mmdet.apis¶
- async mmdet.apis.async_inference_detector(model, imgs)[source]¶
Async inference image(s) with the detector.
- Parameters
model (nn.Module) – The loaded detector.
img (str | ndarray) – Either image files or loaded images.
- Returns
Awaitable detection results.
- mmdet.apis.get_root_logger(log_file=None, log_level=20)[source]¶
Get root logger.
- Parameters
log_file (str, optional) – File path of log. Defaults to None.
log_level (int, optional) – The level of logger. Defaults to logging.INFO.
- Returns
The obtained logger
- Return type
logging.Logger
- mmdet.apis.inference_detector(model, imgs)[source]¶
Inference image(s) with the detector.
- Parameters
model (nn.Module) – The loaded detector.
imgs (str/ndarray or list[str/ndarray] or tuple[str/ndarray]) – Either image files or loaded images.
- Returns
If imgs is a list or tuple, the same length list type results will be returned, otherwise return the detection results directly.
- mmdet.apis.init_detector(config, checkpoint=None, device='cuda:0', cfg_options=None)[source]¶
Initialize a detector from config file.
- Parameters
config (str,
Path
, ormmcv.Config
) – Config file path,Path
, or the config object.checkpoint (str, optional) – Checkpoint path. If left as None, the model will not load any weights.
cfg_options (dict) – Options to override some settings in the used config.
- Returns
The constructed detector.
- Return type
nn.Module
- mmdet.apis.init_random_seed(seed=None, device='cuda')[source]¶
Initialize random seed.
If the seed is not set, the seed will be automatically randomized, and then broadcast to all processes to prevent some potential bugs.
- Parameters
seed (int, Optional) – The seed. Default to None.
device (str) – The device where the seed will be put on. Default to ‘cuda’.
- Returns
Seed to be used.
- Return type
int
- mmdet.apis.multi_gpu_test(model, data_loader, tmpdir=None, gpu_collect=False)[source]¶
Test model with multiple gpus.
This method tests model with multiple gpus and collects the results under two different modes: gpu and cpu modes. By setting ‘gpu_collect=True’ it encodes results to gpu tensors and use gpu communication for results collection. On cpu mode it saves the results on different gpus to ‘tmpdir’ and collects them by the rank 0 worker.
- Parameters
model (nn.Module) – Model to be tested.
data_loader (nn.Dataloader) – Pytorch data loader.
tmpdir (str) – Path of directory to save the temporary results from different gpus under cpu mode.
gpu_collect (bool) – Option to use either gpu or cpu to collect results.
- Returns
The prediction results.
- Return type
list
- mmdet.apis.set_random_seed(seed, deterministic=False)[source]¶
Set random seed.
- Parameters
seed (int) – Seed to be used.
deterministic (bool) – Whether to set the deterministic option for CUDNN backend, i.e., set torch.backends.cudnn.deterministic to True and torch.backends.cudnn.benchmark to False. Default: False.
- mmdet.apis.show_result_pyplot(model, img, result, score_thr=0.3, title='result', wait_time=0, palette=None, out_file=None)[source]¶
Visualize the detection results on the image.
- Parameters
model (nn.Module) – The loaded detector.
img (str or np.ndarray) – Image filename or loaded image.
result (tuple[list] or list) – The detection result, can be either (bbox, segm) or just bbox.
score_thr (float) – The threshold to visualize the bboxes and masks.
title (str) – Title of the pyplot figure.
wait_time (float) – Value of waitKey param. Default: 0.
palette (str or tuple(int) or
Color
) – Color. The tuple of color should be in BGR order.out_file (str or None) – The path to write the image. Default: None.
mmdet.core¶
anchor¶
- class mmdet.core.anchor.AnchorGenerator(strides, ratios, scales=None, base_sizes=None, scale_major=True, octave_base_scale=None, scales_per_octave=None, centers=None, center_offset=0.0)[source]¶
Standard anchor generator for 2D anchor-based detectors.
