Shortcuts

mmdet.models.backbones.ssd_vgg 源代码

# Copyright (c) OpenMMLab. All rights reserved.
import warnings

import torch.nn as nn
from mmcv.cnn import VGG
from mmcv.runner import BaseModule

from ..builder import BACKBONES
from ..necks import ssd_neck


[文档]@BACKBONES.register_module() class SSDVGG(VGG, BaseModule): """VGG Backbone network for single-shot-detection. Args: depth (int): Depth of vgg, from {11, 13, 16, 19}. with_last_pool (bool): Whether to add a pooling layer at the last of the model ceil_mode (bool): When True, will use `ceil` instead of `floor` to compute the output shape. out_indices (Sequence[int]): Output from which stages. out_feature_indices (Sequence[int]): Output from which feature map. pretrained (str, optional): model pretrained path. Default: None init_cfg (dict or list[dict], optional): Initialization config dict. Default: None input_size (int, optional): Deprecated argumment. Width and height of input, from {300, 512}. l2_norm_scale (float, optional) : Deprecated argumment. L2 normalization layer init scale. Example: >>> self = SSDVGG(input_size=300, depth=11) >>> self.eval() >>> inputs = torch.rand(1, 3, 300, 300) >>> level_outputs = self.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) (1, 1024, 19, 19) (1, 512, 10, 10) (1, 256, 5, 5) (1, 256, 3, 3) (1, 256, 1, 1) """ extra_setting = { 300: (256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256), 512: (256, 'S', 512, 128, 'S', 256, 128, 'S', 256, 128, 'S', 256, 128), } def __init__(self, depth, with_last_pool=False, ceil_mode=True, out_indices=(3, 4), out_feature_indices=(22, 34), pretrained=None, init_cfg=None, input_size=None, l2_norm_scale=None): # TODO: in_channels for mmcv.VGG super(SSDVGG, self).__init__( depth, with_last_pool=with_last_pool, ceil_mode=ceil_mode, out_indices=out_indices) self.features.add_module( str(len(self.features)), nn.MaxPool2d(kernel_size=3, stride=1, padding=1)) self.features.add_module( str(len(self.features)), nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)) self.features.add_module( str(len(self.features)), nn.ReLU(inplace=True)) self.features.add_module( str(len(self.features)), nn.Conv2d(1024, 1024, kernel_size=1)) self.features.add_module( str(len(self.features)), nn.ReLU(inplace=True)) self.out_feature_indices = out_feature_indices assert not (init_cfg and pretrained), \ 'init_cfg and pretrained cannot be specified at the same time' if init_cfg is not None: self.init_cfg = init_cfg elif isinstance(pretrained, str): warnings.warn('DeprecationWarning: pretrained is deprecated, ' 'please use "init_cfg" instead') self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) elif pretrained is None: self.init_cfg = [ dict(type='Kaiming', layer='Conv2d'), dict(type='Constant', val=1, layer='BatchNorm2d'), dict(type='Normal', std=0.01, layer='Linear'), ] else: raise TypeError('pretrained must be a str or None') if input_size is not None: warnings.warn('DeprecationWarning: input_size is deprecated') if l2_norm_scale is not None: warnings.warn('DeprecationWarning: l2_norm_scale in VGG is ' 'deprecated, it has been moved to SSDNeck.')
[文档] def init_weights(self, pretrained=None): super(VGG, self).init_weights()
[文档] def forward(self, x): """Forward function.""" outs = [] for i, layer in enumerate(self.features): x = layer(x) if i in self.out_feature_indices: outs.append(x) if len(outs) == 1: return outs[0] else: return tuple(outs)
class L2Norm(ssd_neck.L2Norm): def __init__(self, **kwargs): super(L2Norm, self).__init__(**kwargs) warnings.warn('DeprecationWarning: L2Norm in ssd_vgg.py ' 'is deprecated, please use L2Norm in ' 'mmdet/models/necks/ssd_neck.py instead')
Read the Docs v: latest
Versions
latest
stable
v2.19.1
v2.19.0
v2.18.1
v2.18.0
v2.17.0
v2.16.0
v2.15.1
v2.15.0
v2.14.0
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.