Shortcuts

mmdet.models.backbones.swin 源代码

# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from collections import OrderedDict
from copy import deepcopy

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from mmcv.cnn import build_norm_layer, constant_init, trunc_normal_init
from mmcv.cnn.bricks.transformer import FFN, build_dropout
from mmcv.cnn.utils.weight_init import trunc_normal_
from mmcv.runner import BaseModule, ModuleList, _load_checkpoint
from mmcv.utils import to_2tuple

from ...utils import get_root_logger
from ..builder import BACKBONES
from ..utils.ckpt_convert import swin_converter
from ..utils.transformer import PatchEmbed, PatchMerging


class WindowMSA(BaseModule):
    """Window based multi-head self-attention (W-MSA) module with relative
    position bias.

    Args:
        embed_dims (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (tuple[int]): The height and width of the window.
        qkv_bias (bool, optional):  If True, add a learnable bias to q, k, v.
            Default: True.
        qk_scale (float | None, optional): Override default qk scale of
            head_dim ** -0.5 if set. Default: None.
        attn_drop_rate (float, optional): Dropout ratio of attention weight.
            Default: 0.0
        proj_drop_rate (float, optional): Dropout ratio of output. Default: 0.
        init_cfg (dict | None, optional): The Config for initialization.
            Default: None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 window_size,
                 qkv_bias=True,
                 qk_scale=None,
                 attn_drop_rate=0.,
                 proj_drop_rate=0.,
                 init_cfg=None):

        super().__init__()
        self.embed_dims = embed_dims
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_embed_dims = embed_dims // num_heads
        self.scale = qk_scale or head_embed_dims**-0.5
        self.init_cfg = init_cfg

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1),
                        num_heads))  # 2*Wh-1 * 2*Ww-1, nH

        # About 2x faster than original impl
        Wh, Ww = self.window_size
        rel_index_coords = self.double_step_seq(2 * Ww - 1, Wh, 1, Ww)
        rel_position_index = rel_index_coords + rel_index_coords.T
        rel_position_index = rel_position_index.flip(1).contiguous()
        self.register_buffer('relative_position_index', rel_position_index)

        self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop_rate)
        self.proj = nn.Linear(embed_dims, embed_dims)
        self.proj_drop = nn.Dropout(proj_drop_rate)

        self.softmax = nn.Softmax(dim=-1)

    def init_weights(self):
        trunc_normal_(self.relative_position_bias_table, std=0.02)

    def forward(self, x, mask=None):
        """
        Args:

            x (tensor): input features with shape of (num_windows*B, N, C)
            mask (tensor | None, Optional): mask with shape of (num_windows,
                Wh*Ww, Wh*Ww), value should be between (-inf, 0].
        """
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
                                  C // self.num_heads).permute(2, 0, 3, 1, 4)
        # make torchscript happy (cannot use tensor as tuple)
        q, k, v = qkv[0], qkv[1], qkv[2]

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[
            self.relative_position_index.view(-1)].view(
                self.window_size[0] * self.window_size[1],
                self.window_size[0] * self.window_size[1],
                -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(
            2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B // nW, nW, self.num_heads, N,
                             N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
        attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    @staticmethod
    def double_step_seq(step1, len1, step2, len2):
        seq1 = torch.arange(0, step1 * len1, step1)
        seq2 = torch.arange(0, step2 * len2, step2)
        return (seq1[:, None] + seq2[None, :]).reshape(1, -1)


class ShiftWindowMSA(BaseModule):
    """Shifted Window Multihead Self-Attention Module.

