Shortcuts

mmdet.models.backbones.res2net 源代码

# Copyright (c) OpenMMLab. All rights reserved.
import math

import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import build_conv_layer, build_norm_layer
from mmcv.runner import Sequential

from ..builder import BACKBONES
from .resnet import Bottleneck as _Bottleneck
from .resnet import ResNet


class Bottle2neck(_Bottleneck):
    expansion = 4

    def __init__(self,
                 inplanes,
                 planes,
                 scales=4,
                 base_width=26,
                 base_channels=64,
                 stage_type='normal',
                 **kwargs):
        """Bottle2neck block for Res2Net.

        If style is "pytorch", the stride-two layer is the 3x3 conv layer, if
        it is "caffe", the stride-two layer is the first 1x1 conv layer.
        """
        super(Bottle2neck, self).__init__(inplanes, planes, **kwargs)
        assert scales > 1, 'Res2Net degenerates to ResNet when scales = 1.'
        width = int(math.floor(self.planes * (base_width / base_channels)))

        self.norm1_name, norm1 = build_norm_layer(
            self.norm_cfg, width * scales, postfix=1)
        self.norm3_name, norm3 = build_norm_layer(
            self.norm_cfg, self.planes * self.expansion, postfix=3)

        self.conv1 = build_conv_layer(
            self.conv_cfg,
            self.inplanes,
            width * scales,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
        self.add_module(self.norm1_name, norm1)

        if stage_type == 'stage' and self.conv2_stride != 1:
            self.pool = nn.AvgPool2d(
                kernel_size=3, stride=self.conv2_stride, padding=1)
        convs = []
        bns = []

        fallback_on_stride = False
        if self.with_dcn:
            fallback_on_stride = self.dcn.pop('fallback_on_stride', False)
        if not self.with_dcn or fallback_on_stride:
            for i in range(scales - 1):
                convs.append(
                    build_conv_layer(
                        self.conv_cfg,
                        width,
                        width,
                        kernel_size=3,
                        stride=self.conv2_stride,
                        padding=self.dilation,
                        dilation=self.dilation,
                        bias=False))
                bns.append(
                    build_norm_layer(self.norm_cfg, width, postfix=i + 1)[1])
            self.convs = nn.ModuleList(convs)
            self.bns = nn.ModuleList(bns)
        else:
            assert self.conv_cfg is None, 'conv_cfg must be None for DCN'
            for i in range(scales - 1):
                convs.append(
                    build_conv_layer(
                        self.dcn,
                        width,
                        width,
                        kernel_size=3,
                        stride=self.conv2_stride,
                        padding=self.dilation,
                        dilation=self.dilation,
                        bias=False))
                bns.append(
                    build_norm_layer(self.norm_cfg, width, postfix=i + 1)[1])
            self.convs = nn.ModuleList(convs)
            self.bns = nn.ModuleList(bns)

        self.conv3 = build_conv_layer(
            self.conv_cfg,
            width * scales,
            self.planes * self.expansion,
            kernel_size=1,
            bias=False)
        self.add_module(self.norm3_name, norm3)

        self.stage_type = stage_type
        self.scales = scales
        self.width = width
        delattr(self, 'conv2')
        delattr(self, self.norm2_name)

    def forward(self, x):
        """Forward function."""

        def _inner_forward(x):
            identity = x

            out = self.conv1(x)
            out = self.norm1(out)
            out = self.relu(out)

            if self.with_plugins:
                out = self.forward_plugin(out, self.after_conv1_plugin_names)

            spx = torch.split(out, self.width, 1)
            sp = self.convs[0](spx[0].contiguous())
            sp = self.relu(self.bns[0](sp))
            out = sp
            for i in range(1, self.scales - 1):
                if self.stage_type == 'stage':
                    sp = spx[i]
                else:
                    sp = sp + spx[i]
                sp = self.convs[i](sp.contiguous())
                sp = self.relu(self.bns[i](sp))
                out = torch.cat((out, sp), 1)

            if self.stage_type == 'normal' or self.conv2_stride == 1:
                out = torch.cat((out, spx[self.scales - 1]), 1)
            elif self.stage_type == 'stage':
                out = torch.cat((out, self.pool(spx[self.scales - 1])), 1)

            if self.with_plugins:
                out = self.forward_plugin(out, self.after_conv2_plugin_names)

            out = self.conv3(out)
            out = self.norm3(out)

            if self.with_plugins:
                out = self.forward_plugin(out, self.after_conv3_plugin_names)

            if self.downsample is not None:
                identity = self.downsample(x)

            out += identity

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = self.relu(out)

        return out


class Res2Layer(Sequential):
    """Res2Layer to build Res2Net style backbone.

