num_points) pts_shift = pred_list[i_lvl][i_img] yx_pts_shift = pts_shift.permute(1, 2, 0).view( -1, 2 * self.num_points) y_pts_shift = yx_pts_shift[..., 0::2] x_pts_shift = yx_pts_shift[..., 1::2] xy_pts_shift = torch.stack([x_pts_shift, y_pts_shift], -1) xy_pts_shift = xy_pts_shift.view(*yx_pts_shift.shape[:-1], -1) pts = xy_pts_shift * self.point_strides[i_lvl] + pts_center pts_lvl.append(pts) pts_lvl = torch.stack(pts_lvl, 0) pts_list.append(pts_lvl) return pts_list
def _point_target_single(self, flat_proposals, valid_flags, gt_bboxes, gt_bboxes_ignore, gt_labels, stage='init', unmap_outputs=True): inside_flags = valid_flags if not inside_flags.any(): return (None, ) * 7 # assign gt and sample proposals proposals = flat_proposals[inside_flags, :] if stage == 'init': assigner = self.init_assigner pos_weight = self.train_cfg.init.pos_weight else: assigner = self.refine_assigner pos_weight = self.train_cfg.refine.pos_weight assign_result = assigner.assign(proposals, gt_bboxes, gt_bboxes_ignore, None if self.sampling else gt_labels) sampling_result = self.sampler.sample(assign_result, proposals, gt_bboxes) num_valid_proposals = proposals.shape[0] bbox_gt = proposals.new_zeros([num_valid_proposals, 4]) pos_proposals = torch.zeros_like(proposals) proposals_weights = proposals.new_zeros([num_valid_proposals, 4]) labels = proposals.new_full((num_valid_proposals, ), self.num_classes, dtype=torch.long) label_weights = proposals.new_zeros( num_valid_proposals, dtype=torch.float) pos_inds = sampling_result.pos_inds neg_inds = sampling_result.neg_inds if len(pos_inds) > 0: pos_gt_bboxes = sampling_result.pos_gt_bboxes bbox_gt[pos_inds, :] = pos_gt_bboxes pos_proposals[pos_inds, :] = proposals[pos_inds, :] proposals_weights[pos_inds, :] = 1.0 if gt_labels is None: # Only rpn gives gt_labels as None # Foreground is the first class labels[pos_inds] = 0 else: labels[pos_inds] = gt_labels[ sampling_result.pos_assigned_gt_inds] if pos_weight <= 0: label_weights[pos_inds] = 1.0 else: label_weights[pos_inds] = pos_weight if len(neg_inds) > 0: label_weights[neg_inds] = 1.0 # map up to original set of proposals if unmap_outputs: num_total_proposals = flat_proposals.size(0) labels = unmap(labels, num_total_proposals, inside_flags) label_weights = unmap(label_weights, num_total_proposals, inside_flags) bbox_gt = unmap(bbox_gt, num_total_proposals, inside_flags) pos_proposals = unmap(pos_proposals, num_total_proposals, inside_flags) proposals_weights = unmap(proposals_weights, num_total_proposals, inside_flags) return (labels, label_weights, bbox_gt, pos_proposals, proposals_weights, pos_inds, neg_inds)
[docs] def get_targets(self, proposals_list, valid_flag_list, gt_bboxes_list, img_metas, gt_bboxes_ignore_list=None, gt_labels_list=None, stage='init', label_channels=1, unmap_outputs=True): """Compute corresponding GT box and classification targets for proposals. Args: proposals_list (list[list]): Multi level points/bboxes of each image. valid_flag_list (list[list]): Multi level valid flags of each image. gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. img_metas (list[dict]): Meta info of each image. gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be ignored. gt_bboxes_list (list[Tensor]): Ground truth labels of each box. stage (str): `init` or `refine`. Generate target for init stage or refine stage label_channels (int): Channel of label. unmap_outputs (bool): Whether to map outputs back to the original set of anchors. Returns: tuple: - labels_list (list[Tensor]): Labels of each level. - label_weights_list (list[Tensor]): Label weights of each level. # noqa: E501 - bbox_gt_list (list[Tensor]): Ground truth bbox of each level. - proposal_list (list[Tensor]): Proposals(points/bboxes) of each level. # noqa: E501 - proposal_weights_list (list[Tensor]): Proposal weights of each level. # noqa: E501 - num_total_pos (int): Number of positive samples in all images. # noqa: E501 - num_total_neg (int): Number of negative samples in all images. # noqa: E501 """ assert stage in ['init', 'refine'] num_imgs = len(img_metas) assert len(proposals_list) == len(valid_flag_list) == num_imgs # points number of multi levels num_level_proposals = [points.size(0) for points in proposals_list[0]] # concat all level points and flags to a single tensor for i in range(num_imgs): assert