Shortcuts

Source code for mmdet.models.dense_heads.fsaf_head

# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
from mmcv.runner import force_fp32

from mmdet.core import (anchor_inside_flags, images_to_levels, multi_apply,
                        unmap)
from ..builder import HEADS
from ..losses.accuracy import accuracy
from ..losses.utils import weight_reduce_loss
from .retina_head import RetinaHead


[docs]@HEADS.register_module() class FSAFHead(RetinaHead): """Anchor-free head used in `FSAF <https://arxiv.org/abs/1903.00621>`_. The head contains two subnetworks. The first classifies anchor boxes and the second regresses deltas for the anchors (num_anchors is 1 for anchor- free methods) Args: *args: Same as its base class in :class:`RetinaHead` score_threshold (float, optional): The score_threshold to calculate positive recall. If given, prediction scores lower than this value is counted as incorrect prediction. Default to None. init_cfg (dict or list[dict], optional): Initialization config dict. Default: None **kwargs: Same as its base class in :class:`RetinaHead` Example: >>> import torch >>> self = FSAFHead(11, 7) >>> x = torch.rand(1, 7, 32, 32) >>> cls_score, bbox_pred = self.forward_single(x) >>> # Each anchor predicts a score for each class except background >>> cls_per_anchor = cls_score.shape[1] / self.num_anchors >>> box_per_anchor = bbox_pred.shape[1] / self.num_anchors >>> assert cls_per_anchor == self.num_classes >>> assert box_per_anchor == 4 """ def __init__(self, *args, score_threshold=None, init_cfg=None, **kwargs): # The positive bias in self.retina_reg conv is to prevent predicted \ # bbox with 0 area if init_cfg is None: init_cfg = dict( type='Normal', layer='Conv2d', std=0.01, override=[ dict( type='Normal', name='retina_cls', std=0.01, bias_prob=0.01), dict( type='Normal', name='retina_reg', std=0.01, bias=0.25) ]) super().__init__(*args, init_cfg=init_cfg, **kwargs) self.score_threshold = score_threshold
[docs] def forward_single(self, x): """Forward feature map of a single scale level. Args: x (Tensor): Feature map of a single scale level. Returns: tuple (Tensor): cls_score (Tensor): Box scores for each scale level Has shape (N, num_points * num_classes, H, W). bbox_pred (Tensor): Box energies / deltas for each scale level with shape (N, num_points * 4, H, W). """ cls_score, bbox_pred = super().forward_single(x) # relu: TBLR encoder only accepts positive bbox_pred return cls_score, self.relu(bbox_pred)
def _get_targets_single(self, flat_anchors, valid_flags, gt_bboxes, gt_bboxes_ignore, gt_labels, img_meta, label_channels=1, unmap_outputs=True): """Compute regression and classification targets for anchors in a single image. Most of the codes are the same with the base class :obj: `AnchorHead`, except that it also collects and returns the matched gt index in the image (from 0 to num_gt-1). If the anchor bbox is not matched to any gt, the corresponding value in pos_gt_inds is -1. """ inside_flags = anchor_inside_flags(flat_anchors, valid_flags, img_meta['img_shape'][:2], self.train_cfg.allowed_border) if not inside_flags.any(): return (None, ) * 7 # Assign gt and sample anchors anchors = flat_anchors[inside_flags.type(torch.bool), :] assign_result = self.assigner.assign( anchors, gt_bboxes, gt_bboxes_ignore, None if self.sampling else gt_labels) sampling_result = self.sampler.sample(assign_result, anchors, gt_bboxes) num_valid_anchors = anchors.shape[0] bbox_targets = torch.zeros_like(anchors) bbox_weights = torch.zeros_like(anchors) labels = anchors.new_full((num_valid_anchors, ), self.num_classes, dtype=torch.long) label_weights = anchors.new_zeros((num_valid_anchors, label_channels), dtype=torch.float) pos_gt_inds = anchors.new_full((num_valid_anchors, ), -1, dtype=torch.long) pos_inds = sampling_result.pos_inds neg_inds = sampling_result.neg_inds if len(pos_inds) > 0: if not self.reg_decoded_bbox: pos_bbox_targets = self.bbox_coder.encode( sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) else: # When the regression loss (e.g. `IouLoss`, `GIouLoss`) # is applied directly on the decoded bounding boxes, both # the predicted boxes and regression targets should be with # absolute coordinate format. pos_bbox_targets = sampling_result.pos_gt_bboxes bbox_targets[pos_inds, :] = pos_bbox_targets bbox_weights[pos_inds, :] = 1.0 # The assigned gt_index for each anchor. (0-based) pos_gt_inds[pos_inds] = sampling_result.pos_assigned_gt_inds if gt_labels is None: # Only rpn gives gt_labels as None # Foreground is the first class labels[pos_inds] = 0 else: labels[pos_inds] = gt_labels[ sampling_result.pos_assigned_gt_inds] if self.train_cfg.pos_weight <= 0: label_weights[pos_inds] = 1.0 else: label_weights[pos_inds] = self.train_cfg.pos_weight if len(neg_inds) > 0: label_weights[neg_inds] = 