- Parameters
strides (list[int] | list[tuple[int, int]]) – Strides of anchors in multiple feature levels in order (w, h).
ratios (list[float]) – The list of ratios between the height and width of anchors in a single level.
scales (list[int] | None) – Anchor scales for anchors in a single level. It cannot be set at the same time if octave_base_scale and scales_per_octave are set.
base_sizes (list[int] | None) – The basic sizes of anchors in multiple levels. If None is given, strides will be used as base_sizes. (If strides are non square, the shortest stride is taken.)
scale_major (bool) – Whether to multiply scales first when generating base anchors. If true, the anchors in the same row will have the same scales. By default it is True in V2.0
octave_base_scale (int) – The base scale of octave.
scales_per_octave (int) – Number of scales for each octave. octave_base_scale and scales_per_octave are usually used in retinanet and the scales should be None when they are set.
centers (list[tuple[float, float]] | None) – The centers of the anchor relative to the feature grid center in multiple feature levels. By default it is set to be None and not used. If a list of tuple of float is given, they will be used to shift the centers of anchors.
center_offset (float) – The offset of center in proportion to anchors’ width and height. By default it is 0 in V2.0.
Examples
>>> from mmdet.core import AnchorGenerator >>> self = AnchorGenerator([16], [1.], [1.], [9]) >>> all_anchors = self.grid_priors([(2, 2)], device='cpu') >>> print(all_anchors) [tensor([[-4.5000, -4.5000, 4.5000, 4.5000], [11.5000, -4.5000, 20.5000, 4.5000], [-4.5000, 11.5000, 4.5000, 20.5000], [11.5000, 11.5000, 20.5000, 20.5000]])] >>> self = AnchorGenerator([16, 32], [1.], [1.], [9, 18]) >>> all_anchors = self.grid_priors([(2, 2), (1, 1)], device='cpu') >>> print(all_anchors) [tensor([[-4.5000, -4.5000, 4.5000, 4.5000], [11.5000, -4.5000, 20.5000, 4.5000], [-4.5000, 11.5000, 4.5000, 20.5000], [11.5000, 11.5000, 20.5000, 20.5000]]), tensor([[-9., -9., 9., 9.]])]
- gen_base_anchors()[source]¶
Generate base anchors.
- Returns
Base anchors of a feature grid in multiple feature levels.
- Return type
list(torch.Tensor)
- gen_single_level_base_anchors(base_size, scales, ratios, center=None)[source]¶
Generate base anchors of a single level.
- Parameters
base_size (int | float) – Basic size of an anchor.
scales (torch.Tensor) – Scales of the anchor.
ratios (torch.Tensor) – The ratio between between the height and width of anchors in a single level.
center (tuple[float], optional) – The center of the base anchor related to a single feature grid. Defaults to None.
- Returns
Anchors in a single-level feature maps.
- Return type
torch.Tensor
- grid_anchors(featmap_sizes, device='cuda')[source]¶
Generate grid anchors in multiple feature levels.
- Parameters
featmap_sizes (list[tuple]) – List of feature map sizes in multiple feature levels.
device (str) – Device where the anchors will be put on.
- Returns
Anchors in multiple feature levels. The sizes of each tensor should be [N, 4], where N = width * height * num_base_anchors, width and height are the sizes of the corresponding feature level, num_base_anchors is the number of anchors for that level.
- Return type
list[torch.Tensor]
- grid_priors(featmap_sizes, dtype=torch.float32, device='cuda')[source]¶
Generate grid anchors in multiple feature levels.
- Parameters
featmap_sizes (list[tuple]) – List of feature map sizes in multiple feature levels.
dtype (
torch.dtype
) – Dtype of priors. Default: torch.float32.device (str) – The device where the anchors will be put on.
- Returns
Anchors in multiple feature levels. The sizes of each tensor should be [N, 4], where N = width * height * num_base_anchors, width and height are the sizes of the corresponding feature level, num_base_anchors is the number of anchors for that level.
