Shortcuts

mmdet.core.evaluation.eval_hooks 源代码

# Copyright (c) OpenMMLab. All rights reserved.
import bisect
import os.path as osp

import mmcv
import torch.distributed as dist
from mmcv.runner import DistEvalHook as BaseDistEvalHook
from mmcv.runner import EvalHook as BaseEvalHook
from torch.nn.modules.batchnorm import _BatchNorm


def _calc_dynamic_intervals(start_interval, dynamic_interval_list):
    assert mmcv.is_list_of(dynamic_interval_list, tuple)

    dynamic_milestones = [0]
    dynamic_milestones.extend(
        [dynamic_interval[0] for dynamic_interval in dynamic_interval_list])
    dynamic_intervals = [start_interval]
    dynamic_intervals.extend(
        [dynamic_interval[1] for dynamic_interval in dynamic_interval_list])
    return dynamic_milestones, dynamic_intervals


[文档]class EvalHook(BaseEvalHook): def __init__(self, *args, dynamic_intervals=None, **kwargs): super(EvalHook, self).__init__(*args, **kwargs) self.use_dynamic_intervals = dynamic_intervals is not None if self.use_dynamic_intervals: self.dynamic_milestones, self.dynamic_intervals = \ _calc_dynamic_intervals(self.interval, dynamic_intervals) def _decide_interval(self, runner): if self.use_dynamic_intervals: progress = runner.epoch if self.by_epoch else runner.iter step = bisect.bisect(self.dynamic_milestones, (progress + 1)) # Dynamically modify the evaluation interval self.interval = self.dynamic_intervals[step - 1]
[文档] def before_train_epoch(self, runner): """Evaluate the model only at the start of training by epoch.""" self._decide_interval(runner) super().before_train_epoch(runner)
[文档] def before_train_iter(self, runner): self._decide_interval(runner) super().before_train_iter(runner)
def _do_evaluate(self, runner): """perform evaluation and save ckpt.""" if not self._should_evaluate(runner): return from mmdet.apis import single_gpu_test results = single_gpu_test(runner.model, self.dataloader, show=False) runner.log_buffer.output['eval_iter_num'] = len(self.dataloader) key_score = self.evaluate(runner, results) if self.save_best: self._save_ckpt(runner, key_score)
# Note: Considering that MMCV's EvalHook updated its interface in V1.3.16, # in order to avoid strong version dependency, we did not directly # inherit EvalHook but BaseDistEvalHook.
[文档]class DistEvalHook(BaseDistEvalHook): def __init__(self, *args, dynamic_intervals=None, **kwargs): super(DistEvalHook, self).__init__(*args, **kwargs) self.use_dynamic_intervals = dynamic_intervals is not None if self.use_dynamic_intervals: self.dynamic_milestones, self.dynamic_intervals = \ _calc_dynamic_intervals(self.interval, dynamic_intervals) def _decide_interval(self, runner): if self.use_dynamic_intervals: progress = runner.epoch if self.by_epoch else runner.iter step = bisect.bisect(self.dynamic_milestones, (progress + 1)) # Dynamically modify the evaluation interval self.interval = self.dynamic_intervals[step - 1]
[文档] def before_train_epoch(self, runner): """Evaluate the model only at the start of training by epoch.""" self._decide_interval(runner) super().before_train_epoch(runner)
[文档] def before_train_iter(self, runner): self._decide_interval(runner) super().before_train_iter(runner)
def _do_evaluate(self, runner): """perform evaluation and save ckpt.""" # Synchronization of BatchNorm's buffer (running_mean # and running_var) is not supported in the DDP of pytorch, # which may cause the inconsistent performance of models in # different ranks, so we broadcast BatchNorm's buffers # of rank 0 to other ranks to avoid this. if self.broadcast_bn_buffer: model = runner.model for name, module in model.named_modules(): if isinstance(module, _BatchNorm) and module.track_running_stats: dist.broadcast(module.running_var, 0) dist.broadcast(module.running_mean, 0) if not self._should_evaluate(runner): return tmpdir = self.tmpdir if tmpdir is None: tmpdir = osp.join(runner.work_dir, '.eval_hook') from mmdet.apis import multi_gpu_test results = multi_gpu_test( runner.model, self.dataloader, tmpdir=tmpdir, gpu_collect=self.gpu_collect) if runner.rank == 0: print('\n') runner.log_buffer.output['eval_iter_num'] = len(self.dataloader) key_score = self.evaluate(runner, results) if self.save_best: self._save_ckpt(runner, key_score)
Read the Docs v: latest
Versions
latest
stable
v2.19.1
v2.19.0
v2.18.1
v2.18.0
v2.17.0
v2.16.0
v2.15.1
v2.15.0
v2.14.0
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.