1.0 # shadowed_labels is a tensor composed of tuples # (anchor_inds, class_label) that indicate those anchors lying in the # outer region of a gt or overlapped by another gt with a smaller # area. # # Therefore, only the shadowed labels are ignored for loss calculation. # the key `shadowed_labels` is defined in :obj:`CenterRegionAssigner` shadowed_labels = assign_result.get_extra_property('shadowed_labels') if shadowed_labels is not None and shadowed_labels.numel(): if len(shadowed_labels.shape) == 2: idx_, label_ = shadowed_labels[:, 0], shadowed_labels[:, 1] assert (labels[idx_] != label_).all(), \ 'One label cannot be both positive and ignored' label_weights[idx_, label_] = 0 else: label_weights[shadowed_labels] = 0 # map up to original set of anchors if unmap_outputs: num_total_anchors = flat_anchors.size(0) labels = unmap(labels, num_total_anchors, inside_flags) label_weights = unmap(label_weights, num_total_anchors, inside_flags) bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) pos_gt_inds = unmap( pos_gt_inds, num_total_anchors, inside_flags, fill=-1) return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, neg_inds, sampling_result, pos_gt_inds)
[docs] @force_fp32(apply_to=('cls_scores', 'bbox_preds')) def loss(self, cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore=None): """Compute loss of the head. Args: cls_scores (list[Tensor]): Box scores for each scale level Has shape (N, num_points * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_points * 4, H, W). gt_bboxes (list[Tensor]): each item are the truth boxes for each image in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. Returns: dict[str, Tensor]: A dictionary of loss components. """ for i in range(len(bbox_preds)): # loop over fpn level # avoid 0 area of the predicted bbox bbox_preds[i] = bbox_preds[i].clamp(min=1e-4) # TODO: It may directly use the base-class loss function. featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] assert len(featmap_sizes) == self.prior_generator.num_levels batch_size = len(gt_bboxes) device = cls_scores[0].device anchor_list, valid_flag_list = self.get_anchors( featmap_sizes, img_metas, device=device) label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 cls_reg_targets = self.get_targets( anchor_list, valid_flag_list, gt_bboxes, img_metas, gt_bboxes_ignore_list=gt_bboxes_ignore, gt_labels_list=gt_labels, label_channels=label_channels) if cls_reg_targets is None: return None (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos, num_total_neg, pos_assigned_gt_inds_list) = cls_reg_targets num_gts = np.array(list(map(len, gt_labels))) num_total_samples = ( num_total_pos + num_total_neg if self.sampling else num_total_pos) # anchor number of multi levels num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] # concat all level anchors and flags to a single tensor concat_anchor_list = [] for i in range(len(anchor_list)): concat_anchor_list.append(torch.cat(anchor_list[i])) all_anchor_list = images_to_levels(concat_anchor_list, num_level_anchors) losses_cls, losses_bbox = multi_apply( self.loss_single, cls_scores, bbox_preds, all_anchor_list, labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_samples=num_total_samples) # `pos_assigned_gt_inds_list` (length: fpn_levels) stores the assigned # gt index of each anchor bbox in each fpn level. cum_num_gts = list(np.cumsum(num_gts)) # length of batch_size for i, assign in enumerate(pos_assigned_gt_inds_list): # loop over fpn levels for j in range(1, batch_size): # loop over batch size # Convert gt indices in each img to those in the batch assign[j][assign[j] >= 0] += int(cum_num_gts[j - 1]) pos_assigned_gt_inds_list[i] = assign.flatten() labels_list[i] = labels_list[i].flatten() num_gts = sum(map(len, gt_labels)) # total number of gt in the batch # The unique label index of each gt in the batch label_sequence = torch.arange(num_gts, device=device) # Collect the average loss of each gt in each level with torch.no_grad(): loss_levels, = multi_apply( self.collect_loss_level_single, losses_cls, losses_bbox, pos_assigned_gt_inds_list, labels_seq=label_sequence) # Shape: (fpn_levels, num_gts). Loss of each gt at each fpn level loss_levels = torch.stack(loss_levels, dim=0) # Locate the best fpn level for loss back-propagation if loss_levels.numel() == 0: # zero gt argmin = loss_levels.new_empty((num_gts, ), dtype=torch.long) else: _, argmin = loss_levels.min(dim=0) # Reweight the loss of each (anchor, label) pair, so that only those # at the best gt level are back-propagated. losses_cls, losses_bbox, pos_inds = multi_apply( self.reweight_loss_single, losses_cls, losses_bbox, pos_assigned_gt_inds_list, labels_list, list(range(len(losses_cls))), min_levels=argmin) num_pos = torch.cat(pos_inds, 0).sum().float() pos_recall = self.calculate_pos_recall(cls_scores, labels_list, pos_inds) if num_pos == 0: # No gt avg_factor = num_pos + float(num_total_neg) else: avg_factor = num_pos for i in range(len(losses_cls)): losses_cls[i] /= avg_factor losses_bbox[i] /= avg_factor return dict( loss_cls=losses_cls, loss_bbox=losses_bbox, num_pos=num_pos / batch_size, pos_recall=pos_recall)