- Return type
list[torch.Tensor]
- property num_base_anchors¶
total number of base anchors in a feature grid
- Type
list[int]
- property num_base_priors¶
The number of priors (anchors) at a point on the feature grid
- Type
list[int]
- property num_levels¶
number of feature levels that the generator will be applied
- Type
int
- single_level_grid_anchors(base_anchors, featmap_size, stride=(16, 16), device='cuda')[source]¶
Generate grid anchors of a single level.
Note
This function is usually called by method
self.grid_anchors
.- Parameters
base_anchors (torch.Tensor) – The base anchors of a feature grid.
featmap_size (tuple[int]) – Size of the feature maps.
stride (tuple[int], optional) – Stride of the feature map in order (w, h). Defaults to (16, 16).
device (str, optional) – Device the tensor will be put on. Defaults to ‘cuda’.
- Returns
Anchors in the overall feature maps.
- Return type
torch.Tensor
- single_level_grid_priors(featmap_size, level_idx, dtype=torch.float32, device='cuda')[source]¶
Generate grid anchors of a single level.
Note
This function is usually called by method
self.grid_priors
.- Parameters
featmap_size (tuple[int]) – Size of the feature maps.
level_idx (int) – The index of corresponding feature map level.
(obj (dtype) – torch.dtype): Date type of points.Defaults to
torch.float32
.device (str, optional) – The device the tensor will be put on. Defaults to ‘cuda’.
- Returns
Anchors in the overall feature maps.
- Return type
torch.Tensor
- single_level_valid_flags(featmap_size, valid_size, num_base_anchors, device='cuda')[source]¶
Generate the valid flags of anchor in a single feature map.
- Parameters
featmap_size (tuple[int]) – The size of feature maps, arrange as (h, w).
valid_size (tuple[int]) – The valid size of the feature maps.
num_base_anchors (int) – The number of base anchors.
device (str, optional) – Device where the flags will be put on. Defaults to ‘cuda’.
- Returns
The valid flags of each anchor in a single level feature map.
- Return type
torch.Tensor
- sparse_priors(prior_idxs, featmap_size, level_idx, dtype=torch.float32, device='cuda')[source]¶
Generate sparse anchors according to the
prior_idxs
.- Parameters
prior_idxs (Tensor) – The index of corresponding anchors in the feature map.
featmap_size (tuple[int]) – feature map size arrange as (h, w).
level_idx (int) – The level index of corresponding feature map.
(obj (device) – torch.dtype): Date type of points.Defaults to
torch.float32
.(obj – torch.device): The device where the points is located.
- Returns
- Anchor with shape (N, 4), N should be equal to
the length of
prior_idxs
.
- Return type
Tensor
- valid_flags(featmap_sizes, pad_shape, device='cuda')[source]¶
Generate valid flags of anchors in multiple feature levels.
- Parameters
featmap_sizes (list(tuple)) – List of feature map sizes in multiple feature levels.
pad_shape (tuple) – The padded shape of the image.
device (str) – Device where the anchors will be put on.
- Returns
Valid flags of anchors in multiple levels.
- Return type
list(torch.Tensor)
- class mmdet.core.anchor.LegacyAnchorGenerator(strides, ratios, scales=None, base_sizes=None, scale_major=True, octave_base_scale=None, scales_per_octave=None, centers=None, center_offset=0.0)[source]¶
Legacy anchor generator used in MMDetection V1.x.
Note
Difference to the V2.0 anchor generator:
The center offset of V1.x anchors are set to be 0.5 rather than 0.
The width/height are minused by 1 when calculating the anchors’ centers and corners to meet the V1.x coordinate system.
The anchors’ corners are quantized.
- Parameters
strides (list[int] | list[tuple[int]]) – Strides of anchors in multiple feature levels.
ratios (list[float]) – The list of ratios between the height and width of anchors in a single level.
scales (list[int] | None) – Anchor scales for anchors in a single level. It cannot be set at the same time if octave_base_scale and scales_per_octave are set.
base_sizes (list[int]) – The basic sizes of anchors in multiple levels. If None is given, strides will be used to generate base_sizes.
scale_major (bool) – Whether to multiply scales first when generating base anchors. If true, the anchors in the same row will have the same scales. By default it is True in V2.0
octave_base_scale (int) – The base scale of octave.
scales_per_octave (int) – Number of scales for each octave. octave_base_scale and scales_per_octave are usually used in retinanet and the scales should be None when they are set.
centers (list[tuple[float, float]] | None) – The centers of the anchor relative to the feature grid center in multiple feature levels. By default it is set to be None and not used. It a list of float is given, this list will be used to shift the centers of anchors.
center_offset (float) – The offset of center in proportion to anchors’ width and height. By default it is 0.5 in V2.0 but it should be 0.5 in v1.x models.
