Dataset Prepare¶
Basic Detection Dataset Preparation¶
MMDetection supports multiple public datasets including COCO, Pascal VOC, CityScapes, and more.
Public datasets like Pascal VOC or mirror and COCO are available from official websites or mirrors. Note: In the detection task, Pascal VOC 2012 is an extension of Pascal VOC 2007 without overlap, and we usually use them together.
It is recommended to download and extract the dataset somewhere outside the project directory and symlink the dataset root to $MMDETECTION/data
as below.
If your folder structure is different, you may need to change the corresponding paths in config files.
We provide a script to download datasets such as COCO, you can run python tools/misc/download_dataset.py --dataset-name coco2017
to download COCO dataset.
For users in China, more datasets can be downloaded from the opensource dataset platform: OpenDataLab.
For more usage please refer to dataset-download
mmdetection
├── mmdet
├── tools
├── configs
├── data
│ ├── coco
│ │ ├── annotations
│ │ ├── train2017
│ │ ├── val2017
│ │ ├── test2017
│ ├── cityscapes
│ │ ├── annotations
│ │ ├── leftImg8bit
│ │ │ ├── train
│ │ │ ├── val
│ │ ├── gtFine
│ │ │ ├── train
│ │ │ ├── val
│ ├── VOCdevkit
│ │ ├── VOC2007
│ │ ├── VOC2012
Some models require additional COCO-stuff datasets, such as HTC, DetectoRS and SCNet, you can download, unzip, and then move them to the coco folder. The directory should be like this.
mmdetection
├── data
│ ├── coco
│ │ ├── annotations
│ │ ├── train2017
│ │ ├── val2017
│ │ ├── test2017
│ │ ├── stuffthingmaps
Panoptic segmentation models like PanopticFPN require additional COCO Panoptic datasets, you can download, unzip, and then move them to the coco annotation folder. The directory should be like this.
mmdetection
├── data
│ ├── coco
│ │ ├── annotations
│ │ │ ├── panoptic_train2017.json
│ │ │ ├── panoptic_train2017
│ │ │ ├── panoptic_val2017.json
│ │ │ ├── panoptic_val2017
│ │ ├── train2017
│ │ ├── val2017
│ │ ├── test2017
The cityscapes annotations need to be converted into the coco format using tools/dataset_converters/cityscapes.py
:
pip install cityscapesscripts
python tools/dataset_converters/cityscapes.py \
./data/cityscapes \
--nproc 8 \
--out-dir ./data/cityscapes/annotations
COCO Semantic Dataset Preparation¶
There are two types of annotations for COCO semantic segmentation, which differ mainly in the definition of category names, so there are two ways to handle them. The first is to directly use the stuffthingmaps dataset, and the second is to use the panoptic dataset.
(1) Use stuffthingmaps dataset
The download link for this dataset is stuffthingmaps_trainval2017. Please download and extract it to the data/coco
folder.
mmdetection
├── data
│ ├── coco
│ │ ├── annotations
│ │ ├── train2017
│ │ ├── val2017
│ │ ├── test2017
│ │ ├── stuffthingmaps
This dataset is different from the standard COCO category annotation in that it includes 172 classes: 80 “thing” classes, 91 “stuff” classes, and 1 “unlabeled” class. The description of each class can be found at https://github.com/nightrome/cocostuff/blob/master/labels.md.
Although only 172 categories are annotated, the maximum label ID in stuffthingmaps
is 182, and some categories in the middle are not annotated. In addition, the “unlabeled” category of class 0 is removed. Therefore, the relationship between the value at each position in the final stuffthingmaps
image can be found at https://github.com/kazuto1011/deeplab-pytorch/blob/master/data/datasets/cocostuff/labels.txt.
To train efficiently and conveniently for users, we need to remove 12 unannotated classes before starting training or evaluation. The names of these 12 classes are: street sign, hat, shoe, eye glasses, plate, mirror, window, desk, door, blender, hair brush
. The category information that can be used for training and evaluation can be found in mmdet/datasets/coco_semantic.py
.
You can use tools/dataset_converters/coco_stuff164k.py
to convert the downloaded stuffthingmaps
to a dataset that can be directly used for training and evaluation. The directory structure of the converted dataset is as follows:
mmdetection
├── data
│ ├── coco
│ │ ├── annotations
│ │ ├── train2017
│ │ ├── val2017
│ │ ├── test2017
│ │ ├── stuffthingmaps
│ │ ├── stuffthingmaps_semseg
stuffthingmaps_semseg
is the newly generated COCO semantic segmentation dataset that can be directly used for training and testing.