[docs] def calculate_pos_recall(self, cls_scores, labels_list, pos_inds): """Calculate positive recall with score threshold. Args: cls_scores (list[Tensor]): Classification scores at all fpn levels. Each tensor is in shape (N, num_classes * num_anchors, H, W) labels_list (list[Tensor]): The label that each anchor is assigned to. Shape (N * H * W * num_anchors, ) pos_inds (list[Tensor]): List of bool tensors indicating whether the anchor is assigned to a positive label. Shape (N * H * W * num_anchors, ) Returns: Tensor: A single float number indicating the positive recall. """ with torch.no_grad(): num_class = self.num_classes scores = [ cls.permute(0, 2, 3, 1).reshape(-1, num_class)[pos] for cls, pos in zip(cls_scores, pos_inds) ] labels = [ label.reshape(-1)[pos] for label, pos in zip(labels_list, pos_inds) ] scores = torch.cat(scores, dim=0) labels = torch.cat(labels, dim=0) if self.use_sigmoid_cls: scores = scores.sigmoid() else: scores = scores.softmax(dim=1) return accuracy(scores, labels, thresh=self.score_threshold)
[docs] def collect_loss_level_single(self, cls_loss, reg_loss, assigned_gt_inds, labels_seq): """Get the average loss in each FPN level w.r.t. each gt label. Args: cls_loss (Tensor): Classification loss of each feature map pixel, shape (num_anchor, num_class) reg_loss (Tensor): Regression loss of each feature map pixel, shape (num_anchor, 4) assigned_gt_inds (Tensor): It indicates which gt the prior is assigned to (0-based, -1: no assignment). shape (num_anchor), labels_seq: The rank of labels. shape (num_gt) Returns: shape: (num_gt), average loss of each gt in this level """ if len(reg_loss.shape) == 2: # iou loss has shape (num_prior, 4) reg_loss = reg_loss.sum(dim=-1) # sum loss in tblr dims if len(cls_loss.shape) == 2: cls_loss = cls_loss.sum(dim=-1) # sum loss in class dims loss = cls_loss + reg_loss assert loss.size(0) == assigned_gt_inds.size(0) # Default loss value is 1e6 for a layer where no anchor is positive # to ensure it will not be chosen to back-propagate gradient losses_ = loss.new_full(labels_seq.shape, 1e6) for i, l in enumerate(labels_seq): match = assigned_gt_inds == l if match.any(): losses_[i] = loss[match].mean() return losses_,
[docs] def reweight_loss_single(self, cls_loss, reg_loss, assigned_gt_inds, labels, level, min_levels): """Reweight loss values at each level. Reassign loss values at each level by masking those where the pre-calculated loss is too large. Then return the reduced losses. Args: cls_loss (Tensor): Element-wise classification loss. Shape: (num_anchors, num_classes) reg_loss (Tensor): Element-wise regression loss. Shape: (num_anchors, 4) assigned_gt_inds (Tensor): The gt indices that each anchor bbox is assigned to. -1 denotes a negative anchor, otherwise it is the gt index (0-based). Shape: (num_anchors, ), labels (Tensor): Label assigned to anchors. Shape: (num_anchors, ). level (int): The current level index in the pyramid (0-4 for RetinaNet) min_levels (Tensor): The best-matching level for each gt. Shape: (num_gts, ), Returns: tuple: - cls_loss: Reduced corrected classification loss. Scalar. - reg_loss: Reduced corrected regression loss. Scalar. - pos_flags (Tensor): Corrected bool tensor indicating the final positive anchors. Shape: (num_anchors, ). """ loc_weight = torch.ones_like(reg_loss) cls_weight = torch.ones_like(cls_loss) pos_flags = assigned_gt_inds >= 0 # positive pixel flag pos_indices = torch.nonzero(pos_flags, as_tuple=False).flatten() if pos_flags.any(): # pos pixels exist pos_assigned_gt_inds = assigned_gt_inds[pos_flags] zeroing_indices = (min_levels[pos_assigned_gt_inds] != level) neg_indices = pos_indices[zeroing_indices] if neg_indices.numel(): pos_flags[neg_indices] = 0 loc_weight[neg_indices] = 0 # Only the weight corresponding to the label is # zeroed out if not selected zeroing_labels = labels[neg_indices] assert (zeroing_labels >= 0).all() cls_weight[neg_indices, zeroing_labels] = 0 # Weighted loss for both cls and reg loss cls_loss = weight_reduce_loss(cls_loss, cls_weight, reduction='sum') reg_loss = weight_reduce_loss(reg_loss, loc_weight, reduction='sum') return cls_loss, reg_loss, pos_flags
Read the Docs v: v2.18.1
Versions
latest
stable
v2.18.1
v2.18.0
v2.17.0
v2.16.0
v2.15.1
v2.15.0
v2.14.0
v2.13.0
v2.12.0
v2.11.0
v2.10.0
v2.9.0
v2.8.0
v2.7.0
v2.6.0
v2.5.0
v2.4.0
v2.3.0
v2.2.1
v2.2.0
v2.1.0
v2.0.0
v1.2.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.