    Args:
        embed_dims (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (int): The height and width of the window.
        shift_size (int, optional): The shift step of each window towards
            right-bottom. If zero, act as regular window-msa. Defaults to 0.
        qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
            Default: True
        qk_scale (float | None, optional): Override default qk scale of
            head_dim ** -0.5 if set. Defaults: None.
        attn_drop_rate (float, optional): Dropout ratio of attention weight.
            Defaults: 0.
        proj_drop_rate (float, optional): Dropout ratio of output.
            Defaults: 0.
        dropout_layer (dict, optional): The dropout_layer used before output.
            Defaults: dict(type='DropPath', drop_prob=0.).
        init_cfg (dict, optional): The extra config for initialization.
            Default: None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 window_size,
                 shift_size=0,
                 qkv_bias=True,
                 qk_scale=None,
                 attn_drop_rate=0,
                 proj_drop_rate=0,
                 dropout_layer=dict(type='DropPath', drop_prob=0.),
                 init_cfg=None):
        super().__init__(init_cfg)

        self.window_size = window_size
        self.shift_size = shift_size
        assert 0 <= self.shift_size < self.window_size

        self.w_msa = WindowMSA(
            embed_dims=embed_dims,
            num_heads=num_heads,
            window_size=to_2tuple(window_size),
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop_rate=attn_drop_rate,
            proj_drop_rate=proj_drop_rate,
            init_cfg=None)

        self.drop = build_dropout(dropout_layer)

    def forward(self, query, hw_shape):
        B, L, C = query.shape
        H, W = hw_shape
        assert L == H * W, 'input feature has wrong size'
        query = query.view(B, H, W, C)

        # pad feature maps to multiples of window size
        pad_r = (self.window_size - W % self.window_size) % self.window_size
        pad_b = (self.window_size - H % self.window_size) % self.window_size
        query = F.pad(query, (0, 0, 0, pad_r, 0, pad_b))
        H_pad, W_pad = query.shape[1], query.shape[2]

        # cyclic shift
        if self.shift_size > 0:
            shifted_query = torch.roll(
                query,
                shifts=(-self.shift_size, -self.shift_size),
                dims=(1, 2))

            # calculate attention mask for SW-MSA
            img_mask = torch.zeros((1, H_pad, W_pad, 1), device=query.device)
            h_slices = (slice(0, -self.window_size),
                        slice(-self.window_size,
                              -self.shift_size), slice(-self.shift_size, None))
            w_slices = (slice(0, -self.window_size),
                        slice(-self.window_size,
                              -self.shift_size), slice(-self.shift_size, None))
            cnt = 0
            for h in h_slices:
                for w in w_slices:
                    img_mask[:, h, w, :] = cnt
                    cnt += 1

            # nW, window_size, window_size, 1
            mask_windows = self.window_partition(img_mask)
            mask_windows = mask_windows.view(
                -1, self.window_size * self.window_size)
            attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
            attn_mask = attn_mask.masked_fill(attn_mask != 0,
                                              float(-100.0)).masked_fill(
                                                  attn_mask == 0, float(0.0))
        else:
            shifted_query = query
            attn_mask = None

        # nW*B, window_size, window_size, C
        query_windows = self.window_partition(shifted_query)
        # nW*B, window_size*window_size, C
        query_windows = query_windows.view(-1, self.window_size**2, C)

        # W-MSA/SW-MSA (nW*B, window_size*window_size, C)
        attn_windows = self.w_msa(query_windows, mask=attn_mask)

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size,
                                         self.window_size, C)

        # B H' W' C
        shifted_x = self.window_reverse(attn_windows, H_pad, W_pad)
        # reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(
                shifted_x,
                shifts=(self.shift_size, self.shift_size),
                dims=(1, 2))
        else:
            x = shifted_x

        if pad_r > 0 or pad_b:
            x = x[:, :H, :W, :].contiguous()

        x = x.view(B, H * W, C)

        x = self.drop(x)
        return x

    def window_reverse(self, windows, H, W):
        """
        Args:
            windows: (num_windows*B, window_size, window_size, C)
            H (int): Height of image
            W (int): Width of image
        Returns:
            x: (B, H, W, C)
        """
        window_size = self.window_size
        B = int(windows.shape[0] / (H * W / window_size / window_size))
        x = windows.view(B, H // window_size, W // window_size, window_size,
                         window_size, -1)
        x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
        return x

