Shortcuts

mmdet.core.bbox.samplers.pseudo_sampler 源代码

# Copyright (c) OpenMMLab. All rights reserved.
import torch

from ..builder import BBOX_SAMPLERS
from .base_sampler import BaseSampler
from .sampling_result import SamplingResult


[文档]@BBOX_SAMPLERS.register_module() class PseudoSampler(BaseSampler): """A pseudo sampler that does not do sampling actually.""" def __init__(self, **kwargs): pass def _sample_pos(self, **kwargs): """Sample positive samples.""" raise NotImplementedError def _sample_neg(self, **kwargs): """Sample negative samples.""" raise NotImplementedError
[文档] def sample(self, assign_result, bboxes, gt_bboxes, *args, **kwargs): """Directly returns the positive and negative indices of samples. Args: assign_result (:obj:`AssignResult`): Assigned results bboxes (torch.Tensor): Bounding boxes gt_bboxes (torch.Tensor): Ground truth boxes Returns: :obj:`SamplingResult`: sampler results """ pos_inds = torch.nonzero( assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique() neg_inds = torch.nonzero( assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique() gt_flags = bboxes.new_zeros(bboxes.shape[0], dtype=torch.uint8) sampling_result = SamplingResult(pos_inds, neg_inds, bboxes, gt_bboxes, assign_result, gt_flags) return sampling_result
Read the Docs v: latest
Versions
latest
stable
v2.19.1
v2.19.0
v2.18.1
v2.18.0
v2.17.0
v2.16.0
v2.15.1
v2.15.0
v2.14.0
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.