Examples
>>> from mmdet.core import LegacyAnchorGenerator >>> self = LegacyAnchorGenerator( >>> [16], [1.], [1.], [9], center_offset=0.5) >>> all_anchors = self.grid_anchors(((2, 2),), device='cpu') >>> print(all_anchors) [tensor([[ 0., 0., 8., 8.], [16., 0., 24., 8.], [ 0., 16., 8., 24.], [16., 16., 24., 24.]])]
- gen_single_level_base_anchors(base_size, scales, ratios, center=None)[source]¶
Generate base anchors of a single level.
Note
The width/height of anchors are minused by 1 when calculating the centers and corners to meet the V1.x coordinate system.
- Parameters
base_size (int | float) – Basic size of an anchor.
scales (torch.Tensor) – Scales of the anchor.
ratios (torch.Tensor) – The ratio between between the height. and width of anchors in a single level.
center (tuple[float], optional) – The center of the base anchor related to a single feature grid. Defaults to None.
- Returns
Anchors in a single-level feature map.
- Return type
torch.Tensor
- class mmdet.core.anchor.MlvlPointGenerator(strides, offset=0.5)[source]¶
Standard points generator for multi-level (Mlvl) feature maps in 2D points-based detectors.
- Parameters
strides (list[int] | list[tuple[int, int]]) – Strides of anchors in multiple feature levels in order (w, h).
offset (float) – The offset of points, the value is normalized with corresponding stride. Defaults to 0.5.
- grid_priors(featmap_sizes, dtype=torch.float32, device='cuda', with_stride=False)[source]¶
Generate grid points of multiple feature levels.
- Parameters
featmap_sizes (list[tuple]) – List of feature map sizes in multiple feature levels, each size arrange as as (h, w).
dtype (
dtype
) – Dtype of priors. Default: torch.float32.device (str) – The device where the anchors will be put on.
with_stride (bool) – Whether to concatenate the stride to the last dimension of points.
- Returns
Points of multiple feature levels. The sizes of each tensor should be (N, 2) when with stride is
False
, where N = width * height, width and height are the sizes of the corresponding feature level, and the last dimension 2 represent (coord_x, coord_y), otherwise the shape should be (N, 4), and the last dimension 4 represent (coord_x, coord_y, stride_w, stride_h).- Return type
list[torch.Tensor]
- property num_base_priors¶
The number of priors (points) at a point on the feature grid
- Type
list[int]
- property num_levels¶
number of feature levels that the generator will be applied
- Type
int
- single_level_grid_priors(featmap_size, level_idx, dtype=torch.float32, device='cuda', with_stride=False)[source]¶
Generate grid Points of a single level.
Note
This function is usually called by method
self.grid_priors
.- Parameters
featmap_size (tuple[int]) – Size of the feature maps, arrange as (h, w).
level_idx (int) – The index of corresponding feature map level.
dtype (
dtype
) – Dtype of priors. Default: torch.float32.device (str, optional) – The device the tensor will be put on. Defaults to ‘cuda’.
with_stride (bool) – Concatenate the stride to the last dimension of points.
- Returns
Points of single feature levels. The shape of tensor should be (N, 2) when with stride is
False
, where N = width * height, width and height are the sizes of the corresponding feature level, and the last dimension 2 represent (coord_x, coord_y), otherwise the shape should be (N, 4), and the last dimension 4 represent (coord_x, coord_y, stride_w, stride_h).- Return type
Tensor
- single_level_valid_flags(featmap_size, valid_size, device='cuda')[source]¶
Generate the valid flags of points of a single feature map.