    def window_partition(self, x):
        """
        Args:
            x: (B, H, W, C)
        Returns:
            windows: (num_windows*B, window_size, window_size, C)
        """
        B, H, W, C = x.shape
        window_size = self.window_size
        x = x.view(B, H // window_size, window_size, W // window_size,
                   window_size, C)
        windows = x.permute(0, 1, 3, 2, 4, 5).contiguous()
        windows = windows.view(-1, window_size, window_size, C)
        return windows


class SwinBlock(BaseModule):
    """"
    Args:
        embed_dims (int): The feature dimension.
        num_heads (int): Parallel attention heads.
        feedforward_channels (int): The hidden dimension for FFNs.
        window_size (int, optional): The local window scale. Default: 7.
        shift (bool, optional): whether to shift window or not. Default False.
        qkv_bias (bool, optional): enable bias for qkv if True. Default: True.
        qk_scale (float | None, optional): Override default qk scale of
            head_dim ** -0.5 if set. Default: None.
        drop_rate (float, optional): Dropout rate. Default: 0.
        attn_drop_rate (float, optional): Attention dropout rate. Default: 0.
        drop_path_rate (float, optional): Stochastic depth rate. Default: 0.
        act_cfg (dict, optional): The config dict of activation function.
            Default: dict(type='GELU').
        norm_cfg (dict, optional): The config dict of normalization.
            Default: dict(type='LN').
        with_cp (bool, optional): Use checkpoint or not. Using checkpoint
            will save some memory while slowing down the training speed.
            Default: False.
        init_cfg (dict | list | None, optional): The init config.
            Default: None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 feedforward_channels,
                 window_size=7,
                 shift=False,
                 qkv_bias=True,
                 qk_scale=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 act_cfg=dict(type='GELU'),
                 norm_cfg=dict(type='LN'),
                 with_cp=False,
                 init_cfg=None):

        super(SwinBlock, self).__init__()

        self.init_cfg = init_cfg
        self.with_cp = with_cp

        self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1]
        self.attn = ShiftWindowMSA(
            embed_dims=embed_dims,
            num_heads=num_heads,
            window_size=window_size,
            shift_size=window_size // 2 if shift else 0,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop_rate=attn_drop_rate,
            proj_drop_rate=drop_rate,
            dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
            init_cfg=None)

        self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1]
        self.ffn = FFN(
            embed_dims=embed_dims,
            feedforward_channels=feedforward_channels,
            num_fcs=2,
            ffn_drop=drop_rate,
            dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
            act_cfg=act_cfg,
            add_identity=True,
            init_cfg=None)

    def forward(self, x, hw_shape):

        def _inner_forward(x):
            identity = x
            x = self.norm1(x)
            x = self.attn(x, hw_shape)

            x = x + identity

            identity = x
            x = self.norm2(x)
            x = self.ffn(x, identity=identity)

            return x

        if self.with_cp and x.requires_grad:
            x = cp.checkpoint(_inner_forward, x)
        else:
            x = _inner_forward(x)

        return x


class SwinBlockSequence(BaseModule):
    """Implements one stage in Swin Transformer.

