Shortcuts

mmdet.models.necks.ct_resnet_neck 源代码

# Copyright (c) OpenMMLab. All rights reserved.
import math

import torch.nn as nn
from mmcv.cnn import ConvModule
from mmcv.runner import BaseModule, auto_fp16

from mmdet.models.builder import NECKS


[文档]@NECKS.register_module() class CTResNetNeck(BaseModule): """The neck used in `CenterNet <https://arxiv.org/abs/1904.07850>`_ for object classification and box regression. Args: in_channel (int): Number of input channels. num_deconv_filters (tuple[int]): Number of filters per stage. num_deconv_kernels (tuple[int]): Number of kernels per stage. use_dcn (bool): If True, use DCNv2. Default: True. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, in_channel, num_deconv_filters, num_deconv_kernels, use_dcn=True, init_cfg=None): super(CTResNetNeck, self).__init__(init_cfg) assert len(num_deconv_filters) == len(num_deconv_kernels) self.fp16_enabled = False self.use_dcn = use_dcn self.in_channel = in_channel self.deconv_layers = self._make_deconv_layer(num_deconv_filters, num_deconv_kernels) def _make_deconv_layer(self, num_deconv_filters, num_deconv_kernels): """use deconv layers to upsample backbone's output.""" layers = [] for i in range(len(num_deconv_filters)): feat_channel = num_deconv_filters[i] conv_module = ConvModule( self.in_channel, feat_channel, 3, padding=1, conv_cfg=dict(type='DCNv2') if self.use_dcn else None, norm_cfg=dict(type='BN')) layers.append(conv_module) upsample_module = ConvModule( feat_channel, feat_channel, num_deconv_kernels[i], stride=2, padding=1, conv_cfg=dict(type='deconv'), norm_cfg=dict(type='BN')) layers.append(upsample_module) self.in_channel = feat_channel return nn.Sequential(*layers)
[文档] def init_weights(self): for m in self.modules(): if isinstance(m, nn.ConvTranspose2d): # In order to be consistent with the source code, # reset the ConvTranspose2d initialization parameters m.reset_parameters() # Simulated bilinear upsampling kernel w = m.weight.data f = math.ceil(w.size(2) / 2) c = (2 * f - 1 - f % 2) / (2. * f) for i in range(w.size(2)): for j in range(w.size(3)): w[0, 0, i, j] = \ (1 - math.fabs(i / f - c)) * ( 1 - math.fabs(j / f - c)) for c in range(1, w.size(0)): w[c, 0, :, :] = w[0, 0, :, :] elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # self.use_dcn is False elif not self.use_dcn and isinstance(m, nn.Conv2d): # In order to be consistent with the source code, # reset the Conv2d initialization parameters m.reset_parameters()
[文档] @auto_fp16() def forward(self, inputs): assert isinstance(inputs, (list, tuple)) outs = self.deconv_layers(inputs[-1]) return outs,
Read the Docs v: latest
Versions
latest
stable
v2.19.1
v2.19.0
v2.18.1
v2.18.0
v2.17.0
v2.16.0
v2.15.1
v2.15.0
v2.14.0
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.