- Parameters
featmap_size (tuple[int]) – The size of feature maps, arrange as as (h, w).
valid_size (tuple[int]) – The valid size of the feature maps. The size arrange as as (h, w).
device (str, optional) – The device where the flags will be put on. Defaults to ‘cuda’.
- Returns
The valid flags of each points in a single level feature map.
- Return type
torch.Tensor
- sparse_priors(prior_idxs, featmap_size, level_idx, dtype=torch.float32, device='cuda')[source]¶
Generate sparse points according to the
prior_idxs
.- Parameters
prior_idxs (Tensor) – The index of corresponding anchors in the feature map.
featmap_size (tuple[int]) – feature map size arrange as (w, h).
level_idx (int) – The level index of corresponding feature map.
(obj (device) – torch.dtype): Date type of points. Defaults to
torch.float32
.(obj – torch.device): The device where the points is located.
- Returns
Anchor with shape (N, 2), N should be equal to the length of
prior_idxs
. And last dimension 2 represent (coord_x, coord_y).- Return type
Tensor
- valid_flags(featmap_sizes, pad_shape, device='cuda')[source]¶
Generate valid flags of points of multiple feature levels.
- Parameters
featmap_sizes (list(tuple)) – List of feature map sizes in multiple feature levels, each size arrange as as (h, w).
pad_shape (tuple(int)) – The padded shape of the image, arrange as (h, w).
device (str) – The device where the anchors will be put on.
- Returns
Valid flags of points of multiple levels.
- Return type
list(torch.Tensor)
- class mmdet.core.anchor.YOLOAnchorGenerator(strides, base_sizes)[source]¶
Anchor generator for YOLO.
- Parameters
strides (list[int] | list[tuple[int, int]]) – Strides of anchors in multiple feature levels.
base_sizes (list[list[tuple[int, int]]]) – The basic sizes of anchors in multiple levels.
- gen_base_anchors()[source]¶
Generate base anchors.
- Returns
Base anchors of a feature grid in multiple feature levels.
- Return type
list(torch.Tensor)
- gen_single_level_base_anchors(base_sizes_per_level, center=None)[source]¶
Generate base anchors of a single level.
- Parameters
base_sizes_per_level (list[tuple[int, int]]) – Basic sizes of anchors.
center (tuple[float], optional) – The center of the base anchor related to a single feature grid. Defaults to None.
- Returns
Anchors in a single-level feature maps.
- Return type
torch.Tensor
- property num_levels¶
number of feature levels that the generator will be applied
- Type
int
- responsible_flags(featmap_sizes, gt_bboxes, device='cuda')[source]¶
Generate responsible anchor flags of grid cells in multiple scales.
- Parameters
featmap_sizes (list(tuple)) – List of feature map sizes in multiple feature levels.
gt_bboxes (Tensor) – Ground truth boxes, shape (n, 4).
device (str) – Device where the anchors will be put on.
- Returns
responsible flags of anchors in multiple level
- Return type
list(torch.Tensor)
- single_level_responsible_flags(featmap_size, gt_bboxes, stride, num_base_anchors, device='cuda')[source]¶
Generate the responsible flags of anchor in a single feature map.
- Parameters
featmap_size (tuple[int]) – The size of feature maps.
gt_bboxes (Tensor) – Ground truth boxes, shape (n, 4).
stride (tuple(int)) – stride of current level
num_base_anchors (int) – The number of base anchors.
device (str, optional) – Device where the flags will be put on. Defaults to ‘cuda’.
- Returns
The valid flags of each anchor in a single level feature map.
- Return type
torch.Tensor
- mmdet.core.anchor.anchor_inside_flags(flat_anchors, valid_flags, img_shape, allowed_border=0)[source]¶
Check whether the anchors are inside the border.
- Parameters
flat_anchors (torch.Tensor) – Flatten anchors, shape (n, 4).
valid_flags (torch.Tensor) – An existing valid flags of anchors.
img_shape (tuple(int)) – Shape of current image.
allowed_border (int, optional) – The border to allow the valid anchor. Defaults to 0.
