Shortcuts

mmdet.core.evaluation.recall 源代码

# Copyright (c) OpenMMLab. All rights reserved.
from collections.abc import Sequence

import numpy as np
from mmcv.utils import print_log
from terminaltables import AsciiTable

from .bbox_overlaps import bbox_overlaps


def _recalls(all_ious, proposal_nums, thrs):

    img_num = all_ious.shape[0]
    total_gt_num = sum([ious.shape[0] for ious in all_ious])

    _ious = np.zeros((proposal_nums.size, total_gt_num), dtype=np.float32)
    for k, proposal_num in enumerate(proposal_nums):
        tmp_ious = np.zeros(0)
        for i in range(img_num):
            ious = all_ious[i][:, :proposal_num].copy()
            gt_ious = np.zeros((ious.shape[0]))
            if ious.size == 0:
                tmp_ious = np.hstack((tmp_ious, gt_ious))
                continue
            for j in range(ious.shape[0]):
                gt_max_overlaps = ious.argmax(axis=1)
                max_ious = ious[np.arange(0, ious.shape[0]), gt_max_overlaps]
                gt_idx = max_ious.argmax()
                gt_ious[j] = max_ious[gt_idx]
                box_idx = gt_max_overlaps[gt_idx]
                ious[gt_idx, :] = -1
                ious[:, box_idx] = -1
            tmp_ious = np.hstack((tmp_ious, gt_ious))
        _ious[k, :] = tmp_ious

    _ious = np.fliplr(np.sort(_ious, axis=1))
    recalls = np.zeros((proposal_nums.size, thrs.size))
    for i, thr in enumerate(thrs):
        recalls[:, i] = (_ious >= thr).sum(axis=1) / float(total_gt_num)

    return recalls


def set_recall_param(proposal_nums, iou_thrs):
    """Check proposal_nums and iou_thrs and set correct format."""
    if isinstance(proposal_nums, Sequence):
        _proposal_nums = np.array(proposal_nums)
    elif isinstance(proposal_nums, int):
        _proposal_nums = np.array([proposal_nums])
    else:
        _proposal_nums = proposal_nums

    if iou_thrs is None:
        _iou_thrs = np.array([0.5])
    elif isinstance(iou_thrs, Sequence):
        _iou_thrs = np.array(iou_thrs)
    elif isinstance(iou_thrs, float):
        _iou_thrs = np.array([iou_thrs])
    else:
        _iou_thrs = iou_thrs

    return _proposal_nums, _iou_thrs


[文档]def eval_recalls(gts, proposals, proposal_nums=None, iou_thrs=0.5, logger=None, use_legacy_coordinate=False): """Calculate recalls. Args: gts (list[ndarray]): a list of arrays of shape (n, 4) proposals (list[ndarray]): a list of arrays of shape (k, 4) or (k, 5) proposal_nums (int | Sequence[int]): Top N proposals to be evaluated. iou_thrs (float | Sequence[float]): IoU thresholds. Default: 0.5. logger (logging.Logger | str | None): The way to print the recall summary. See `mmcv.utils.print_log()` for details. Default: None. use_legacy_coordinate (bool): Whether use coordinate system in mmdet v1.x. "1" was added to both height and width which means w, h should be computed as 'x2 - x1 + 1` and 'y2 - y1 + 1'. Default: False. Returns: ndarray: recalls of different ious and proposal nums """ img_num = len(gts) assert img_num == len(proposals) proposal_nums, iou_thrs = set_recall_param(proposal_nums, iou_thrs) all_ious = [] for i in range(img_num): if proposals[i].ndim == 2 and proposals[i].shape[1] == 5: scores = proposals[i][:, 4] sort_idx = np.argsort(scores)[::-1] img_proposal = proposals[i][sort_idx, :] else: img_proposal = proposals[i] prop_num = min(img_proposal.shape[0], proposal_nums[-1]) if gts[i] is None or gts[i].shape[0] == 0: ious = np.zeros((0, img_proposal.shape[0]), dtype=np.float32) else: ious = bbox_overlaps( gts[i], img_proposal[:prop_num, :4], use_legacy_coordinate=use_legacy_coordinate) all_ious.append(ious) all_ious = np.array(all_ious) recalls = _recalls(all_ious, proposal_nums, iou_thrs) print_recall_summary(recalls, proposal_nums, iou_thrs, logger=logger) return recalls
[文档]def plot_num_recall(recalls, proposal_nums): """Plot Proposal_num-Recalls curve. Args: recalls(ndarray or list): shape (k,) proposal_nums(ndarray or list): same shape as `recalls` """ if isinstance(proposal_nums, np.ndarray): _proposal_nums = proposal_nums.tolist() else: _proposal_nums = proposal_nums if isinstance(recalls, np.ndarray): _recalls = recalls.tolist() else: _recalls = recalls import matplotlib.pyplot as plt f = plt.figure() plt.plot([0] + _proposal_nums, [0] + _recalls) plt.xlabel('Proposal num') plt.ylabel('Recall') plt.axis([0, proposal_nums.max(), 0, 1]) f.show()
[文档]def plot_iou_recall(recalls, iou_thrs): """Plot IoU-Recalls curve. Args: recalls(ndarray or list): shape (k,) iou_thrs(ndarray or list): same shape as `recalls` """ if isinstance(iou_thrs, np.ndarray): _iou_thrs = iou_thrs.tolist() else: _iou_thrs = iou_thrs if isinstance(recalls, np.ndarray): _recalls = recalls.tolist() else: _recalls = recalls import matplotlib.pyplot as plt f = plt.figure() plt.plot(_iou_thrs + [1.0], _recalls + [0.]) plt.xlabel('IoU') plt.ylabel('Recall') plt.axis([iou_thrs.min(), 1, 0, 1]) f.show()
Read the Docs v: latest
Versions
latest
stable
v2.19.1
v2.19.0
v2.18.1
v2.18.0
v2.17.0
v2.16.0
v2.15.1
v2.15.0
v2.14.0
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.