Shortcuts

Source code for mmdet.models.dense_heads.yolo_head

# Copyright (c) OpenMMLab. All rights reserved.
# Copyright (c) 2019 Western Digital Corporation or its affiliates.

import warnings

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import (ConvModule, bias_init_with_prob, constant_init, is_norm,
                      normal_init)
from mmcv.runner import force_fp32

from mmdet.core import (build_assigner, build_bbox_coder,
                        build_prior_generator, build_sampler, images_to_levels,
                        multi_apply, multiclass_nms)
from ..builder import HEADS, build_loss
from .base_dense_head import BaseDenseHead
from .dense_test_mixins import BBoxTestMixin


[docs]@HEADS.register_module() class YOLOV3Head(BaseDenseHead, BBoxTestMixin): """YOLOV3Head Paper link: https://arxiv.org/abs/1804.02767. Args: num_classes (int): The number of object classes (w/o background) in_channels (List[int]): Number of input channels per scale. out_channels (List[int]): The number of output channels per scale before the final 1x1 layer. Default: (1024, 512, 256). anchor_generator (dict): Config dict for anchor generator bbox_coder (dict): Config of bounding box coder. featmap_strides (List[int]): The stride of each scale. Should be in descending order. Default: (32, 16, 8). one_hot_smoother (float): Set a non-zero value to enable label-smooth Default: 0. conv_cfg (dict): Config dict for convolution layer. Default: None. norm_cfg (dict): Dictionary to construct and config norm layer. Default: dict(type='BN', requires_grad=True) act_cfg (dict): Config dict for activation layer. Default: dict(type='LeakyReLU', negative_slope=0.1). loss_cls (dict): Config of classification loss. loss_conf (dict): Config of confidence loss. loss_xy (dict): Config of xy coordinate loss. loss_wh (dict): Config of wh coordinate loss. train_cfg (dict): Training config of YOLOV3 head. Default: None. test_cfg (dict): Testing config of YOLOV3 head. Default: None. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, num_classes, in_channels, out_channels=(1024, 512, 256), anchor_generator=dict( type='YOLOAnchorGenerator', base_sizes=[[(116, 90), (156, 198), (373, 326)], [(30, 61), (62, 45), (59, 119)], [(10, 13), (16, 30), (33, 23)]], strides=[32, 16, 8]), bbox_coder=dict(type='YOLOBBoxCoder'), featmap_strides=[32, 16, 8], one_hot_smoother=0., conv_cfg=None, norm_cfg=dict(type='BN', requires_grad=True), act_cfg=dict(type='LeakyReLU', negative_slope=0.1), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_conf=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_xy=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_wh=dict(type='MSELoss', loss_weight=1.0), train_cfg=None, test_cfg=None, init_cfg=dict( type='Normal', std=0.01, override=dict(name='convs_pred'))): super(YOLOV3Head, self).__init__(init_cfg) # Check params assert (len(in_channels) == len(out_channels) == len(featmap_strides)) self.num_classes = num_classes self.in_channels = in_channels self.out_channels = out_channels self.featmap_strides = featmap_strides self.train_cfg = train_cfg self.test_cfg = test_cfg if self.train_cfg: self.assigner = build_assigner(self.train_cfg.assigner) if hasattr(self.train_cfg, 'sampler'): sampler_cfg = self.train_cfg.sampler else: sampler_cfg = dict(type='PseudoSampler') self.sampler = build_sampler(sampler_cfg, context=self) self.fp16_enabled = False self.one_hot_smoother = one_hot_smoother self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg self.bbox_coder = build_bbox_coder(bbox_coder) self.prior_generator = build_prior_generator(anchor_generator) self.loss_cls = build_loss(loss_cls) self.loss_conf = build_loss(loss_conf) self.loss_xy = build_loss(loss_xy) self.loss_wh = build_loss(loss_wh) self.num_base_priors = self.prior_generator.num_base_priors[0] assert len( self.prior_generator.num_base_priors) == len(featmap_strides) self._init_layers() @property