Shortcuts

Source code for mmdet.models.dense_heads.yolof_head

# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn import (ConvModule, bias_init_with_prob, constant_init, is_norm,
                      normal_init)
from mmcv.runner import force_fp32

from mmdet.core import anchor_inside_flags, multi_apply, reduce_mean, unmap
from ..builder import HEADS
from .anchor_head import AnchorHead

INF = 1e8


def levels_to_images(mlvl_tensor):
    """Concat multi-level feature maps by image.

    [feature_level0, feature_level1...] -> [feature_image0, feature_image1...]
    Convert the shape of each element in mlvl_tensor from (N, C, H, W) to
    (N, H*W , C), then split the element to N elements with shape (H*W, C), and
    concat elements in same image of all level along first dimension.

    Args:
        mlvl_tensor (list[torch.Tensor]): list of Tensor which collect from
            corresponding level. Each element is of shape (N, C, H, W)

    Returns:
        list[torch.Tensor]: A list that contains N tensors and each tensor is
            of shape (num_elements, C)
    """
    batch_size = mlvl_tensor[0].size(0)
    batch_list = [[] for _ in range(batch_size)]
    channels = mlvl_tensor[0].size(1)
    for t in mlvl_tensor:
        t = t.permute(0, 2, 3, 1)
        t = t.view(batch_size, -1, channels).contiguous()
        for img in range(batch_size):
            batch_list[img].append(t[img])
    return [torch.cat(item, 0) for item in batch_list]


