Shortcuts

mmdet.core.bbox.samplers.iou_balanced_neg_sampler 源代码

# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch

from ..builder import BBOX_SAMPLERS
from .random_sampler import RandomSampler


[文档]@BBOX_SAMPLERS.register_module() class IoUBalancedNegSampler(RandomSampler): """IoU Balanced Sampling. arXiv: https://arxiv.org/pdf/1904.02701.pdf (CVPR 2019) Sampling proposals according to their IoU. `floor_fraction` of needed RoIs are sampled from proposals whose IoU are lower than `floor_thr` randomly. The others are sampled from proposals whose IoU are higher than `floor_thr`. These proposals are sampled from some bins evenly, which are split by `num_bins` via IoU evenly. Args: num (int): number of proposals. pos_fraction (float): fraction of positive proposals. floor_thr (float): threshold (minimum) IoU for IoU balanced sampling, set to -1 if all using IoU balanced sampling. floor_fraction (float): sampling fraction of proposals under floor_thr. num_bins (int): number of bins in IoU balanced sampling. """ def __init__(self, num, pos_fraction, floor_thr=-1, floor_fraction=0, num_bins=3, **kwargs): super(IoUBalancedNegSampler, self).__init__(num, pos_fraction, **kwargs) assert floor_thr >= 0 or floor_thr == -1 assert 0 <= floor_fraction <= 1 assert num_bins >= 1 self.floor_thr = floor_thr self.floor_fraction = floor_fraction self.num_bins = num_bins
[文档] def sample_via_interval(self, max_overlaps, full_set, num_expected): """Sample according to the iou interval. Args: max_overlaps (torch.Tensor): IoU between bounding boxes and ground truth boxes. full_set (set(int)): A full set of indices of boxes。 num_expected (int): Number of expected samples。 Returns: np.ndarray: Indices of samples """ max_iou = max_overlaps.max() iou_interval = (max_iou - self.floor_thr) / self.num_bins per_num_expected = int(num_expected / self.num_bins) sampled_inds = [] for i in range(self.num_bins): start_iou = self.floor_thr + i * iou_interval end_iou = self.floor_thr + (i + 1) * iou_interval tmp_set = set( np.where( np.logical_and(max_overlaps >= start_iou, max_overlaps < end_iou))[0]) tmp_inds = list(tmp_set & full_set) if len(tmp_inds) > per_num_expected: tmp_sampled_set = self.random_choice(tmp_inds, per_num_expected) else: tmp_sampled_set = np.array(tmp_inds, dtype=np.int) sampled_inds.append(tmp_sampled_set) sampled_inds = np.concatenate(sampled_inds) if len(sampled_inds) < num_expected: num_extra = num_expected - len(sampled_inds) extra_inds = np.array(list(full_set - set(sampled_inds))) if len(extra_inds) > num_extra: extra_inds = self.random_choice(extra_inds, num_extra) sampled_inds = np.concatenate([sampled_inds, extra_inds]) return sampled_inds
def _sample_neg(self, assign_result, num_expected, **kwargs): """Sample negative boxes. Args: assign_result (:obj:`AssignResult`): The assigned results of boxes. num_expected (int): The number of expected negative samples Returns: Tensor or ndarray: sampled indices. """ neg_inds = torch.nonzero(assign_result.gt_inds == 0, as_tuple=False) if neg_inds.numel() != 0: neg_inds = neg_inds.squeeze(1) if len(neg_inds) <= num_expected: return neg_inds else: max_overlaps = assign_result.max_overlaps.cpu().numpy() # balance sampling for negative samples neg_set = set(neg_inds.cpu().numpy()) if self.floor_thr > 0: floor_set = set( np.where( np.logical_and(max_overlaps >= 0, max_overlaps < self.floor_thr))[0]) iou_sampling_set = set( np.where(max_overlaps >= self.floor_thr)[0]) elif self.floor_thr == 0: floor_set = set(np.where(max_overlaps == 0)[0]) iou_sampling_set = set( np.where(max_overlaps > self.floor_thr)[0]) else: floor_set = set() iou_sampling_set = set( np.where(max_overlaps > self.floor_thr)[0]) # for sampling interval calculation self.floor_thr = 0 floor_neg_inds = list(floor_set & neg_set) iou_sampling_neg_inds = list(iou_sampling_set & neg_set) num_expected_iou_sampling = int(num_expected * (1 - self.floor_fraction)) if len(iou_sampling_neg_inds) > num_expected_iou_sampling: if self.num_bins >= 2: iou_sampled_inds = self.sample_via_interval( max_overlaps, set(iou_sampling_neg_inds), num_expected_iou_sampling) else: iou_sampled_inds = self.random_choice( iou_sampling_neg_inds, num_expected_iou_sampling) else: iou_sampled_inds = np.array( iou_sampling_neg_inds, dtype=np.int) num_expected_floor = num_expected - len(iou_sampled_inds) if len(floor_neg_inds) > num_expected_floor: sampled_floor_inds = self.random_choice( floor_neg_inds, num_expected_floor) else: sampled_floor_inds = np.array(floor_neg_inds, dtype=np.int) sampled_inds = np.concatenate( (sampled_floor_inds, iou_sampled_inds)) if len(sampled_inds) < num_expected: num_extra = num_expected - len(sampled_inds) extra_inds = np.array(list(neg_set - set(sampled_inds))) if len(extra_inds) > num_extra: extra_inds = self.random_choice(extra_inds, num_extra) sampled_inds = np.concatenate((sampled_inds, extra_inds)) sampled_inds = torch.from_numpy(sampled_inds).long().to( assign_result.gt_inds.device) return sampled_inds
Read the Docs v: v2.17.0
Versions
latest
stable
v2.17.0
v2.16.0
v2.15.1
v2.15.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.