def anchor_generator(self): warnings.warn('DeprecationWarning: `anchor_generator` is deprecated, ' 'please use "prior_generator" instead') return self.prior_generator @property def num_anchors(self): """ Returns: int: Number of anchors on each point of feature map. """ warnings.warn('DeprecationWarning: `num_anchors` is deprecated, ' 'please use "num_base_priors" instead') return self.num_base_priors @property def num_levels(self): return len(self.featmap_strides) @property def num_attrib(self): """int: number of attributes in pred_map, bboxes (4) + objectness (1) + num_classes""" return 5 + self.num_classes def _init_layers(self): self.convs_bridge = nn.ModuleList() self.convs_pred = nn.ModuleList() for i in range(self.num_levels): conv_bridge = ConvModule( self.in_channels[i], self.out_channels[i], 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) conv_pred = nn.Conv2d(self.out_channels[i], self.num_base_priors * self.num_attrib, 1) self.convs_bridge.append(conv_bridge) self.convs_pred.append(conv_pred)
[docs] def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): normal_init(m, mean=0, std=0.01) if is_norm(m): constant_init(m, 1) # Use prior in model initialization to improve stability for conv_pred, stride in zip(self.convs_pred, self.featmap_strides): bias = conv_pred.bias.reshape(self.num_base_priors, -1) # init objectness with prior of 8 objects per feature map # refer to https://github.com/ultralytics/yolov3 nn.init.constant_(bias.data[:, 4], bias_init_with_prob(8 / (608 / stride)**2)) nn.init.constant_(bias.data[:, 5:], bias_init_with_prob(0.01))
[docs] def forward(self, feats): """Forward features from the upstream network. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple[Tensor]: A tuple of multi-level predication map, each is a 4D-tensor of shape (batch_size, 5+num_classes, height, width). """ assert len(feats) == self.num_levels pred_maps = [] for i in range(self.num_levels): x = feats[i] x = self.convs_bridge[i](x) pred_map = self.convs_pred[i](x) pred_maps.append(pred_map) return tuple(pred_maps),
[docs] @force_fp32(apply_to=('pred_maps', )) def get_bboxes(self, pred_maps, img_metas, cfg=None, rescale=False, with_nms=True): """Transform network output for a batch into bbox predictions. It has been accelerated since PR #5991. Args: pred_maps (list[Tensor]): Raw predictions for a batch of images. img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. cfg (mmcv.Config | None): Test / postprocessing configuration, if None, test_cfg would be used. Default: None. rescale (bool): If True, return boxes in original image space. Default: False. with_nms (bool): If True, do nms before return boxes. Default: True. Returns: list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. The first item is an (n, 5) tensor, where 5 represent (tl_x, tl_y, br_x, br_y, score) and the score between 0 and 1. The shape of the second tensor in the tuple is (n,), and each element represents the class label of the corresponding box. """ assert len(pred_maps) == self.num_levels cfg = self.test_cfg if cfg is None else cfg scale_factors = [img_meta['scale_factor'] for img_meta in img_metas] num_imgs = len(img_metas) featmap_sizes = [pred_map.shape[-2:] for pred_map in pred_maps] mlvl_anchors = self.prior_generator.grid_priors( featmap_sizes, device=pred_maps[0].device) flatten_preds = [] flatten_strides = [] for pred, stride in zip(pred_maps, self.featmap_strides): pred = pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, self.num_attrib) pred[..., :2].sigmoid_() flatten_preds.append(pred) flatten_strides.append( pred.new_tensor(stride).expand(pred.size(1))) flatten_preds = torch.cat(flatten_preds, dim=1) flatten_bbox_preds = flatten_preds[..., :4] flatten_objectness = flatten_preds[..., 4].sigmoid() flatten_cls_scores = flatten_preds[..., 5:].sigmoid() flatten_anchors = torch.cat(mlvl_anchors) flatten_strides = torch.cat(flatten_strides) flatten_bboxes = self.bbox_coder.decode(flatten_anchors, flatten_bbox_preds, flatten_strides.unsqueeze(-1)) if with_nms and (flatten_objectness.size(0) == 0): return torch.zeros((0, 5)), torch.zeros((0, )) if rescale: flatten_bboxes /= flatten_bboxes.new_tensor( scale_factors).unsqueeze(1) padding = flatten_bboxes.new_zeros(num_imgs, flatten_bboxes.shape[1], 1) flatten_cls_scores = torch.cat([flatten_cls_scores, padding], dim=-1) det_results = [] for (bboxes, scores, objectness) in zip(flatten_bboxes, flatten_cls_scores, flatten_objectness): # Filtering out all predictions with conf < conf_thr conf_thr = cfg.get('conf_thr', -1) if conf_thr > 0: conf_inds = objectness >= conf_thr bboxes = bboxes[conf_inds, :] scores = scores[conf_inds, :] objectness = objectness[conf_inds] det_bboxes, det_labels = multiclass_nms( bboxes, scores, cfg.score_thr, cfg.nms, cfg.max_per_img, score_factors=objectness) det_results.append(tuple([det_bboxes, det_labels])) return det_results
[docs] @force_fp32(apply_to=('pred_maps', )) def loss(self, pred_maps, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore=None): """Compute loss of the head. Args: pred_maps (list[Tensor]): Prediction map for each scale level, shape (N, num_anchors * num_attrib, H, W) gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. Returns: dict[str, Tensor]: A dictionary of loss components. """ num_imgs = len(img_metas) device = pred_maps[0][0].device featmap_sizes = [ pred_maps[i].shape[-2:] for i in range(self.num_levels) ] mlvl_anchors = self.prior_generator.grid_priors( featmap_sizes, device=device) anchor_list = [mlvl_anchors for _ in range(num_imgs)] responsible_flag_list = [] for img_id in range(len(img_metas)): responsible_flag_list.append( self.prior_generator.responsible_flags(featmap_sizes, gt_bboxes[img_id], device)) target_maps_list, neg_maps_list = self.get_targets( anchor_list, responsible_flag_list, gt_bboxes, gt_labels) losses_cls, losses_conf, losses_xy, losses_wh = multi_apply( self.loss_single, pred_maps, target_maps_list, neg_maps_list) return dict( loss_cls=losses_cls, loss_conf=losses_conf, loss_xy=losses_xy, loss_wh=losses_wh)
[docs] def loss_single(self, pred_map, target_map, neg_map): """Compute loss of a single image from a batch. Args: pred_map (Tensor): Raw predictions for a single level. target_map (Tensor): The Ground-Truth target for a single level. neg_map (Tensor): The negative masks for a single level. Returns: tuple: loss_cls (Tensor): Classification loss. loss_conf (Tensor): Confidence loss. loss_xy (Tensor): Regression loss of x, y coordinate. loss_wh (Tensor): Regression loss of w, h coordinate. """ num_imgs = len(pred_map) pred_map = pred_map.permute(0, 2, 3, 1).reshape(num_imgs, -1, self.num_attrib) neg_mask = neg_map.float() pos_mask = target_map[..., 4] pos_and_neg_mask = neg_mask + pos_mask pos_mask = pos_mask.unsqueeze(dim=-1) if torch.max(pos_and_neg_mask) > 1.: warnings.warn('There is overlap between pos and neg sample.') pos_and_neg_mask = pos_and_neg_mask.clamp(min=0., max=1.) pred_xy = pred_map[..., :2] pred_wh = pred_map[..., 2:4] pred_conf = pred_map[..., 4] pred_label = pred_map[..., 5:] target_xy = target_map[..., :2] target_wh = target_map[..., 2:4] target_conf = target_map[..., 4] target_label = target_map[..., 5:] loss_cls = self.loss_cls(pred_label, target_label, weight=pos_mask) loss_conf = self.loss_conf( pred_conf, target_conf, weight=pos_and_neg_mask) loss_xy = self.loss_xy(pred_xy, target_xy, weight=pos_mask) loss_wh = self.loss_wh(pred_wh, target_wh, weight=pos_mask) return loss_cls, loss_conf, loss_xy, loss_wh
