Shortcuts

Source code for mmdet.models.dense_heads.vfnet_head

# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, Scale
from mmcv.ops import DeformConv2d
from mmcv.runner import force_fp32

from mmdet.core import (bbox2distance, bbox_overlaps, build_anchor_generator,
                        build_assigner, build_sampler, distance2bbox,
                        multi_apply, multiclass_nms, reduce_mean)
from ..builder import HEADS, build_loss
from .atss_head import ATSSHead
from .fcos_head import FCOSHead

INF = 1e8


[docs]@HEADS.register_module() class VFNetHead(ATSSHead, FCOSHead): """Head of `VarifocalNet (VFNet): An IoU-aware Dense Object Detector.<https://arxiv.org/abs/2008.13367>`_. The VFNet predicts IoU-aware classification scores which mix the object presence confidence and object localization accuracy as the detection score. It is built on the FCOS architecture and uses ATSS for defining positive/negative training examples. The VFNet is trained with Varifocal Loss and empolys star-shaped deformable convolution to extract features for a bbox. Args: num_classes (int): Number of categories excluding the background category. in_channels (int): Number of channels in the input feature map. regress_ranges (tuple[tuple[int, int]]): Regress range of multiple level points. center_sampling (bool): If true, use center sampling. Default: False. center_sample_radius (float): Radius of center sampling. Default: 1.5. sync_num_pos (bool): If true, synchronize the number of positive examples across GPUs. Default: True gradient_mul (float): The multiplier to gradients from bbox refinement and recognition. Default: 0.1. bbox_norm_type (str): The bbox normalization type, 'reg_denom' or 'stride'. Default: reg_denom loss_cls_fl (dict): Config of focal loss. use_vfl (bool): If true, use varifocal loss for training. Default: True. loss_cls (dict): Config of varifocal loss. loss_bbox (dict): Config of localization loss, GIoU Loss. loss_bbox (dict): Config of localization refinement loss, GIoU Loss. norm_cfg (dict): dictionary to construct and config norm layer. Default: norm_cfg=dict(type='GN', num_groups=32, requires_grad=True). use_atss (bool): If true, use ATSS to define positive/negative examples. Default: True. anchor_generator (dict): Config of anchor generator for ATSS. init_cfg (dict or list[dict], optional): Initialization config dict. Example: >>> self = VFNetHead(11, 7) >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] >>> cls_score, bbox_pred, bbox_pred_refine= self.forward(feats) >>> assert len(cls_score) == len(self.scales) """ # noqa: E501 def __init__(self, num_classes, in_channels, regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512), (512, INF)), center_sampling=False, center_sample_radius=1.5, sync_num_pos=True, gradient_mul=0.1, bbox_norm_type='reg_denom', loss_cls_fl=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), use_vfl=True, loss_cls=dict( type='VarifocalLoss', use_sigmoid=True, alpha=0.75, gamma=2.0, iou_weighted=True, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.5), loss_bbox_refine=dict(type='GIoULoss', loss_weight=2.0), norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), use_atss=True, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, center_offset=0.0, strides=[8, 16, 32, 64, 128]), init_cfg=dict( type='Normal', layer='Conv2d', std=0.01, override=dict( type='Normal', name='vfnet_cls', std=0.01, bias_prob=0.01)), **kwargs): # dcn base offsets, adapted from reppoints_head.py self.num_dconv_points = 9 self.dcn_kernel = int(np.sqrt(self.num_dconv_points)) self.dcn_pad = int((self.dcn_kernel - 1) / 2) dcn_base = np.arange(-self.dcn_pad, self.dcn_pad + 1).astype(np.float64) dcn_base_y = np.repeat(dcn_base, self.dcn_kernel) dcn_base_x = np.tile(dcn_base, self.dcn_kernel) dcn_base_offset = np.stack([dcn_base_y, dcn_base_x], axis=1).reshape( (-1)) self.dcn_base_offset = torch.tensor(dcn_base_offset).view(1, -1, 1, 1) super(FCOSHead, self).