(2) use panoptic dataset
The number of categories in the semantic segmentation dataset generated through panoptic annotation will be less than that generated using the stuffthingmaps
dataset. First, you need to prepare the panoptic segmentation annotations, and then use the following script to complete the conversion.
python tools/dataset_converters/prepare_coco_semantic_annos_from_panoptic_annos.py data/coco
The directory structure of the converted dataset is as follows:
mmdetection
├── data
│ ├── coco
│ │ ├── annotations
│ │ │ ├── panoptic_train2017.json
│ │ │ ├── panoptic_train2017
│ │ │ ├── panoptic_val2017.json
│ │ │ ├── panoptic_val2017
│ │ │ ├── panoptic_semseg_train2017
│ │ │ ├── panoptic_semseg_val2017
│ │ ├── train2017
│ │ ├── val2017
│ │ ├── test2017
panoptic_semseg_train2017
and panoptic_semseg_val2017
are the newly generated COCO semantic segmentation datasets that can be directly used for training and testing. Note that their category information is the same as that of COCO panoptic segmentation, including both “thing” and “stuff” categories.
RefCOCO Dataset Preparation¶
The images and annotations of RefCOCO series datasets can be download by running tools/misc/download_dataset.py
:
python tools/misc/download_dataset.py --dataset-name refcoco --save-dir data/coco --unzip
Then the directory should be like this:
data
├── coco
│ ├── refcoco
│ │ ├── instances.json
│ │ ├── refs(google).p
│ │ └── refs(unc).p
│ ├── refcoco+
│ │ ├── instances.json
│ │ └── refs(unc).p
│ ├── refcocog
│ │ ├── instances.json
│ │ ├── refs(google).p
│ │ └── refs(umd).p
│ │── train2014
ADE20K 2016 Dataset Preparation¶
The images and annotations of ADE20K dataset can be download by running tools/misc/download_dataset.py
:
python tools/misc/download_dataset.py --dataset-name ade20k_2016 --save-dir data --unzip
Then move the annotations to the data/ADEChallengeData2016
directory and run the preprocess script to produce the coco format annotations:
mv data/annotations_instance data/ADEChallengeData2016/
mv data/categoryMapping.txt data/ADEChallengeData2016/
mv data/imgCatIds.json data/ADEChallengeData2016/
python tools/dataset_converters/ade20k2coco.py data/ADEChallengeData2016 --task panoptic
python tools/dataset_converters/ade20k2coco.py data/ADEChallengeData2016 --task instance
The directory should be like this.
data
├── ADEChallengeData2016
│ ├── ade20k_instance_train.json
│ ├── ade20k_instance_val.json
│ ├── ade20k_panoptic_train
│ │ ├── ADE_train_00000001.png
│ │ ├── ADE_train_00000002.png
│ │ ├── ...
│ ├── ade20k_panoptic_train.json
│ ├── ade20k_panoptic_val
│ │ ├── ADE_val_00000001.png
│ │ ├── ADE_val_00000002.png
│ │ ├── ...
│ ├── ade20k_panoptic_val.json
│ ├── annotations
│ │ ├── training
│ │ │ ├── ADE_train_00000001.png
│ │ │ ├── ADE_train_00000002.png
│ │ │ ├── ...
│ │ ├── validation
│ │ │ ├── ADE_val_00000001.png
│ │ │ ├── ADE_val_00000002.png
│ │ │ ├── ...
│ ├── annotations_instance
│ │ ├── training
│ │ │ ├── ADE_train_00000001.png
│ │ │ ├── ADE_train_00000002.png
│ │ │ ├── ...
│ │ ├── validation
│ │ │ ├── ADE_val_00000001.png
│ │ │ ├── ADE_val_00000002.png
│ │ │ ├── ...
│ ├── categoryMapping.txt
│ ├── images
│ │ ├── training
│ │ │ ├── ADE_train_00000001.jpg
│ │ │ ├── ADE_train_00000002.jpg
│ │ │ ├── ...
│ │ ├── validation
│ │ │ ├── ADE_val_00000001.jpg
│ │ │ ├── ADE_val_00000002.jpg
│ │ │ ├── ...
│ ├── imgCatIds.json
│ ├── objectInfo150.txt
│ │── sceneCategories.txt
The above folders include all data of ADE20K’s semantic segmentation, instance segmentation, and panoptic segmentation.
Download from OpenDataLab¶
By using OpenDataLab, researchers can obtain free formatted datasets in various fields. Through the search function of the platform, researchers may address the dataset they look for quickly and easily. Using the formatted datasets from the platform, researchers can efficiently conduct tasks across datasets.
Currently, MIM supports downloading VOC and COCO datasets from OpenDataLab with one command line. More datasets will be supported in the future. You can also directly download the datasets you need from the OpenDataLab platform and then convert them to the format required by MMDetection.
If you use MIM to download, make sure that the version is greater than v0.3.8. You can use the following command to update:
pip install -U openmim
# install OpenXLab CLI tools
pip install -U openxlab
# log in OpenXLab, registry
openxlab login
# download voc2007 and preprocess by MIM
mim download mmdet --dataset voc2007
# download voc2012 and preprocess by MIM
mim download mmdet --dataset voc2012
# download coco2017 and preprocess by MIM
mim download mmdet --dataset coco2017