Shortcuts

mmdet.models.backbones.resnest 源代码

# Copyright (c) OpenMMLab. All rights reserved.
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from mmcv.cnn import build_conv_layer, build_norm_layer
from mmcv.runner import BaseModule

from ..builder import BACKBONES
from ..utils import ResLayer
from .resnet import Bottleneck as _Bottleneck
from .resnet import ResNetV1d


class RSoftmax(nn.Module):
    """Radix Softmax module in ``SplitAttentionConv2d``.

    Args:
        radix (int): Radix of input.
        groups (int): Groups of input.
    """

    def __init__(self, radix, groups):
        super().__init__()
        self.radix = radix
        self.groups = groups

    def forward(self, x):
        batch = x.size(0)
        if self.radix > 1:
            x = x.view(batch, self.groups, self.radix, -1).transpose(1, 2)
            x = F.softmax(x, dim=1)
            x = x.reshape(batch, -1)
        else:
            x = torch.sigmoid(x)
        return x


class SplitAttentionConv2d(BaseModule):
    """Split-Attention Conv2d in ResNeSt.

    Args:
        in_channels (int): Number of channels in the input feature map.
        channels (int): Number of intermediate channels.
        kernel_size (int | tuple[int]): Size of the convolution kernel.
        stride (int | tuple[int]): Stride of the convolution.
        padding (int | tuple[int]): Zero-padding added to both sides of
        dilation (int | tuple[int]): Spacing between kernel elements.
        groups (int): Number of blocked connections from input channels to
            output channels.
        groups (int): Same as nn.Conv2d.
        radix (int): Radix of SpltAtConv2d. Default: 2
        reduction_factor (int): Reduction factor of inter_channels. Default: 4.
        conv_cfg (dict): Config dict for convolution layer. Default: None,
            which means using conv2d.
        norm_cfg (dict): Config dict for normalization layer. Default: None.
        dcn (dict): Config dict for DCN. Default: None.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None
    """

    def __init__(self,
                 in_channels,
                 channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 radix=2,
                 reduction_factor=4,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 dcn=None,
                 init_cfg=None):
        super(SplitAttentionConv2d, self).__init__(init_cfg)
        inter_channels = max(in_channels * radix // reduction_factor, 32)
        self.radix = radix
        self.groups = groups
        self.channels = channels
        self.with_dcn = dcn is not None
        self.dcn = dcn
        fallback_on_stride = False
        if self.with_dcn:
            fallback_on_stride = self.dcn.pop('fallback_on_stride', False)
        if self.with_dcn and not fallback_on_stride:
            assert conv_cfg is None, 'conv_cfg must be None for DCN'
            conv_cfg = dcn
        self.conv = build_conv_layer(
            conv_cfg,
            in_channels,
            channels * radix,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups * radix,
            bias=False)
        # To be consistent with original implementation, starting from 0
        self.norm0_name, norm0 = build_norm_layer(
            norm_cfg, channels * radix, postfix=0)
        self.add_module(self.norm0_name, norm0)
        self.relu = nn.ReLU(inplace=True)
        self.fc1 = build_conv_layer(
            None, channels, inter_channels, 1, groups=self.groups)
        self.norm1_name, norm1 = build_norm_layer(
            norm_cfg, inter_channels, postfix=1)
        self.add_module(self.norm1_name, norm1)
        self.fc2 = build_conv_layer(
            None, inter_channels, channels * radix, 1, groups=self.groups)
        self.rsoftmax = RSoftmax(radix, groups)

    @property
    def norm0(self):
        """nn.Module: the normalization layer named "norm0" """
        return getattr(self, self.norm0_name)

    @property
    def norm1(self):
        """nn.Module: the normalization layer named "norm1" """
        return getattr(self, self.norm1_name)

    def forward(self, x):
        x = self.conv(x)
        x = self.norm0(x)
        x = self.relu(x)

        batch, rchannel = x.shape[:2]
        batch = x.size(0)
        if self.radix > 1:
            splits = x.view(batch, self.radix, -1, *x.shape[2:])
            gap = splits.sum(dim=1)
        else:
            gap = x
        gap = F.adaptive_avg_pool2d(gap, 1)
        gap = self.fc1(gap)

        gap = self.norm1(gap)
        gap = self.relu(gap)

        atten = self.fc2(gap)
        atten = self.rsoftmax(atten).view(batch, -1, 1, 1)

        if self.radix > 1:
            attens = atten.view(batch, self.radix, -1, *atten.shape[2:])
            out = torch.sum(attens * splits, dim=1)
        else:
            out = atten * x
        return out.contiguous()


class Bottleneck(_Bottleneck):
    """Bottleneck block for ResNeSt.

