Shortcuts

Source code for mmdet.models.losses.dice_loss

# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn

from ..builder import LOSSES
from .utils import weight_reduce_loss


def dice_loss(pred,
              target,
              weight=None,
              eps=1e-3,
              reduction='mean',
              naive_dice=False,
              avg_factor=None):
    """Calculate dice loss, there are two forms of dice loss is supported:

        - the one proposed in `V-Net: Fully Convolutional Neural
            Networks for Volumetric Medical Image Segmentation
            <https://arxiv.org/abs/1606.04797>`_.
        - the dice loss in which the power of the number in the
            denominator is the first power instead of the second
            power.

    Args:
        pred (torch.Tensor): The prediction, has a shape (n, *)
        target (torch.Tensor): The learning label of the prediction,
            shape (n, *), same shape of pred.
        weight (torch.Tensor, optional): The weight of loss for each
            prediction, has a shape (n,). Defaults to None.
        eps (float): Avoid dividing by zero. Default: 1e-3.
        reduction (str, optional): The method used to reduce the loss into
            a scalar. Defaults to 'mean'.
            Options are "none", "mean" and "sum".
        naive_dice (bool, optional): If false, use the dice
                loss defined in the V-Net paper, otherwise, use the
                naive dice loss in which the power of the number in the
                denominator is the first power instead of the second
                power.Defaults to False.
        avg_factor (int, optional): Average factor that is used to average
            the loss. Defaults to None.
    """

    input = pred.flatten(1)
    target = target.flatten(1).float()

    a = torch.sum(input * target, 1)
    if naive_dice:
        b = torch.sum(input, 1)
        c = torch.sum(target, 1)
        d = (2 * a + eps) / (b + c + eps)
    else:
        b = torch.sum(input * input, 1) + eps
        c = torch.sum(target * target, 1) + eps
        d = (2 * a) / (b + c)

    loss = 1 - d
    if weight is not None:
        assert weight.ndim == loss.ndim
        assert len(weight) == len(pred)
    loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
    return loss


[docs]@LOSSES.register_module() class DiceLoss(nn.Module): def __init__(self, use_sigmoid=True, activate=True, reduction='mean', naive_dice=False, loss_weight=1.0, eps=1e-3): """Compute dice loss. Args: use_sigmoid (bool, optional): Whether to the prediction is used for sigmoid or softmax. Defaults to True. activate (bool): Whether to activate the predictions inside, this will disable the inside sigmoid operation. Defaults to True. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". Defaults to 'mean'. naive_dice (bool, optional): If false, use the dice loss defined in the V-Net paper, otherwise, use the naive dice loss in which the power of the number in the denominator is the first power instead of the second power. Defaults to False. loss_weight (float, optional): Weight of loss. Defaults to 1.0. eps (float): Avoid dividing by zero. Defaults to 1e-3. """ super(DiceLoss, self).__init__() self.use_sigmoid = use_sigmoid self.reduction = reduction self.naive_dice = naive_dice self.loss_weight = loss_weight self.eps = eps self.activate = activate
[docs] def forward(self, pred, target, weight=None, reduction_override=None, avg_factor=None): """Forward function. Args: pred (torch.Tensor): The prediction, has a shape (n, *). target (torch.Tensor): The label of the prediction, shape (n, *), same shape of pred. weight (torch.Tensor, optional): The weight of loss for each prediction, has a shape (n,). Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Options are "none", "mean" and "sum". Returns: torch.Tensor: The calculated loss """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) if self.activate: if self.use_sigmoid: pred = pred.sigmoid() else: raise NotImplementedError loss = self.loss_weight * dice_loss( pred, target, weight, eps=self.eps, reduction=reduction, naive_dice=self.naive_dice, avg_factor=avg_factor) return loss
Read the Docs v: dev
Versions
latest
stable
3.x
v3.0.0rc0
v2.28.2
v2.28.1
v2.28.0
v2.27.0
v2.26.0
v2.25.3
v2.25.2
v2.25.1
v2.25.0
v2.24.1
v2.24.0
v2.23.0
v2.22.0
v2.21.0
v2.20.0
v2.19.1
v2.19.0
v2.18.1
v2.18.0
v2.17.0
v2.16.0
v2.15.1
v2.15.0
v2.14.0
v2.13.0
v2.12.0
v2.11.0
v2.10.0
v2.9.0
v2.8.0
v2.7.0
v2.6.0
v2.5.0
v2.4.0
v2.3.0
v2.2.1
v2.2.0
v2.1.0
v2.0.0
v1.2.0
test-3.0.0rc0
dev-3.x
dev
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.