    Args:
        block (nn.Module): block used to build ResLayer.
        inplanes (int): inplanes of block.
        planes (int): planes of block.
        num_blocks (int): number of blocks.
        stride (int): stride of the first block. Default: 1
        avg_down (bool): Use AvgPool instead of stride conv when
            downsampling in the bottle2neck. Default: False
        conv_cfg (dict): dictionary to construct and config conv layer.
            Default: None
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: dict(type='BN')
        scales (int): Scales used in Res2Net. Default: 4
        base_width (int): Basic width of each scale. Default: 26
    """

    def __init__(self,
                 block,
                 inplanes,
                 planes,
                 num_blocks,
                 stride=1,
                 avg_down=True,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 scales=4,
                 base_width=26,
                 **kwargs):
        self.block = block

        downsample = None
        if stride != 1 or inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.AvgPool2d(
                    kernel_size=stride,
                    stride=stride,
                    ceil_mode=True,
                    count_include_pad=False),
                build_conv_layer(
                    conv_cfg,
                    inplanes,
                    planes * block.expansion,
                    kernel_size=1,
                    stride=1,
                    bias=False),
                build_norm_layer(norm_cfg, planes * block.expansion)[1],
            )

        layers = []
        layers.append(
            block(
                inplanes=inplanes,
                planes=planes,
                stride=stride,
                downsample=downsample,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                scales=scales,
                base_width=base_width,
                stage_type='stage',
                **kwargs))
        inplanes = planes * block.expansion
        for i in range(1, num_blocks):
            layers.append(
                block(
                    inplanes=inplanes,
                    planes=planes,
                    stride=1,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    scales=scales,
                    base_width=base_width,
                    **kwargs))
        super(Res2Layer, self).__init__(*layers)


[文档]@BACKBONES.register_module() class Res2Net(ResNet): """Res2Net backbone. Args: scales (int): Scales used in Res2Net. Default: 4 base_width (int): Basic width of each scale. Default: 26 depth (int): Depth of res2net, from {50, 101, 152}. in_channels (int): Number of input image channels. Default: 3. num_stages (int): Res2net stages. Default: 4. strides (Sequence[int]): Strides of the first block of each stage. dilations (Sequence[int]): Dilation of each stage. out_indices (Sequence[int]): Output from which stages. style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two layer is the 3x3 conv layer, otherwise the stride-two layer is the first 1x1 conv layer. deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv avg_down (bool): Use AvgPool instead of stride conv when downsampling in the bottle2neck. frozen_stages (int): Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. norm_cfg (dict): Dictionary to construct and config norm layer. norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. plugins (list[dict]): List of plugins for stages, each dict contains: - cfg (dict, required): Cfg dict to build plugin. - position (str, required): Position inside block to insert plugin, options are 'after_conv1', 'after_conv2', 'after_conv3'. - stages (tuple[bool], optional): Stages to apply plugin, length should be same as 'num_stages'. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. zero_init_residual (bool): Whether to use zero init for last norm layer in resblocks to let them behave as identity. pretrained (str, optional): model pretrained path. Default: None init_cfg (dict or list[dict], optional): Initialization config dict. Default: None Example: >>> from mmdet.models import Res2Net >>> import torch >>> self = Res2Net(depth=50, scales=4, base_width=26) >>> self.eval() >>> inputs = torch.rand(1, 3, 32, 32) >>> level_outputs = self.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) (1, 256, 8, 8) (1, 512, 4, 4) (1, 1024, 2, 2) (1, 2048, 1, 1) """ arch_settings = { 50: (Bottle2neck, (3, 4, 6, 3)), 101: (Bottle2neck, (3, 4, 23, 3)), 152: (Bottle2neck, (3, 8, 36, 3)) } def __init__(self, scales=4, base_width=26, style='pytorch', deep_stem=True, avg_down=True, pretrained=None, init_cfg=None, **kwargs): self.scales = scales self.base_width = base_width super(Res2Net, self).__init__( style='pytorch', deep_stem=True, avg_down=True, pretrained=pretrained, init_cfg=init_cfg, **kwargs)
[文档] def make_res_layer(self, **kwargs): return Res2Layer( scales=self.scales, base_width=self.base_width, base_channels=self.base_channels, **kwargs)
Read the Docs v: latest
Versions
latest
stable
v2.19.1
v2.19.0
v2.18.1
v2.18.0
v2.17.0
v2.16.0
v2.15.1
v2.15.0
v2.14.0
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.