mmdet.models.necks.yolo_neck 源代码

# Copyright (c) 2019 Western Digital Corporation or its affiliates.

import torch
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmcv.runner import BaseModule

from ..builder import NECKS


class DetectionBlock(BaseModule):
    """Detection block in YOLO neck.

    Let out_channels = n, the DetectionBlock contains:
    Six ConvLayers, 1 Conv2D Layer and 1 YoloLayer.
    The first 6 ConvLayers are formed the following way:
        1x1xn, 3x3x2n, 1x1xn, 3x3x2n, 1x1xn, 3x3x2n.
    The Conv2D layer is 1x1x255.
    Some block will have branch after the fifth ConvLayer.
    The input channel is arbitrary (in_channels)

    Args:
        in_channels (int): The number of input channels.
        out_channels (int): The number of output channels.
        conv_cfg (dict): Config dict for convolution layer. Default: None.
        norm_cfg (dict): Dictionary to construct and config norm layer.
            Default: dict(type='BN', requires_grad=True)
        act_cfg (dict): Config dict for activation layer.
            Default: dict(type='LeakyReLU', negative_slope=0.1).
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN', requires_grad=True),
                 act_cfg=dict(type='LeakyReLU', negative_slope=0.1),
                 init_cfg=None):
        super(DetectionBlock, self).__init__(init_cfg)
        double_out_channels = out_channels * 2

        # shortcut
        cfg = dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)
        self.conv1 = ConvModule(in_channels, out_channels, 1, **cfg)
        self.conv2 = ConvModule(
            out_channels, double_out_channels, 3, padding=1, **cfg)
        self.conv3 = ConvModule(double_out_channels, out_channels, 1, **cfg)
        self.conv4 = ConvModule(
            out_channels, double_out_channels, 3, padding=1, **cfg)
        self.conv5 = ConvModule(double_out_channels, out_channels, 1, **cfg)

    def forward(self, x):
        tmp = self.conv1(x)
        tmp = self.conv2(tmp)
        tmp = self.conv3(tmp)
        tmp = self.conv4(tmp)
        out = self.conv5(tmp)
        return out


[文档]@NECKS.register_module() class YOLOV3Neck(BaseModule): """The neck of YOLOV3. It can be treated as a simplified version of FPN. It will take the result from Darknet backbone and do some upsampling and concatenation. It will finally output the detection result. Note: The input feats should be from top to bottom. i.e., from high-lvl to low-lvl But YOLOV3Neck will process them in reversed order. i.e., from bottom (high-lvl) to top (low-lvl) Args: num_scales (int): The number of scales / stages. in_channels (List[int]): The number of input channels per scale. out_channels (List[int]): The number of output channels per scale. conv_cfg (dict, optional): Config dict for convolution layer. Default: None. norm_cfg (dict, optional): Dictionary to construct and config norm layer. Default: dict(type='BN', requires_grad=True) act_cfg (dict, optional): Config dict for activation layer. Default: dict(type='LeakyReLU', negative_slope=0.1). init_cfg (dict or list[dict], optional): Initialization config dict. Default: None """ def __init__(self, num_scales, in_channels, out_channels, conv_cfg=None, norm_cfg=dict(type='BN', requires_grad=True), act_cfg=dict(type='LeakyReLU', negative_slope=0.1), init_cfg=None): super(YOLOV3Neck, self).__init__(init_cfg) assert (num_scales == len(in_channels) == len(out_channels)) self.num_scales = num_scales self.in_channels = in_channels self.out_channels = out_channels # shortcut cfg = dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) # To support arbitrary scales, the code looks awful, but it works. # Better solution is welcomed. self.detect1 = DetectionBlock(in_channels[0], out_channels[0], **cfg) for i in range(1, self.num_scales): in_c, out_c = self.in_channels[i], self.out_channels[i] inter_c = out_channels[i - 1] self.add_module(f'conv{i}', ConvModule(inter_c, out_c, 1, **cfg)) # in_c + out_c : High-lvl feats will be cat with low-lvl feats self.add_module(f'detect{i+1}', DetectionBlock(in_c + out_c, out_c, **cfg))
[文档] def forward(self, feats): assert len(feats) == self.num_scales # processed from bottom (high-lvl) to top (low-lvl) outs = [] out = self.detect1(feats[-1]) outs.append(out) for i, x in enumerate(reversed(feats[:-1])): conv = getattr(self, f'conv{i+1}') tmp = conv(out) # Cat with low-lvl feats tmp = F.interpolate(tmp, scale_factor=2) tmp = torch.cat((tmp, x), 1) detect = getattr(self, f'detect{i+2}') out = detect(tmp) outs.append(out) return tuple(outs)