- Returns
Flags indicating whether the anchors are inside a valid range.
- Return type
torch.Tensor
- mmdet.core.anchor.calc_region(bbox, ratio, featmap_size=None)[source]¶
Calculate a proportional bbox region.
The bbox center are fixed and the new h’ and w’ is h * ratio and w * ratio.
- Parameters
bbox (Tensor) – Bboxes to calculate regions, shape (n, 4).
ratio (float) – Ratio of the output region.
featmap_size (tuple) – Feature map size used for clipping the boundary.
- Returns
x1, y1, x2, y2
- Return type
tuple
bbox¶
- class mmdet.core.bbox.AssignResult(num_gts, gt_inds, max_overlaps, labels=None)[source]¶
Stores assignments between predicted and truth boxes.
- num_gts¶
the number of truth boxes considered when computing this assignment
- Type
int
- gt_inds¶
for each predicted box indicates the 1-based index of the assigned truth box. 0 means unassigned and -1 means ignore.
- Type
LongTensor
- max_overlaps¶
the iou between the predicted box and its assigned truth box.
- Type
FloatTensor
- labels¶
If specified, for each predicted box indicates the category label of the assigned truth box.
- Type
None | LongTensor
Example
>>> # An assign result between 4 predicted boxes and 9 true boxes >>> # where only two boxes were assigned. >>> num_gts = 9 >>> max_overlaps = torch.LongTensor([0, .5, .9, 0]) >>> gt_inds = torch.LongTensor([-1, 1, 2, 0]) >>> labels = torch.LongTensor([0, 3, 4, 0]) >>> self = AssignResult(num_gts, gt_inds, max_overlaps, labels) >>> print(str(self)) # xdoctest: +IGNORE_WANT <AssignResult(num_gts=9, gt_inds.shape=(4,), max_overlaps.shape=(4,), labels.shape=(4,))> >>> # Force addition of gt labels (when adding gt as proposals) >>> new_labels = torch.LongTensor([3, 4, 5]) >>> self.add_gt_(new_labels) >>> print(str(self)) # xdoctest: +IGNORE_WANT <AssignResult(num_gts=9, gt_inds.shape=(7,), max_overlaps.shape=(7,), labels.shape=(7,))>
- add_gt_(gt_labels)[source]¶
Add ground truth as assigned results.
- Parameters
gt_labels (torch.Tensor) – Labels of gt boxes
- property info¶
a dictionary of info about the object
- Type
dict
- property num_preds¶
the number of predictions in this assignment
- Type
int
- classmethod random(**kwargs)[source]¶
Create random AssignResult for tests or debugging.
- Parameters
num_preds – number of predicted boxes
num_gts – number of true boxes
p_ignore (float) – probability of a predicted box assigned to an ignored truth
p_assigned (float) – probability of a predicted box not being assigned
p_use_label (float | bool) – with labels or not
rng (None | int | numpy.random.RandomState) – seed or state
- Returns
Randomly generated assign results.
- Return type
Example
>>> from mmdet.core.bbox.assigners.assign_result import * # NOQA >>> self = AssignResult.random() >>> print(self.info)
- class mmdet.core.bbox.BaseBBoxCoder(**kwargs)[source]¶
Base bounding box coder.
- class mmdet.core.bbox.BaseSampler(num, pos_fraction, neg_pos_ub=-1, add_gt_as_proposals=True, **kwargs)[source]¶
Base class of samplers.
- sample(assign_result, bboxes, gt_bboxes, gt_labels=None, **kwargs)[source]¶
Sample positive and negative bboxes.
This is a simple implementation of bbox sampling given candidates, assigning results and ground truth bboxes.
- Parameters
assign_result (
AssignResult
) – Bbox assigning results.bboxes (Tensor) – Boxes to be sampled from.
gt_bboxes (Tensor) – Ground truth bboxes.
gt_labels (Tensor, optional) – Class labels of ground truth bboxes.
- Returns
Sampling result.