[docs]@HEADS.register_module() class YOLOFHead(AnchorHead): """YOLOFHead Paper link: https://arxiv.org/abs/2103.09460. Args: num_classes (int): The number of object classes (w/o background) in_channels (List[int]): The number of input channels per scale. cls_num_convs (int): The number of convolutions of cls branch. Default 2. reg_num_convs (int): The number of convolutions of reg branch. Default 4. norm_cfg (dict): Dictionary to construct and config norm layer. """ def __init__(self, num_classes, in_channels, num_cls_convs=2, num_reg_convs=4, norm_cfg=dict(type='BN', requires_grad=True), **kwargs): self.num_cls_convs = num_cls_convs self.num_reg_convs = num_reg_convs self.norm_cfg = norm_cfg super(YOLOFHead, self).__init__(num_classes, in_channels, **kwargs) def _init_layers(self): cls_subnet = [] bbox_subnet = [] for i in range(self.num_cls_convs): cls_subnet.append( ConvModule( self.in_channels, self.in_channels, kernel_size=3, padding=1, norm_cfg=self.norm_cfg)) for i in range(self.num_reg_convs): bbox_subnet.append( ConvModule( self.in_channels, self.in_channels, kernel_size=3, padding=1, norm_cfg=self.norm_cfg)) self.cls_subnet = nn.Sequential(*cls_subnet) self.bbox_subnet = nn.Sequential(*bbox_subnet) self.cls_score = nn.Conv2d( self.in_channels, self.num_base_priors * self.num_classes, kernel_size=3, stride=1, padding=1) self.bbox_pred = nn.Conv2d( self.in_channels, self.num_base_priors * 4, kernel_size=3, stride=1, padding=1) self.object_pred = nn.Conv2d( self.in_channels, self.num_base_priors, kernel_size=3, stride=1, padding=1)
[docs] def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): normal_init(m, mean=0, std=0.01) if is_norm(m): constant_init(m, 1) # Use prior in model initialization to improve stability bias_cls = bias_init_with_prob(0.01) torch.nn.init.constant_(self.cls_score.bias, bias_cls)
[docs] def forward_single(self, feature): cls_score = self.cls_score(self.cls_subnet(feature)) N, _, H, W = cls_score.shape cls_score = cls_score.view(N, -1, self.num_classes, H, W) reg_feat = self.bbox_subnet(feature) bbox_reg = self.bbox_pred(reg_feat) objectness = self.object_pred(reg_feat) # implicit objectness objectness = objectness.view(N, -1, 1, H, W) normalized_cls_score = cls_score + objectness - torch.log( 1. + torch.clamp(cls_score.exp(), max=INF) + torch.clamp(objectness.exp(), max=INF)) normalized_cls_score = normalized_cls_score.view(N, -1, H, W) return normalized_cls_score, bbox_reg
[docs] @force_fp32(apply_to=('cls_scores', 'bbox_preds')) def loss(self, cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore=None): """Compute losses of the head. Args: cls_scores (list[Tensor]): Box scores for each scale level Has shape (batch, num_anchors * num_classes, h, w) bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (batch, num_anchors * 4, h, w) gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. Default: None Returns: dict[str, Tensor]: A dictionary of loss components. """ assert len(cls_scores) == 1 assert self.prior_generator.num_levels == 1 device = cls_scores[0].device featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] anchor_list, valid_flag_list = self.get_anchors( featmap_sizes, img_metas, device=device) # The output level is always 1 anchor_list = [anchors[0] for anchors in anchor_list] valid_flag_list = [valid_flags[0] for valid_flags in valid_flag_list] cls_scores_list = levels_to_images(cls_scores) bbox_preds_list = levels_to_images(bbox_preds) label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 cls_reg_targets = self.get_targets( cls_scores_list, bbox_preds_list, anchor_list, valid_flag_list, gt_bboxes, img_metas, gt_bboxes_ignore_list=gt_bboxes_ignore, gt_labels_list=gt_labels, label_channels=label_channels) if cls_reg_targets is None: return None (batch_labels, batch_label_weights, num_total_pos, num_total_neg, batch_bbox_weights, batch_pos_predicted_boxes, batch_target_boxes) = cls_reg_targets flatten_labels = batch_labels.reshape(-1) batch_label_weights = batch_label_weights.reshape(-1) cls_score = cls_scores[0].permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) num_total_samples = (num_total_pos + num_total_neg) if self.sampling else num_total_pos num_total_samples = reduce_mean( cls_score.new_tensor(num_total_samples)).clamp_(1.0).item() # classification loss loss_cls = self.loss_cls( cls_score, flatten_labels, batch_label_weights, avg_factor=num_total_samples) # regression loss if batch_pos_predicted_boxes.shape[0] == 0: # no pos sample loss_bbox = batch_pos_predicted_boxes.sum() * 0 else: loss_bbox = self.loss_bbox( batch_pos_predicted_boxes, batch_target_boxes, batch_bbox_weights.float(), avg_factor=num_total_samples) return dict(loss_cls=loss_cls, loss_bbox=loss_bbox)
[docs] def get_targets(self, cls_scores_list, bbox_preds_list, anchor_list, valid_flag_list, gt_bboxes_list, img_metas, gt_bboxes_ignore_list=None, gt_labels_list=None, label_channels=1, unmap_outputs=True): """Compute regression and classification targets for anchors in multiple images. Args: cls_scores_list (list[Tensor]): Classification scores of each image. each is a 4D-tensor, the shape is (h * w, num_anchors * num_classes). bbox_preds_list (list[Tensor]): Bbox preds of each image. each is a 4D-tensor, the shape is (h * w, num_anchors * 4). anchor_list (list[Tensor]): Anchors of each image. Each element of is a tensor of shape (h * w * num_anchors, 4). valid_flag_list (list[Tensor]): Valid flags of each image. Each element of is a tensor of shape (h * w * num_anchors, ) gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. img_metas (list[dict]): Meta info of each image. gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be