__init__( num_classes, in_channels, norm_cfg=norm_cfg, init_cfg=init_cfg, **kwargs) self.regress_ranges = regress_ranges self.reg_denoms = [ regress_range[-1] for regress_range in regress_ranges ] self.reg_denoms[-1] = self.reg_denoms[-2] * 2 self.center_sampling = center_sampling self.center_sample_radius = center_sample_radius self.sync_num_pos = sync_num_pos self.bbox_norm_type = bbox_norm_type self.gradient_mul = gradient_mul self.use_vfl = use_vfl if self.use_vfl: self.loss_cls = build_loss(loss_cls) else: self.loss_cls = build_loss(loss_cls_fl) self.loss_bbox = build_loss(loss_bbox) self.loss_bbox_refine = build_loss(loss_bbox_refine) # for getting ATSS targets self.use_atss = use_atss self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) self.anchor_generator = build_anchor_generator(anchor_generator) self.anchor_center_offset = anchor_generator['center_offset'] self.num_anchors = self.anchor_generator.num_base_anchors[0] self.sampling = False if self.train_cfg: self.assigner = build_assigner(self.train_cfg.assigner) sampler_cfg = dict(type='PseudoSampler') self.sampler = build_sampler(sampler_cfg, context=self) def _init_layers(self): """Initialize layers of the head.""" super(FCOSHead, self)._init_cls_convs() super(FCOSHead, self)._init_reg_convs() self.relu = nn.ReLU(inplace=True) self.vfnet_reg_conv = ConvModule( self.feat_channels, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, bias=self.conv_bias) self.vfnet_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1) self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides]) self.vfnet_reg_refine_dconv = DeformConv2d( self.feat_channels, self.feat_channels, self.dcn_kernel, 1, padding=self.dcn_pad) self.vfnet_reg_refine = nn.Conv2d(self.feat_channels, 4, 3, padding=1) self.scales_refine = nn.ModuleList([Scale(1.0) for _ in self.strides]) self.vfnet_cls_dconv = DeformConv2d( self.feat_channels, self.feat_channels, self.dcn_kernel, 1, padding=self.dcn_pad) self.vfnet_cls = nn.Conv2d( self.feat_channels, self.cls_out_channels, 3, padding=1)
[docs] def forward(self, feats): """Forward features from the upstream network. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: cls_scores (list[Tensor]): Box iou-aware scores for each scale level, each is a 4D-tensor, the channel number is num_points * num_classes. bbox_preds (list[Tensor]): Box offsets for each scale level, each is a 4D-tensor, the channel number is num_points * 4. bbox_preds_refine (list[Tensor]): Refined Box offsets for each scale level, each is a 4D-tensor, the channel number is num_points * 4. """ return multi_apply(self.forward_single, feats, self.scales, self.scales_refine, self.strides, self.reg_denoms)
[docs] def forward_single(self, x, scale, scale_refine, stride, reg_denom): """Forward features of a single scale level. Args: x (Tensor): FPN feature maps of the specified stride. scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize the bbox prediction. scale_refine (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize the refined bbox prediction. stride (int): The corresponding stride for feature maps, used to normalize the bbox prediction when bbox_norm_type = 'stride'. reg_denom (int): The corresponding regression range for feature maps, only used to normalize the bbox prediction when bbox_norm_type = 'reg_denom'. Returns: tuple: iou-aware cls scores for each box, bbox predictions and refined bbox predictions of input feature maps. """ cls_feat = x reg_feat = x for cls_layer in self.cls_convs: cls_feat = cls_layer(cls_feat) for reg_layer in self.reg_convs: reg_feat = reg_layer(reg_feat) # predict the bbox_pred of different level reg_feat_init = self.vfnet_reg_conv(reg_feat) if self.bbox_norm_type == 'reg_denom': bbox_pred = scale( self.vfnet_reg(reg_feat_init)).float().exp() * reg_denom elif self.bbox_norm_type == 'stride': bbox_pred = scale( self.vfnet_reg(reg_feat_init)).float().exp() * stride else: raise NotImplementedError # compute star deformable convolution offsets # converting dcn_offset to reg_feat.dtype thus VFNet can be # trained with FP16 dcn_offset = self.star_dcn_offset(bbox_pred, self.gradient_mul, stride).to(reg_feat.dtype) # refine the bbox_pred reg_feat = self.relu(self.vfnet_reg_refine_dconv(reg_feat, dcn_offset)) bbox_pred_refine = scale_refine( self.vfnet_reg_refine(reg_feat)).float().exp() bbox_pred_refine = bbox_pred_refine * bbox_pred.detach() # predict the iou-aware cls score cls_feat = self.relu(self.vfnet_cls_dconv(cls_feat, dcn_offset)) cls_score = self.vfnet_cls(cls_feat) return cls_score, bbox_pred, bbox_pred_refine
[docs] def star_dcn_offset(self, bbox_pred, gradient_mul, stride): """Compute the star deformable conv offsets. Args: bbox_pred (Tensor): Predicted bbox distance offsets (l, r, t, b). gradient_mul (float): Gradient multiplier. stride (int): The corresponding stride for feature maps, used to project the bbox onto the feature map. Returns: dcn_offsets (Tensor): The offsets for deformable convolution. """ dcn_base_offset = self.dcn_base_offset.type_as(bbox_pred) bbox_pred_grad_mul = (1 - gradient_mul) * bbox_pred.detach() + \ gradient_mul * bbox_pred # map to the feature map scale bbox_pred_grad_mul = bbox_pred_grad_mul / stride N, C, H, W = bbox_pred.size() x1 = bbox_pred_grad_mul[:, 0, :, :] y1 = bbox_pred_grad_mul[:, 1, :, :] x2 = bbox_pred_grad_mul[:, 2, :, :] y2 = bbox_pred_grad_mul[:, 3, :, :] bbox_pred_grad_mul_offset = bbox_pred.new_zeros( N, 2 * self.num_dconv_points, H, W) bbox_pred_grad_mul_offset[:, 0, :, :] = -1.0 * y1 # -y1 bbox_pred_grad_mul_offset[:, 1, :, :] = -1.0 * x1 # -x1 bbox_pred_grad_mul_offset[:, 2, :, :] = -1.0 * y1 # -y1 bbox_pred_grad_mul_offset[:, 4, :, :] = -1.0 * y1 # -y1 bbox_pred_grad_mul_offset[:, 5, :, :] = x2 # x2 bbox_pred_grad_mul_offset[:, 7, :, :] = -1.0 * x1 # -x1 bbox_pred_grad_mul_offset[:, 11, :, :] = x2 # x2 bbox_pred_grad_mul_offset[:, 12, :, :] = y2 # y2 bbox_pred_grad_mul_offset[:, 13, :, :] = -1.0 * x1 # -x1 bbox_pred_grad_mul_offset[:, 14, :, :] = y2 # y2 bbox_pred_grad_mul_offset[:, 16, :, :] = y2 # y2 bbox_pred_grad_mul_offset[:, 17, :, :] = x2 # x2 dcn_offset = bbox_pred_grad_mul_offset - dcn_base_offset return dcn_offset
[docs] @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'bbox_preds_refine')) def loss(self, cls_scores, bbox_preds, bbox_preds_refine, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore=None): """Compute loss of the head. Args: cls_scores (list[Tensor]): Box iou-aware scores for each scale level, each is a 4D-tensor, the channel number is num_points * num_classes. bbox_preds (list[Tensor]): Box offsets for each scale level, each is a 4D-tensor, the channel number is num_points * 4. bbox_preds_refine (list[Tensor]): Refined Box offsets for each scale level, each is a 4D-tensor, the channel number is num_points * 4. gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. Default: None. Returns: dict[str, Tensor]: A dictionary of loss components. """ assert