    Args:
        inplane (int): Input planes of this block.
        planes (int): Middle planes of this block.
        groups (int): Groups of conv2.
        base_width (int): Base of width in terms of base channels. Default: 4.
        base_channels (int): Base of channels for calculating width.
            Default: 64.
        radix (int): Radix of SpltAtConv2d. Default: 2
        reduction_factor (int): Reduction factor of inter_channels in
            SplitAttentionConv2d. Default: 4.
        avg_down_stride (bool): Whether to use average pool for stride in
            Bottleneck. Default: True.
        kwargs (dict): Key word arguments for base class.
    """
    expansion = 4

    def __init__(self,
                 inplanes,
                 planes,
                 groups=1,
                 base_width=4,
                 base_channels=64,
                 radix=2,
                 reduction_factor=4,
                 avg_down_stride=True,
                 **kwargs):
        """Bottleneck block for ResNeSt."""
        super(Bottleneck, self).__init__(inplanes, planes, **kwargs)

        if groups == 1:
            width = self.planes
        else:
            width = math.floor(self.planes *
                               (base_width / base_channels)) * groups

        self.avg_down_stride = avg_down_stride and self.conv2_stride > 1

        self.norm1_name, norm1 = build_norm_layer(
            self.norm_cfg, width, postfix=1)
        self.norm3_name, norm3 = build_norm_layer(
            self.norm_cfg, self.planes * self.expansion, postfix=3)

        self.conv1 = build_conv_layer(
            self.conv_cfg,
            self.inplanes,
            width,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
        self.add_module(self.norm1_name, norm1)
        self.with_modulated_dcn = False
        self.conv2 = SplitAttentionConv2d(
            width,
            width,
            kernel_size=3,
            stride=1 if self.avg_down_stride else self.conv2_stride,
            padding=self.dilation,
            dilation=self.dilation,
            groups=groups,
            radix=radix,
            reduction_factor=reduction_factor,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            dcn=self.dcn)
        delattr(self, self.norm2_name)

        if self.avg_down_stride:
            self.avd_layer = nn.AvgPool2d(3, self.conv2_stride, padding=1)

        self.conv3 = build_conv_layer(
            self.conv_cfg,
            width,
            self.planes * self.expansion,
            kernel_size=1,
            bias=False)
        self.add_module(self.norm3_name, norm3)

    def forward(self, x):

        def _inner_forward(x):
            identity = x

            out = self.conv1(x)
            out = self.norm1(out)
            out = self.relu(out)

            if self.with_plugins:
                out = self.forward_plugin(out, self.after_conv1_plugin_names)

            out = self.conv2(out)

            if self.avg_down_stride:
                out = self.avd_layer(out)

            if self.with_plugins:
                out = self.forward_plugin(out, self.after_conv2_plugin_names)

            out = self.conv3(out)
            out = self.norm3(out)

            if self.with_plugins:
                out = self.forward_plugin(out, self.after_conv3_plugin_names)

            if self.downsample is not None:
                identity = self.downsample(x)

            out += identity

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = self.relu(out)

        return out


[文档]@BACKBONES.register_module() class ResNeSt(ResNetV1d): """ResNeSt backbone. Args: groups (int): Number of groups of Bottleneck. Default: 1 base_width (int): Base width of Bottleneck. Default: 4 radix (int): Radix of SplitAttentionConv2d. Default: 2 reduction_factor (int): Reduction factor of inter_channels in SplitAttentionConv2d. Default: 4. avg_down_stride (bool): Whether to use average pool for stride in Bottleneck. Default: True. kwargs (dict): Keyword arguments for ResNet. """ arch_settings = { 50: (Bottleneck, (3, 4, 6, 3)), 101: (Bottleneck, (3, 4, 23, 3)), 152: (Bottleneck, (3, 8, 36, 3)), 200: (Bottleneck, (3, 24, 36, 3)) } def __init__(self, groups=1, base_width=4, radix=2, reduction_factor=4, avg_down_stride=True, **kwargs): self.groups = groups self.base_width = base_width self.radix = radix self.reduction_factor = reduction_factor self.avg_down_stride = avg_down_stride super(ResNeSt, self).__init__(**kwargs)
[文档] def make_res_layer(self, **kwargs): """Pack all blocks in a stage into a ``ResLayer``.""" return ResLayer( groups=self.groups, base_width=self.base_width, base_channels=self.base_channels, radix=self.radix, reduction_factor=self.reduction_factor, avg_down_stride=self.avg_down_stride, **kwargs)
Read the Docs v: latest
Versions
latest
stable
v2.19.1
v2.19.0
v2.18.1
v2.18.0
v2.17.0
v2.16.0
v2.15.1
v2.15.0
v2.14.0
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.