    Args:
        embed_dims (int): The feature dimension.
        num_heads (int): Parallel attention heads.
        feedforward_channels (int): The hidden dimension for FFNs.
        depth (int): The number of blocks in this stage.
        window_size (int, optional): The local window scale. Default: 7.
        qkv_bias (bool, optional): enable bias for qkv if True. Default: True.
        qk_scale (float | None, optional): Override default qk scale of
            head_dim ** -0.5 if set. Default: None.
        drop_rate (float, optional): Dropout rate. Default: 0.
        attn_drop_rate (float, optional): Attention dropout rate. Default: 0.
        drop_path_rate (float | list[float], optional): Stochastic depth
            rate. Default: 0.
        downsample (BaseModule | None, optional): The downsample operation
            module. Default: None.
        act_cfg (dict, optional): The config dict of activation function.
            Default: dict(type='GELU').
        norm_cfg (dict, optional): The config dict of normalization.
            Default: dict(type='LN').
        with_cp (bool, optional): Use checkpoint or not. Using checkpoint
            will save some memory while slowing down the training speed.
            Default: False.
        init_cfg (dict | list | None, optional): The init config.
            Default: None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 feedforward_channels,
                 depth,
                 window_size=7,
                 qkv_bias=True,
                 qk_scale=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 downsample=None,
                 act_cfg=dict(type='GELU'),
                 norm_cfg=dict(type='LN'),
                 with_cp=False,
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)

        if isinstance(drop_path_rate, list):
            drop_path_rates = drop_path_rate
            assert len(drop_path_rates) == depth
        else:
            drop_path_rates = [deepcopy(drop_path_rate) for _ in range(depth)]

        self.blocks = ModuleList()
        for i in range(depth):
            block = SwinBlock(
                embed_dims=embed_dims,
                num_heads=num_heads,
                feedforward_channels=feedforward_channels,
                window_size=window_size,
                shift=False if i % 2 == 0 else True,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop_rate=drop_rate,
                attn_drop_rate=attn_drop_rate,
                drop_path_rate=drop_path_rates[i],
                act_cfg=act_cfg,
                norm_cfg=norm_cfg,
                with_cp=with_cp,
                init_cfg=None)
            self.blocks.append(block)

        self.downsample = downsample

    def forward(self, x, hw_shape):
        for block in self.blocks:
            x = block(x, hw_shape)

        if self.downsample:
            x_down, down_hw_shape = self.downsample(x, hw_shape)
            return x_down, down_hw_shape, x, hw_shape
        else:
            return x, hw_shape, x, hw_shape