len(cls_scores) == len(bbox_preds) == len(bbox_preds_refine) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] all_level_points = self.get_points(featmap_sizes, bbox_preds[0].dtype, bbox_preds[0].device) labels, label_weights, bbox_targets, bbox_weights = self.get_targets( cls_scores, all_level_points, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) num_imgs = cls_scores[0].size(0) # flatten cls_scores, bbox_preds and bbox_preds_refine flatten_cls_scores = [ cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels).contiguous() for cls_score in cls_scores ] flatten_bbox_preds = [ bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4).contiguous() for bbox_pred in bbox_preds ] flatten_bbox_preds_refine = [ bbox_pred_refine.permute(0, 2, 3, 1).reshape(-1, 4).contiguous() for bbox_pred_refine in bbox_preds_refine ] flatten_cls_scores = torch.cat(flatten_cls_scores) flatten_bbox_preds = torch.cat(flatten_bbox_preds) flatten_bbox_preds_refine = torch.cat(flatten_bbox_preds_refine) flatten_labels = torch.cat(labels) flatten_bbox_targets = torch.cat(bbox_targets) # repeat points to align with bbox_preds flatten_points = torch.cat( [points.repeat(num_imgs, 1) for points in all_level_points]) # FG cat_id: [0, num_classes - 1], BG cat_id: num_classes bg_class_ind = self.num_classes pos_inds = torch.where( ((flatten_labels >= 0) & (flatten_labels < bg_class_ind)) > 0)[0] num_pos = len(pos_inds) pos_bbox_preds = flatten_bbox_preds[pos_inds] pos_bbox_preds_refine = flatten_bbox_preds_refine[pos_inds] pos_labels = flatten_labels[pos_inds] # sync num_pos across all gpus if self.sync_num_pos: num_pos_avg_per_gpu = reduce_mean( pos_inds.new_tensor(num_pos).float()).item() num_pos_avg_per_gpu = max(num_pos_avg_per_gpu, 1.0) else: num_pos_avg_per_gpu = num_pos pos_bbox_targets = flatten_bbox_targets[pos_inds] pos_points = flatten_points[pos_inds] pos_decoded_bbox_preds = distance2bbox(pos_points, pos_bbox_preds) pos_decoded_target_preds = distance2bbox(pos_points, pos_bbox_targets) iou_targets_ini = bbox_overlaps( pos_decoded_bbox_preds, pos_decoded_target_preds.detach(), is_aligned=True).clamp(min=1e-6) bbox_weights_ini = iou_targets_ini.clone().detach() bbox_avg_factor_ini = reduce_mean( bbox_weights_ini.sum()).clamp_(min=1).item() pos_decoded_bbox_preds_refine = \ distance2bbox(pos_points, pos_bbox_preds_refine) iou_targets_rf = bbox_overlaps( pos_decoded_bbox_preds_refine, pos_decoded_target_preds.detach(), is_aligned=True).clamp(min=1e-6) bbox_weights_rf = iou_targets_rf.clone().detach() bbox_avg_factor_rf = reduce_mean( bbox_weights_rf.sum()).clamp_(min=1).item() if num_pos > 0: loss_bbox = self.loss_bbox( pos_decoded_bbox_preds, pos_decoded_target_preds.detach(), weight=bbox_weights_ini, avg_factor=bbox_avg_factor_ini) loss_bbox_refine = self.loss_bbox_refine( pos_decoded_bbox_preds_refine, pos_decoded_target_preds.detach(), weight=bbox_weights_rf, avg_factor=bbox_avg_factor_rf) # build IoU-aware cls_score targets if self.use_vfl: pos_ious = iou_targets_rf.clone().detach() cls_iou_targets = torch.zeros_like(flatten_cls_scores) cls_iou_targets[pos_inds, pos_labels] = pos_ious else: loss_bbox = pos_bbox_preds.sum() * 0 loss_bbox_refine = pos_bbox_preds_refine.sum() * 0 if self.use_vfl: cls_iou_targets = torch.zeros_like(flatten_cls_scores) if self.use_vfl: loss_cls = self.loss_cls( flatten_cls_scores, cls_iou_targets, avg_factor=num_pos_avg_per_gpu) else: loss_cls = self.loss_cls( flatten_cls_scores, flatten_labels, weight=label_weights, avg_factor=num_pos_avg_per_gpu) return dict( loss_cls=loss_cls, loss_bbox=loss_bbox, loss_bbox_rf=loss_bbox_refine)