[docs] def get_targets(self, anchor_list, responsible_flag_list, gt_bboxes_list, gt_labels_list): """Compute target maps for anchors in multiple images. Args: anchor_list (list[list[Tensor]]): Multi level anchors of each image. The outer list indicates images, and the inner list corresponds to feature levels of the image. Each element of the inner list is a tensor of shape (num_total_anchors, 4). responsible_flag_list (list[list[Tensor]]): Multi level responsible flags of each image. Each element is a tensor of shape (num_total_anchors, ) gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. gt_labels_list (list[Tensor]): Ground truth labels of each box. Returns: tuple: Usually returns a tuple containing learning targets. - target_map_list (list[Tensor]): Target map of each level. - neg_map_list (list[Tensor]): Negative map of each level. """ num_imgs = len(anchor_list) # anchor number of multi levels num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] results = multi_apply(self._get_targets_single, anchor_list, responsible_flag_list, gt_bboxes_list, gt_labels_list) all_target_maps, all_neg_maps = results assert num_imgs == len(all_target_maps) == len(all_neg_maps) target_maps_list = images_to_levels(all_target_maps, num_level_anchors) neg_maps_list = images_to_levels(all_neg_maps, num_level_anchors) return target_maps_list, neg_maps_list
def _get_targets_single(self, anchors, responsible_flags, gt_bboxes, gt_labels): """Generate matching bounding box prior and converted GT. Args: anchors (list[Tensor]): Multi-level anchors of the image. responsible_flags (list[Tensor]): Multi-level responsible flags of anchors gt_bboxes (Tensor): Ground truth bboxes of single image. gt_labels (Tensor): Ground truth labels of single image. Returns: tuple: target_map (Tensor): Predication target map of each scale level, shape (num_total_anchors, 5+num_classes) neg_map (Tensor): Negative map of each scale level, shape (num_total_anchors,) """ anchor_strides = [] for i in range(len(anchors)): anchor_strides.append( torch.tensor(self.featmap_strides[i], device=gt_bboxes.device).repeat(len(anchors[i]))) concat_anchors = torch.cat(anchors) concat_responsible_flags = torch.cat(responsible_flags) anchor_strides = torch.cat(anchor_strides) assert len(anchor_strides) == len(concat_anchors) == \ len(concat_responsible_flags) assign_result = self.assigner.assign(concat_anchors, concat_responsible_flags, gt_bboxes) sampling_result = self.sampler.sample(assign_result, concat_anchors, gt_bboxes) target_map = concat_anchors.new_zeros( concat_anchors.size(0), self.num_attrib) target_map[sampling_result.pos_inds, :4] = self.bbox_coder.encode( sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes, anchor_strides[sampling_result.pos_inds]) target_map[sampling_result.pos_inds, 4] = 1 gt_labels_one_hot = F.one_hot( gt_labels, num_classes=self.num_classes).float() if self.one_hot_smoother != 0: # label smooth gt_labels_one_hot = gt_labels_one_hot * ( 1 - self.one_hot_smoother ) + self.one_hot_smoother / self.num_classes target_map[sampling_result.pos_inds, 5:] = gt_labels_one_hot[ sampling_result.pos_assigned_gt_inds] neg_map = concat_anchors.new_zeros( concat_anchors.size(0), dtype=torch.uint8) neg_map[sampling_result.neg_inds] = 1 return target_map, neg_map
[docs] def aug_test(self, feats, img_metas, rescale=False): """Test function with test time augmentation. Args: feats (list[Tensor]): the outer list indicates test-time augmentations and inner Tensor should have a shape NxCxHxW, which contains features for all images in the batch. img_metas (list[list[dict]]): the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. each dict has image information. rescale (bool, optional): Whether to rescale the results. Defaults to False. Returns: list[ndarray]: bbox results of each class """ return self.aug_test_bboxes(feats, img_metas, rescale=rescale)