- Return type
Example
>>> from mmdet.core.bbox import RandomSampler >>> from mmdet.core.bbox import AssignResult >>> from mmdet.core.bbox.demodata import ensure_rng, random_boxes >>> rng = ensure_rng(None) >>> assign_result = AssignResult.random(rng=rng) >>> bboxes = random_boxes(assign_result.num_preds, rng=rng) >>> gt_bboxes = random_boxes(assign_result.num_gts, rng=rng) >>> gt_labels = None >>> self = RandomSampler(num=32, pos_fraction=0.5, neg_pos_ub=-1, >>> add_gt_as_proposals=False) >>> self = self.sample(assign_result, bboxes, gt_bboxes, gt_labels)
- class mmdet.core.bbox.BboxOverlaps2D(scale=1.0, dtype=None)[source]¶
2D Overlaps (e.g. IoUs, GIoUs) Calculator.
- class mmdet.core.bbox.CenterRegionAssigner(pos_scale, neg_scale, min_pos_iof=0.01, ignore_gt_scale=0.5, foreground_dominate=False, iou_calculator={'type': 'BboxOverlaps2D'})[source]¶
Assign pixels at the center region of a bbox as positive.
Each proposals will be assigned with -1, 0, or a positive integer indicating the ground truth index. - -1: negative samples - semi-positive numbers: positive sample, index (0-based) of assigned gt
- Parameters
pos_scale (float) – Threshold within which pixels are labelled as positive.
neg_scale (float) – Threshold above which pixels are labelled as positive.
min_pos_iof (float) – Minimum iof of a pixel with a gt to be labelled as positive. Default: 1e-2
ignore_gt_scale (float) – Threshold within which the pixels are ignored when the gt is labelled as shadowed. Default: 0.5
foreground_dominate (bool) – If True, the bbox will be assigned as positive when a gt’s kernel region overlaps with another’s shadowed (ignored) region, otherwise it is set as ignored. Default to False.
- assign(bboxes, gt_bboxes, gt_bboxes_ignore=None, gt_labels=None)[source]¶
Assign gt to bboxes.
This method assigns gts to every bbox (proposal/anchor), each bbox will be assigned with -1, or a semi-positive number. -1 means negative sample, semi-positive number is the index (0-based) of assigned gt.
- Parameters
bboxes (Tensor) – Bounding boxes to be assigned, shape(n, 4).
gt_bboxes (Tensor) – Groundtruth boxes, shape (k, 4).
gt_bboxes_ignore (tensor, optional) – Ground truth bboxes that are labelled as ignored, e.g., crowd boxes in COCO.
gt_labels (tensor, optional) – Label of gt_bboxes, shape (num_gts,).
- Returns
The assigned result. Note that shadowed_labels of shape (N, 2) is also added as an assign_result attribute. shadowed_labels is a tensor composed of N pairs of anchor_ind, class_label], where N is the number of anchors that lie in the outer region of a gt, anchor_ind is the shadowed anchor index and class_label is the shadowed class label.
- Return type
Example
>>> self = CenterRegionAssigner(0.2, 0.2) >>> bboxes = torch.Tensor([[0, 0, 10, 10], [10, 10, 20, 20]]) >>> gt_bboxes = torch.Tensor([[0, 0, 10, 10]]) >>> assign_result = self.assign(bboxes, gt_bboxes) >>> expected_gt_inds = torch.LongTensor([1, 0]) >>> assert torch.all(assign_result.gt_inds == expected_gt_inds)
- assign_one_hot_gt_indices(is_bbox_in_gt_core, is_bbox_in_gt_shadow, gt_priority=None)[source]¶
Assign only one gt index to each prior box.
Gts with large gt_priority are more likely to be assigned.
- Parameters
is_bbox_in_gt_core (Tensor) – Bool tensor indicating the bbox center is in the core area of a gt (e.g. 0-0.2). Shape: (num_prior, num_gt).
is_bbox_in_gt_shadow (Tensor) – Bool tensor indicating the bbox center is in the shadowed area of a gt (e.g. 0.2-0.5). Shape: (num_prior, num_gt).
gt_priority (Tensor) – Priorities of gts. The gt with a higher priority is more likely to be assigned to the bbox when the bbox match with multiple gts. Shape: (num_gt, ).