[docs] @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'bbox_preds_refine')) def get_bboxes(self, cls_scores, bbox_preds, bbox_preds_refine, img_metas, cfg=None, rescale=None, with_nms=True): """Transform network outputs for a batch into bbox predictions. Args: cls_scores (list[Tensor]): Box iou-aware scores for each scale level with shape (N, num_points * num_classes, H, W). bbox_preds (list[Tensor]): Box offsets for each scale level with shape (N, num_points * 4, H, W). bbox_preds_refine (list[Tensor]): Refined Box offsets for each scale level with shape (N, num_points * 4, H, W). img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. cfg (mmcv.Config): Test / postprocessing configuration, if None, test_cfg would be used. Default: None. rescale (bool): If True, return boxes in original image space. Default: False. with_nms (bool): If True, do nms before returning boxes. Default: True. Returns: list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. The first item is an (n, 5) tensor, where the first 4 columns are bounding box positions (tl_x, tl_y, br_x, br_y) and the 5-th column is a score between 0 and 1. The second item is a (n,) tensor where each item is the predicted class label of the corresponding box. """ assert len(cls_scores) == len(bbox_preds) == len(bbox_preds_refine) num_levels = len(cls_scores) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] mlvl_points = self.get_points(featmap_sizes, bbox_preds[0].dtype, bbox_preds[0].device) result_list = [] for img_id in range(len(img_metas)): cls_score_list = [ cls_scores[i][img_id].detach() for i in range(num_levels) ] bbox_pred_list = [ bbox_preds_refine[i][img_id].detach() for i in range(num_levels) ] img_shape = img_metas[img_id]['img_shape'] scale_factor = img_metas[img_id]['scale_factor'] det_bboxes = self._get_bboxes_single(cls_score_list, bbox_pred_list, mlvl_points, img_shape, scale_factor, cfg, rescale, with_nms) result_list.append(det_bboxes) return result_list
def _get_bboxes_single(self, cls_scores, bbox_preds, mlvl_points, img_shape, scale_factor, cfg, rescale=False, with_nms=True): """Transform outputs for a single batch item into bbox predictions. Args: cls_scores (list[Tensor]): Box iou-aware scores for a single scale level with shape (num_points * num_classes, H, W). bbox_preds (list[Tensor]): Box offsets for a single scale level with shape (num_points * 4, H, W). mlvl_points (list[Tensor]): Box reference for a single scale level with shape (num_total_points, 4). img_shape (tuple[int]): Shape of the input image, (height, width, 3). scale_factor (ndarray): Scale factor of the image arrange as (w_scale, h_scale, w_scale, h_scale). cfg (mmcv.Config | None): Test / postprocessing configuration, if None, test_cfg would be used. rescale (bool): If True, return boxes in original image space. Default: False. with_nms (bool): If True, do nms before returning boxes. Default: True. Returns: tuple(Tensor): det_bboxes (Tensor): BBox predictions in shape (n, 5), where the first 4 columns are bounding box positions (tl_x, tl_y, br_x, br_y) and the 5-th column is a score between 0 and 1. det_labels (Tensor): A (n,) tensor where each item is the predicted class label of the corresponding box. """ cfg = self.test_cfg if cfg is None else cfg assert len(cls_scores) == len(bbox_preds) == len(mlvl_points) mlvl_bboxes = [] mlvl_scores = [] for cls_score, bbox_pred, points in zip(cls_scores, bbox_preds, mlvl_points): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] scores = cls_score.permute(1, 2, 0).reshape( -1, self.cls_out_channels).contiguous().sigmoid() bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4).contiguous() nms_pre = cfg.get('nms_pre', -1) if 