[文档]@BACKBONES.register_module() class SwinTransformer(BaseModule): """ Swin Transformer A PyTorch implement of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/abs/2103.14030 Inspiration from https://github.com/microsoft/Swin-Transformer Args: pretrain_img_size (int | tuple[int]): The size of input image when pretrain. Defaults: 224. in_channels (int): The num of input channels. Defaults: 3. embed_dims (int): The feature dimension. Default: 96. patch_size (int | tuple[int]): Patch size. Default: 4. window_size (int): Window size. Default: 7. mlp_ratio (int): Ratio of mlp hidden dim to embedding dim. Default: 4. depths (tuple[int]): Depths of each Swin Transformer stage. Default: (2, 2, 6, 2). num_heads (tuple[int]): Parallel attention heads of each Swin Transformer stage. Default: (3, 6, 12, 24). strides (tuple[int]): The patch merging or patch embedding stride of each Swin Transformer stage. (In swin, we set kernel size equal to stride.) Default: (4, 2, 2, 2). out_indices (tuple[int]): Output from which stages. Default: (0, 1, 2, 3). qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. Default: None. patch_norm (bool): If add a norm layer for patch embed and patch merging. Default: True. drop_rate (float): Dropout rate. Defaults: 0. attn_drop_rate (float): Attention dropout rate. Default: 0. drop_path_rate (float): Stochastic depth rate. Defaults: 0.1. use_abs_pos_embed (bool): If True, add absolute position embedding to the patch embedding. Defaults: False. act_cfg (dict): Config dict for activation layer. Default: dict(type='LN'). norm_cfg (dict): Config dict for normalization layer at output of backone. Defaults: dict(type='LN'). with_cp (bool, optional): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. pretrained (str, optional): model pretrained path. Default: None. convert_weights (bool): The flag indicates whether the pre-trained model is from the original repo. We may need to convert some keys to make it compatible. Default: False. frozen_stages (int): Stages to be frozen (stop grad and set eval mode). Default: -1 (-1 means not freezing any parameters). init_cfg (dict, optional): The Config for initialization. Defaults to None. """ def __init__(self, pretrain_img_size=224, in_channels=3, embed_dims=96, patch_size=4, window_size=7, mlp_ratio=4, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24), strides=(4, 2, 2, 2), out_indices=(0, 1, 2, 3), qkv_bias=True, qk_scale=None, patch_norm=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, use_abs_pos_embed=False, act_cfg=dict(type='GELU'), norm_cfg=dict(type='LN'), with_cp=False, pretrained=None, convert_weights=False, frozen_stages=-1, init_cfg=None): self.convert_weights = convert_weights self.frozen_stages = frozen_stages if isinstance(pretrain_img_size, int): pretrain_img_size = to_2tuple(pretrain_img_size) elif isinstance(pretrain_img_size, tuple): if len(pretrain_img_size) == 1: pretrain_img_size = to_2tuple(pretrain_img_size[0]) assert len(pretrain_img_size) == 2, \ f'The size of image should have length 1 or 2, ' \ f'but got {len(pretrain_img_size)}' assert not (init_cfg and pretrained), \ 'init_cfg and pretrained cannot be specified at the same time' if isinstance(pretrained, str): warnings.warn('DeprecationWarning: pretrained is deprecated, ' 'please use "init_cfg" instead') self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) elif pretrained is None: self.init_cfg = init_cfg else: raise TypeError('pretrained must be a str or None') super(SwinTransformer, self).__init__(init_cfg=init_cfg) num_layers = len(depths) self.out_indices = out_indices self.use_abs_pos_embed = use_abs_pos_embed assert strides[0] == patch_size, 'Use non-overlapping patch embed.' self.patch_embed = PatchEmbed( in_channels=in_channels, embed_dims=embed_dims, conv_type='Conv2d', kernel_size=patch_size, stride=strides[0], norm_cfg=norm_cfg if patch_norm else None, init_cfg=None) if self.use_abs_pos_embed: patch_row = pretrain_img_size[0] // patch_size patch_col = pretrain_img_size[1] // patch_size num_patches = patch_row * patch_col self.absolute_pos_embed = nn.Parameter( torch.zeros((1, num_patches, embed_dims))) self.drop_after_pos = nn.Dropout(p=drop_rate) # set stochastic depth decay rule total_depth = sum(depths) dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, total_depth) ] self.stages = ModuleList() in_channels = embed_dims for i in range(num_layers): if i < num_layers - 1: downsample = PatchMerging( in_channels=in_channels, out_channels=2 * in_channels, stride=strides[i + 1], norm_cfg=norm_cfg if patch_norm else None, init_cfg=None) else: downsample = None stage = SwinBlockSequence( embed_dims=in_channels, num_heads=num_heads[i], feedforward_channels=mlp_ratio * in_channels, depth=depths[i], window_size=window_size, qkv_bias=qkv_bias, qk_scale=qk_scale, drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_rate=dpr[sum(depths[:i]):sum(depths[:i + 1])], downsample=downsample, act_cfg=act_cfg, norm_cfg=norm_cfg, with_cp=with_cp, init_cfg=None) self.stages.append(stage) if downsample: in_channels = downsample.out_channels self.num_features = [int(embed_dims * 2**i) for i in range(num_layers)] # Add a norm layer for each output for i in out_indices: layer = build_norm_layer(norm_cfg, self.num_features[i])[1] layer_name = f'norm{i}' self.add_module(layer_name, layer)
[文档] def train(self, mode=True): """Convert the model into training mode while keep layers freezed.""" super(SwinTransformer, self).train(mode) self._freeze_stages()
def _freeze_stages(self): if self.frozen_stages >= 0: self.patch_embed.eval() for param in self.patch_embed.parameters(): param.requires_grad = False if self.use_abs_pos_embed: self.absolute_pos_embed.requires_grad = False self.drop_after_pos.eval() for i in range(1, self.frozen_stages + 1): if (i - 1) in self.out_indices: norm_layer = getattr(self, f'norm{i-1}') norm_layer.eval() for param in norm_layer.parameters(): param.requires_grad = False m = self.stages[i - 1] m.eval() for param in m.parameters(): param.requires_grad = False
[文档] def init_weights(self): logger = get_root_logger() if self.init_cfg is None: logger.warn(f'No pre-trained weights for ' f'{self.__class__.__name__}, ' f'training start from scratch') if self.use_abs_pos_embed: trunc_normal_(self.absolute_pos_embed, std=0.02) for m in self.modules(): if isinstance(m, nn.Linear): trunc_normal_init(m, std=.02, bias=0.) elif isinstance(m, nn.LayerNorm): constant_init(m, 1.0) else: assert 'checkpoint' in self.init_cfg, f'Only support ' \ f'specify `Pretrained` in ' \ f'`init_cfg` in ' \ f'{self.__class__.__name__} ' ckpt = _load_checkpoint( self.init_cfg.checkpoint, logger=logger, map_location='cpu') if 'state_dict' in ckpt: _state_dict = ckpt['state_dict'] elif 'model' in ckpt: _state_dict = ckpt['model'] else: _state_dict = ckpt if self.convert_weights: # supported loading weight from original repo, _state_dict = swin_converter(_state_dict) state_dict = OrderedDict() for k, v in _state_dict.items(): if k.startswith('backbone.'): state_dict[k[9:]] = v # strip prefix of state_dict if list(state_dict.keys())[0].startswith('module.'): state_dict = {k[7:]: v for k, v in state_dict.items()} # reshape absolute position embedding if state_dict.get('absolute_pos_embed') is not None: absolute_pos_embed = state_dict['absolute_pos_embed'] N1, L, C1 = absolute_pos_embed.size() N2, C2, H, W = self.absolute_pos_embed.size() if N1 != N2 or C1 != C2 or L != H * W: logger.warning('Error in loading absolute_pos_embed, pass') else: state_dict['absolute_pos_embed'] = absolute_pos_embed.view( N2, H, W, C2).permute(0, 3, 1, 2).contiguous() # interpolate position bias table if needed relative_position_bias_table_keys = [ k for k in state_dict.keys() if 'relative_position_bias_table' in k ] for table_key in relative_position_bias_table_keys: table_pretrained = state_dict[table_key] table_current = self.state_dict()[table_key] L1, nH1 = table_pretrained.size() L2, nH2 = table_current.size() if nH1 != nH2: logger.warning(f'Error in loading {table_key}, pass') elif L1 != L2: S1 = int(L1**0.5) S2 = int(L2**0.5) table_pretrained_resized = F.interpolate( table_pretrained.permute(1, 0).reshape(1, nH1, S1, S1), size=(S2, S2), mode='bicubic') state_dict[table_key] = table_pretrained_resized.view( nH2, L2).permute(1, 0).contiguous() # load state_dict self.load_state_dict(state_dict, False)
[文档] def forward(self, x): x, hw_shape = self.patch_embed(x) if self.use_abs_pos_embed: x = x + self.absolute_pos_embed x = self.drop_after_pos(x) outs = [] for i, stage in enumerate(self.stages): x, hw_shape, out, out_hw_shape = stage(x, hw_shape) if i in self.out_indices: norm_layer = getattr(self, f'norm{i}') out = norm_layer(out) out = out.view(-1, *out_hw_shape, self.num_features[i]).permute(0, 3, 1, 2).contiguous() outs.append(out) return outs
Read the Docs v: latest
Versions
latest
stable
v2.19.1
v2.19.0
v2.18.1
v2.18.0
v2.17.0
v2.16.0
v2.15.1
v2.15.0
v2.14.0
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.