len(proposals_list[i]) == len(valid_flag_list[i]) proposals_list[i] = torch.cat(proposals_list[i]) valid_flag_list[i] = torch.cat(valid_flag_list[i]) # compute targets for each image if gt_bboxes_ignore_list is None: gt_bboxes_ignore_list = [None for _ in range(num_imgs)] if gt_labels_list is None: gt_labels_list = [None for _ in range(num_imgs)] (all_labels, all_label_weights, all_bbox_gt, all_proposals, all_proposal_weights, pos_inds_list, neg_inds_list) = multi_apply( self._point_target_single, proposals_list, valid_flag_list, gt_bboxes_list, gt_bboxes_ignore_list, gt_labels_list, stage=stage, unmap_outputs=unmap_outputs) # no valid points if any([labels is None for labels in all_labels]): return None # sampled points of all images num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) labels_list = images_to_levels(all_labels, num_level_proposals) label_weights_list = images_to_levels(all_label_weights, num_level_proposals) bbox_gt_list = images_to_levels(all_bbox_gt, num_level_proposals) proposals_list = images_to_levels(all_proposals, num_level_proposals) proposal_weights_list = images_to_levels(all_proposal_weights, num_level_proposals) return (labels_list, label_weights_list, bbox_gt_list, proposals_list, proposal_weights_list, num_total_pos, num_total_neg)
def loss_single(self, cls_score, pts_pred_init, pts_pred_refine, labels, label_weights, bbox_gt_init, bbox_weights_init, bbox_gt_refine, bbox_weights_refine, stride, num_total_samples_init, num_total_samples_refine): # classification loss labels = labels.reshape(-1) label_weights = label_weights.reshape(-1) cls_score = cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) cls_score = cls_score.contiguous() loss_cls = self.loss_cls( cls_score, labels, label_weights, avg_factor=num_total_samples_refine) # points loss bbox_gt_init = bbox_gt_init.reshape(-1, 4) bbox_weights_init = bbox_weights_init.reshape(-1, 4) bbox_pred_init = self.points2bbox( pts_pred_init.reshape(-1, 2 * self.num_points), y_first=False) bbox_gt_refine = bbox_gt_refine.reshape(-1, 4) bbox_weights_refine = bbox_weights_refine.reshape(-1, 4) bbox_pred_refine = self.points2bbox( pts_pred_refine.reshape(-1, 2 * self.num_points), y_first=False) normalize_term = self.point_base_scale * stride loss_pts_init = self.loss_bbox_init( bbox_pred_init / normalize_term, bbox_gt_init / normalize_term, bbox_weights_init, avg_factor=num_total_samples_init) loss_pts_refine = self.loss_bbox_refine( bbox_pred_refine / normalize_term, bbox_gt_refine / normalize_term, bbox_weights_refine, avg_factor=num_total_samples_refine) return loss_cls, loss_pts_init, loss_pts_refine
[docs] def loss(self, cls_scores, pts_preds_init, pts_preds_refine, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore=None): featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] device = cls_scores[0].device label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 # target for initial stage center_list, valid_flag_list = self.get_points(featmap_sizes, img_metas, device) pts_coordinate_preds_init = self.offset_to_pts(center_list, pts_preds_init) if self.train_cfg.init.assigner['type'] == 'PointAssigner': # Assign target for center list candidate_list = center_list else: # transform center list to bbox list and # assign target for bbox list bbox_list = self.centers_to_bboxes(center_list) candidate_list = bbox_list cls_reg_targets_init = self.get_targets( candidate_list, valid_flag_list, gt_bboxes, img_metas, gt_bboxes_ignore_list=gt_bboxes_ignore, gt_labels_list=gt_labels, stage='init', label_channels=label_channels) (*_, bbox_gt_list_init, candidate_list_init, bbox_weights_list_init, num_total_pos_init, num_total_neg_init) = cls_reg_targets_init num_total_samples_init = ( num_total_pos_init + num_total_neg_init if self.sampling else num_total_pos_init) # target for refinement stage center_list, valid_flag_list = self.get_points(featmap_sizes, img_metas, device) pts_coordinate_preds_refine = self.offset_to_pts( center_list, pts_preds_refine) bbox_list = [] for i_img, center in enumerate(center_list): bbox = [] for i_lvl in range(len(pts_preds_refine)): bbox_preds_init = self.points2bbox( pts_preds_init[i_lvl].detach()) bbox_shift = bbox_preds_init * self.point_strides[i_lvl] bbox_center = torch.cat( [center[i_lvl][:, :2], center[i_lvl][:, :2]], dim=1) bbox.append(bbox_center + bbox_shift[i_img].permute(1, 2, 