0 < nms_pre < scores.shape[0]: max_scores, _ = scores.max(dim=1) _, topk_inds = max_scores.topk(nms_pre) points = points[topk_inds, :] bbox_pred = bbox_pred[topk_inds, :] scores = scores[topk_inds, :] bboxes = distance2bbox(points, bbox_pred, max_shape=img_shape) mlvl_bboxes.append(bboxes) mlvl_scores.append(scores) mlvl_bboxes = torch.cat(mlvl_bboxes) if rescale: mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor) mlvl_scores = torch.cat(mlvl_scores) padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) # remind that we set FG labels to [0, num_class-1] since mmdet v2.0 # BG cat_id: num_class mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) if with_nms: det_bboxes, det_labels = multiclass_nms(mlvl_bboxes, mlvl_scores, cfg.score_thr, cfg.nms, cfg.max_per_img) return det_bboxes, det_labels else: return mlvl_bboxes, mlvl_scores def _get_points_single(self, featmap_size, stride, dtype, device, flatten=False): """Get points according to feature map sizes.""" h, w = featmap_size x_range = torch.arange( 0, w * stride, stride, dtype=dtype, device=device) y_range = torch.arange( 0, h * stride, stride, dtype=dtype, device=device) y, x = torch.meshgrid(y_range, x_range) # to be compatible with anchor points in ATSS if self.use_atss: points = torch.stack( (x.reshape(-1), y.reshape(-1)), dim=-1) + \ stride * self.anchor_center_offset else: points = torch.stack( (x.reshape(-1), y.reshape(-1)), dim=-1) + stride // 2 return points
[docs] def get_targets(self, cls_scores, mlvl_points, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore): """A wrapper for computing ATSS and FCOS targets for points in multiple images. Args: cls_scores (list[Tensor]): Box iou-aware scores for each scale level with shape (N, num_points * num_classes, H, W). mlvl_points (list[Tensor]): Points of each fpn level, each has shape (num_points, 2). gt_bboxes (list[Tensor]): Ground truth bboxes of each image, each has shape (num_gt, 4). gt_labels (list[Tensor]): Ground truth labels of each box, each has shape (num_gt,). img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (None | Tensor): Ground truth bboxes to be ignored, shape (num_ignored_gts, 4). Returns: tuple: labels_list (list[Tensor]): Labels of each level. label_weights (Tensor/None): Label weights of all levels. bbox_targets_list (list[Tensor]): Regression targets of each level, (l, t, r, b). bbox_weights (Tensor/None): Bbox weights of all levels. """ if self.use_atss: return self.get_atss_targets(cls_scores, mlvl_points, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) else: self.norm_on_bbox = False return self.get_fcos_targets(mlvl_points, gt_bboxes, gt_labels)
def _get_target_single(self, *args, **kwargs): """Avoid ambiguity in multiple inheritance.""" if self.use_atss: return ATSSHead._get_target_single(self, *args, **kwargs) else: return FCOSHead._get_target_single(self, *args, **kwargs)
[docs] def get_fcos_targets(self, points, gt_bboxes_list, gt_labels_list): """Compute FCOS regression and classification targets for points in multiple images. Args: points (list[Tensor]): Points of each fpn level, each has shape (num_points, 2). gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image, each has shape (num_gt, 4). gt_labels_list (list[Tensor]): Ground truth labels of each box, each has shape (num_gt,). Returns: tuple: labels (list[Tensor]): Labels of each level. label_weights: None, to be compatible with ATSS targets. bbox_targets (list[Tensor]): BBox targets of each level. bbox_weights: None, to be compatible with ATSS targets. """ labels, bbox_targets = FCOSHead.get_targets(self, points, gt_bboxes_list, gt_labels_list) label_weights = None bbox_weights = None return labels, label_weights, bbox_targets, bbox_weights