ignored. gt_labels_list (list[Tensor]): Ground truth labels of each box. label_channels (int): Channel of label. unmap_outputs (bool): Whether to map outputs back to the original set of anchors. Returns: tuple: Usually returns a tuple containing learning targets. - batch_labels (Tensor): Label of all images. Each element \ of is a tensor of shape (batch, h * w * num_anchors) - batch_label_weights (Tensor): Label weights of all images \ of is a tensor of shape (batch, h * w * num_anchors) - num_total_pos (int): Number of positive samples in all \ images. - num_total_neg (int): Number of negative samples in all \ images. additional_returns: This function enables user-defined returns from `self._get_targets_single`. These returns are currently refined to properties at each feature map (i.e. having HxW dimension). The results will be concatenated after the end """ num_imgs = len(img_metas) assert len(anchor_list) == len(valid_flag_list) == num_imgs # compute targets for each image if gt_bboxes_ignore_list is None: gt_bboxes_ignore_list = [None for _ in range(num_imgs)] if gt_labels_list is None: gt_labels_list = [None for _ in range(num_imgs)] results = multi_apply( self._get_targets_single, bbox_preds_list, anchor_list, valid_flag_list, gt_bboxes_list, gt_bboxes_ignore_list, gt_labels_list, img_metas, label_channels=label_channels, unmap_outputs=unmap_outputs) (all_labels, all_label_weights, pos_inds_list, neg_inds_list, sampling_results_list) = results[:5] rest_results = list(results[5:]) # user-added return values # no valid anchors if any([labels is None for labels in all_labels]): return None # sampled anchors of all images num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) batch_labels = torch.stack(all_labels, 0) batch_label_weights = torch.stack(all_label_weights, 0) res = (batch_labels, batch_label_weights, num_total_pos, num_total_neg) for i, rests in enumerate(rest_results): # user-added return values rest_results[i] = torch.cat(rests, 0) return res + tuple(rest_results)
def _get_targets_single(self, bbox_preds, flat_anchors, valid_flags, gt_bboxes, gt_bboxes_ignore, gt_labels, img_meta, label_channels=1, unmap_outputs=True): """Compute regression and classification targets for anchors in a single image. Args: bbox_preds (Tensor): Bbox prediction of the image, which shape is (h * w ,4) flat_anchors (Tensor): Anchors of the image, which shape is (h * w * num_anchors ,4) valid_flags (Tensor): Valid flags of the image, which shape is (h * w * num_anchors,). gt_bboxes (Tensor): Ground truth bboxes of the image, shape (num_gts, 4). gt_bboxes_ignore (Tensor): Ground truth bboxes to be ignored, shape (num_ignored_gts, 4). img_meta (dict): Meta info of the image. gt_labels (Tensor): Ground truth labels of each box, shape (num_gts,). label_channels (int): Channel of label. unmap_outputs (bool): Whether to map outputs back to the original set of anchors. Returns: tuple: labels (Tensor): Labels of image, which shape is (h * w * num_anchors, ). label_weights (Tensor): Label weights of image, which shape is (h * w * num_anchors, ). pos_inds (Tensor): Pos index of image. neg_inds (Tensor): Neg index of image. sampling_result (obj:`SamplingResult`): Sampling result. pos_bbox_weights (Tensor): The Weight of using to calculate the bbox branch loss, which shape is (num, ). pos_predicted_boxes (Tensor): boxes predicted value of using to calculate the bbox branch loss, which shape is (num, 4). pos_target_boxes (Tensor): boxes target value of using to calculate the bbox branch loss, which shape is (num, 4). """ inside_flags = anchor_inside_flags(flat_anchors, valid_flags, img_meta['img_shape'][:2], self.train_cfg.allowed_border) if not inside_flags.any(): return (None, ) * 8 # assign gt and sample anchors anchors = flat_anchors[inside_flags, :] bbox_preds = bbox_preds.reshape(-1, 4) bbox_preds = bbox_preds[inside_flags, :] # decoded bbox decoder_bbox_preds = self.bbox_coder.decode(anchors, bbox_preds) assign_result = self.assigner.assign( decoder_bbox_preds, anchors, gt_bboxes, gt_bboxes_ignore, None if self.sampling else gt_labels) pos_bbox_weights = assign_result.get_extra_property('pos_idx') pos_predicted_boxes = assign_result.get_extra_property( 'pos_predicted_boxes') pos_target_boxes = assign_result.get_extra_property('target_boxes') sampling_result = self.sampler.sample(assign_result, anchors, gt_bboxes) num_valid_anchors = anchors.shape[0] labels = anchors.new_full((num_valid_anchors, ), self.num_classes, dtype=torch.long) label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) pos_inds = sampling_result.pos_inds neg_inds = sampling_result.neg_inds if len(pos_inds) > 0: if gt_labels is None: # Only rpn gives gt_labels as None # Foreground is the first class since v2.5.0 labels[pos_inds] = 0 else: labels[pos_inds] = gt_labels[ sampling_result.pos_assigned_gt_inds] if self.train_cfg.pos_weight <= 0: label_weights[pos_inds] = 1.0 else: label_weights[pos_inds] = self.train_cfg.pos_weight if len(neg_inds) > 0: label_weights[neg_inds] = 1.0 # map up to original set of anchors if unmap_outputs: num_total_anchors = flat_anchors.size(0) labels = unmap( labels, num_total_anchors, inside_flags, fill=self.num_classes) # fill bg label label_weights = unmap(label_weights, num_total_anchors, inside_flags) return (labels, label_weights, pos_inds, neg_inds, sampling_result, pos_bbox_weights, pos_predicted_boxes, pos_target_boxes)
Read the Docs v: v2.18.1
Versions
latest
stable
v2.18.1
v2.18.0
v2.17.0
v2.16.0
v2.15.1
v2.15.0
v2.14.0
v2.13.0
v2.12.0
v2.11.0
v2.10.0
v2.9.0
v2.8.0
v2.7.0
v2.6.0
v2.5.0
v2.4.0
v2.3.0
v2.2.1
v2.2.0
v2.1.0
v2.0.0
v1.2.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.