0).reshape(-1, 4)) bbox_list.append(bbox) cls_reg_targets_refine = self.get_targets( bbox_list, valid_flag_list, gt_bboxes, img_metas, gt_bboxes_ignore_list=gt_bboxes_ignore, gt_labels_list=gt_labels, stage='refine', label_channels=label_channels) (labels_list, label_weights_list, bbox_gt_list_refine, candidate_list_refine, bbox_weights_list_refine, num_total_pos_refine, num_total_neg_refine) = cls_reg_targets_refine num_total_samples_refine = ( num_total_pos_refine + num_total_neg_refine if self.sampling else num_total_pos_refine) # compute loss losses_cls, losses_pts_init, losses_pts_refine = multi_apply( self.loss_single, cls_scores, pts_coordinate_preds_init, pts_coordinate_preds_refine, labels_list, label_weights_list, bbox_gt_list_init, bbox_weights_list_init, bbox_gt_list_refine, bbox_weights_list_refine, self.point_strides, num_total_samples_init=num_total_samples_init, num_total_samples_refine=num_total_samples_refine) loss_dict_all = { 'loss_cls': losses_cls, 'loss_pts_init': losses_pts_init, 'loss_pts_refine': losses_pts_refine } return loss_dict_all
[docs] def get_bboxes(self, cls_scores, pts_preds_init, pts_preds_refine, img_metas, cfg=None, rescale=False, with_nms=True): assert len(cls_scores) == len(pts_preds_refine) device = cls_scores[0].device bbox_preds_refine = [ self.points2bbox(pts_pred_refine) for pts_pred_refine in pts_preds_refine ] num_levels = len(cls_scores) featmap_sizes = [ cls_scores[i].size()[-2:] for i in range(len(cls_scores)) ] multi_level_points = self.point_generator.grid_priors( featmap_sizes, device) result_list = [] for img_id in range(len(img_metas)): cls_score_list = [cls_scores[i][img_id] for i in range(num_levels)] bbox_pred_list = [ bbox_preds_refine[i][img_id] for i in range(num_levels) ] img_shape = img_metas[img_id]['img_shape'] scale_factor = img_metas[img_id]['scale_factor'] proposals = self._get_bboxes_single(cls_score_list, bbox_pred_list, multi_level_points, img_shape, scale_factor, cfg, rescale, with_nms) result_list.append(proposals) return result_list
def _get_bboxes_single(self, cls_scores, bbox_preds, mlvl_points, img_shape, scale_factor, cfg, rescale=False, with_nms=True): cfg = self.test_cfg if cfg is None else cfg assert len(cls_scores) == len(bbox_preds) == len(mlvl_points) mlvl_bboxes = [] mlvl_scores = [] for i_lvl, (cls_score, bbox_pred, points) in enumerate( zip(cls_scores, bbox_preds, mlvl_points)): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] cls_score = cls_score.permute(1, 2, 0).reshape(-1, self.cls_out_channels) if self.use_sigmoid_cls: scores = cls_score.sigmoid() else: scores = cls_score.softmax(-1) bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) nms_pre = cfg.get('nms_pre', -1) if nms_pre > 0 and scores.shape[0] > nms_pre: if self.use_sigmoid_cls: max_scores, _ = scores.max(dim=1) else: # remind that we set FG labels to [0, num_class-1] # since mmdet v2.0 # BG cat_id: num_class max_scores, _ = scores[:, :-1].max(dim=1) _, topk_inds = max_scores.topk(nms_pre) points = points[topk_inds, :] bbox_pred = bbox_pred[topk_inds, :] scores = scores[topk_inds, :] bbox_pos_center = torch.cat([points[:, :2], points[:, :2]], dim=1) bboxes = bbox_pred * self.point_strides[i_lvl] + bbox_pos_center x1 = bboxes[:, 0].clamp(min=0, max=img_shape[1]) y1 = bboxes[:, 1].clamp(min=0, max=img_shape[0]) x2 = bboxes[:, 2].clamp(min=0, max=img_shape[1]) y2 = bboxes[:, 3].clamp(min=0, max=img_shape[0]) bboxes = torch.stack([x1, y1, x2, y2], dim=-1) mlvl_bboxes.append(bboxes) mlvl_scores.append(scores) mlvl_bboxes = torch.cat(mlvl_bboxes) if rescale: mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor) mlvl_scores = torch.cat(mlvl_scores) if self.use_sigmoid_cls: # Add a dummy background class to the backend when using sigmoid # remind that we set FG labels to [0, num_class-1] since mmdet v2.0 # BG cat_id: num_class padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) if with_nms: det_bboxes, det_labels = multiclass_nms(mlvl_bboxes, mlvl_scores, cfg.score_thr, cfg.nms, cfg.max_per_img) return det_bboxes, det_labels else: return mlvl_bboxes, mlvl_scores
Read the Docs v: v2.17.0
Versions
latest
stable
v2.17.0
v2.16.0
v2.15.1
v2.15.0
v2.14.0
v2.13.0
v2.12.0
v2.11.0
v2.10.0
v2.9.0
v2.8.0
v2.7.0
v2.6.0
v2.5.0
v2.4.0
v2.3.0
v2.2.1
v2.2.0
v2.1.0
v2.0.0
v1.2.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.