[docs] def get_atss_targets(self, cls_scores, mlvl_points, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore=None): """A wrapper for computing ATSS targets for points in multiple images. Args: cls_scores (list[Tensor]): Box iou-aware scores for each scale level with shape (N, num_points * num_classes, H, W). mlvl_points (list[Tensor]): Points of each fpn level, each has shape (num_points, 2). gt_bboxes (list[Tensor]): Ground truth bboxes of each image, each has shape (num_gt, 4). gt_labels (list[Tensor]): Ground truth labels of each box, each has shape (num_gt,). img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (None | Tensor): Ground truth bboxes to be ignored, shape (num_ignored_gts, 4). Default: None. Returns: tuple: labels_list (list[Tensor]): Labels of each level. label_weights (Tensor): Label weights of all levels. bbox_targets_list (list[Tensor]): Regression targets of each level, (l, t, r, b). bbox_weights (Tensor): Bbox weights of all levels. """ featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] assert len(featmap_sizes) == self.anchor_generator.num_levels device = cls_scores[0].device anchor_list, valid_flag_list = self.get_anchors( featmap_sizes, img_metas, device=device) label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 cls_reg_targets = ATSSHead.get_targets( self, anchor_list, valid_flag_list, gt_bboxes, img_metas, gt_bboxes_ignore_list=gt_bboxes_ignore, gt_labels_list=gt_labels, label_channels=label_channels, unmap_outputs=True) if cls_reg_targets is None: return None (anchor_list, labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos, num_total_neg) = cls_reg_targets bbox_targets_list = [ bbox_targets.reshape(-1, 4) for bbox_targets in bbox_targets_list ] num_imgs = len(img_metas) # transform bbox_targets (x1, y1, x2, y2) into (l, t, r, b) format bbox_targets_list = self.transform_bbox_targets( bbox_targets_list, mlvl_points, num_imgs) labels_list = [labels.reshape(-1) for labels in labels_list] label_weights_list = [ label_weights.reshape(-1) for label_weights in label_weights_list ] bbox_weights_list = [ bbox_weights.reshape(-1) for bbox_weights in bbox_weights_list ] label_weights = torch.cat(label_weights_list) bbox_weights = torch.cat(bbox_weights_list) return labels_list, label_weights, bbox_targets_list, bbox_weights
[docs] def transform_bbox_targets(self, decoded_bboxes, mlvl_points, num_imgs): """Transform bbox_targets (x1, y1, x2, y2) into (l, t, r, b) format. Args: decoded_bboxes (list[Tensor]): Regression targets of each level, in the form of (x1, y1, x2, y2). mlvl_points (list[Tensor]): Points of each fpn level, each has shape (num_points, 2). num_imgs (int): the number of images in a batch. Returns: bbox_targets (list[Tensor]): Regression targets of each level in the form of (l, t, r, b). """ # TODO: Re-implemented in Class PointCoder assert len(decoded_bboxes) == len(mlvl_points) num_levels = len(decoded_bboxes) mlvl_points = [points.repeat(num_imgs, 1) for points in mlvl_points] bbox_targets = [] for i in range(num_levels): bbox_target = bbox2distance(mlvl_points[i], decoded_bboxes[i]) bbox_targets.append(bbox_target) return bbox_targets
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): """Override the method in the parent class to avoid changing para's name.""" pass
Read the Docs v: v2.17.0
Versions
latest
stable
v2.17.0
v2.16.0
v2.15.1
v2.15.0
v2.14.0
v2.13.0
v2.12.0
v2.11.0
v2.10.0
v2.9.0
v2.8.0
v2.7.0
v2.6.0
v2.5.0
v2.4.0
v2.3.0
v2.2.1
v2.2.0
v2.1.0
v2.0.0
v1.2.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.