[docs] @force_fp32(apply_to=('pred_maps')) def onnx_export(self, pred_maps, img_metas, with_nms=True): num_levels = len(pred_maps) pred_maps_list = [pred_maps[i].detach() for i in range(num_levels)] cfg = self.test_cfg assert len(pred_maps_list) == self.num_levels device = pred_maps_list[0].device batch_size = pred_maps_list[0].shape[0] featmap_sizes = [ pred_maps_list[i].shape[-2:] for i in range(self.num_levels) ] mlvl_anchors = self.prior_generator.grid_priors( featmap_sizes, device=device) # convert to tensor to keep tracing nms_pre_tensor = torch.tensor( cfg.get('nms_pre', -1), device=device, dtype=torch.long) multi_lvl_bboxes = [] multi_lvl_cls_scores = [] multi_lvl_conf_scores = [] for i in range(self.num_levels): # get some key info for current scale pred_map = pred_maps_list[i] stride = self.featmap_strides[i] # (b,h, w, num_anchors*num_attrib) -> # (b,h*w*num_anchors, num_attrib) pred_map = pred_map.permute(0, 2, 3, 1).reshape(batch_size, -1, self.num_attrib) # Inplace operation like # ```pred_map[..., :2] = \torch.sigmoid(pred_map[..., :2])``` # would create constant tensor when exporting to onnx pred_map_conf = torch.sigmoid(pred_map[..., :2]) pred_map_rest = pred_map[..., 2:] pred_map = torch.cat([pred_map_conf, pred_map_rest], dim=-1) pred_map_boxes = pred_map[..., :4] multi_lvl_anchor = mlvl_anchors[i] multi_lvl_anchor = multi_lvl_anchor.expand_as(pred_map_boxes) bbox_pred = self.bbox_coder.decode(multi_lvl_anchor, pred_map_boxes, stride) # conf and cls conf_pred = torch.sigmoid(pred_map[..., 4]) cls_pred = torch.sigmoid(pred_map[..., 5:]).view( batch_size, -1, self.num_classes) # Cls pred one-hot. # Get top-k prediction from mmdet.core.export import get_k_for_topk nms_pre = get_k_for_topk(nms_pre_tensor, bbox_pred.shape[1]) if nms_pre > 0: _, topk_inds = conf_pred.topk(nms_pre) batch_inds = torch.arange(batch_size).view( -1, 1).expand_as(topk_inds).long() # Avoid onnx2tensorrt issue in https://github.com/NVIDIA/TensorRT/issues/1134 # noqa: E501 transformed_inds = ( bbox_pred.shape[1] * batch_inds + topk_inds) bbox_pred = bbox_pred.reshape(-1, 4)[transformed_inds, :].reshape( batch_size, -1, 4) cls_pred = cls_pred.reshape( -1, self.num_classes)[transformed_inds, :].reshape( batch_size, -1, self.num_classes) conf_pred = conf_pred.reshape(-1, 1)[transformed_inds].reshape( batch_size, -1) # Save the result of current scale multi_lvl_bboxes.append(bbox_pred) multi_lvl_cls_scores.append(cls_pred) multi_lvl_conf_scores.append(conf_pred) # Merge the results of different scales together batch_mlvl_bboxes = torch.cat(multi_lvl_bboxes, dim=1) batch_mlvl_scores = torch.cat(multi_lvl_cls_scores, dim=1) batch_mlvl_conf_scores = torch.cat(multi_lvl_conf_scores, dim=1) # Replace multiclass_nms with ONNX::NonMaxSuppression in deployment from mmdet.core.export import add_dummy_nms_for_onnx conf_thr = cfg.get('conf_thr', -1) score_thr = cfg.get('score_thr', -1) # follow original pipeline of YOLOv3 if conf_thr > 0: mask = (batch_mlvl_conf_scores >= conf_thr).float() batch_mlvl_conf_scores *= mask if score_thr > 0: mask = (batch_mlvl_scores > score_thr).float() batch_mlvl_scores *= mask batch_mlvl_conf_scores = batch_mlvl_conf_scores.unsqueeze(2).expand_as( batch_mlvl_scores) batch_mlvl_scores = batch_mlvl_scores * batch_mlvl_conf_scores if with_nms: max_output_boxes_per_class = cfg.nms.get( 'max_output_boxes_per_class', 200) iou_threshold = cfg.nms.get('iou_threshold', 0.5) # keep aligned with original pipeline, improve # mAP by 1% for YOLOv3 in ONNX score_threshold = 0 nms_pre = cfg.get('deploy_nms_pre', -1) return add_dummy_nms_for_onnx( batch_mlvl_bboxes, batch_mlvl_scores, max_output_boxes_per_class, iou_threshold, score_threshold, nms_pre, cfg.max_per_img, ) else: return batch_mlvl_bboxes, batch_mlvl_scores
Read the Docs v: v2.19.1
Versions
latest
stable
v2.19.1
v2.19.0
v2.18.1
v2.18.0
v2.17.0
v2.16.0
v2.15.1
v2.15.0
v2.14.0
v2.13.0
v2.12.0
v2.11.0
v2.10.0
v2.9.0
v2.8.0
v2.7.0
v2.6.0
v2.5.0
v2.4.0
v2.3.0
v2.2.1
v2.2.0
v2.1.0
v2.0.0
v1.2.0
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.