- Returns
Returns (assigned_gt_inds, shadowed_gt_inds).
assigned_gt_inds: The assigned gt index of each prior bbox (i.e. index from 1 to num_gts). Shape: (num_prior, ).
shadowed_gt_inds: shadowed gt indices. It is a tensor of shape (num_ignore, 2) with first column being the shadowed prior bbox indices and the second column the shadowed gt indices (1-based).
- Return type
tuple
- get_gt_priorities(gt_bboxes)[source]¶
Get gt priorities according to their areas.
Smaller gt has higher priority.
- Parameters
gt_bboxes (Tensor) – Ground truth boxes, shape (k, 4).
- Returns
The priority of gts so that gts with larger priority is more likely to be assigned. Shape (k, )
- Return type
Tensor
- class mmdet.core.bbox.CombinedSampler(pos_sampler, neg_sampler, **kwargs)[source]¶
A sampler that combines positive sampler and negative sampler.
- class mmdet.core.bbox.DeltaXYWHBBoxCoder(target_means=(0.0, 0.0, 0.0, 0.0), target_stds=(1.0, 1.0, 1.0, 1.0), clip_border=True, add_ctr_clamp=False, ctr_clamp=32)[source]¶
Delta XYWH BBox coder.
Following the practice in R-CNN, this coder encodes bbox (x1, y1, x2, y2) into delta (dx, dy, dw, dh) and decodes delta (dx, dy, dw, dh) back to original bbox (x1, y1, x2, y2).
- Parameters
target_means (Sequence[float]) – Denormalizing means of target for delta coordinates
target_stds (Sequence[float]) – Denormalizing standard deviation of target for delta coordinates
clip_border (bool, optional) – Whether clip the objects outside the border of the image. Defaults to True.
add_ctr_clamp (bool) – Whether to add center clamp, when added, the predicted box is clamped is its center is too far away from the original anchor’s center. Only used by YOLOF. Default False.
ctr_clamp (int) – the maximum pixel shift to clamp. Only used by YOLOF. Default 32.
- decode(bboxes, pred_bboxes, max_shape=None, wh_ratio_clip=0.016)[source]¶
Apply transformation pred_bboxes to boxes.
- Parameters
bboxes (torch.Tensor) – Basic boxes. Shape (B, N, 4) or (N, 4)
pred_bboxes (Tensor) – Encoded offsets with respect to each roi. Has shape (B, N, num_classes * 4) or (B, N, 4) or (N, num_classes * 4) or (N, 4). Note N = num_anchors * W * H when rois is a grid of anchors.Offset encoding follows 1.
Sequence[ (max_shape (Sequence[int] or torch.Tensor or) – Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If bboxes shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]] and the length of max_shape should also be B.
wh_ratio_clip (float, optional) – The allowed ratio between width and height.
- Returns
Decoded boxes.
- Return type
torch.Tensor
- encode(bboxes, gt_bboxes)[source]¶
Get box regression transformation deltas that can be used to transform the
bboxes
into thegt_bboxes
.- Parameters
bboxes (torch.Tensor) – Source boxes, e.g., object proposals.
gt_bboxes (torch.Tensor) – Target of the transformation, e.g., ground-truth boxes.
- Returns
Box transformation deltas
- Return type
torch.Tensor
- class mmdet.core.bbox.DistancePointBBoxCoder(clip_border=True)[source]¶
Distance Point BBox coder.
This coder encodes gt bboxes (x1, y1, x2, y2) into (top, bottom, left, right) and decode it back to the original.
- Parameters
clip_border (bool, optional) – Whether clip the objects outside the border of the image. Defaults to True.
- decode(points, pred_bboxes, max_shape=None)[source]¶
Decode distance prediction to bounding box.
- Parameters
points (Tensor) – Shape (B, N, 2) or (N, 2).
pred_bboxes (Tensor) – Distance from the given point to 4 boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4)
Sequence[ (max_shape (Sequence[int] or torch.Tensor or) – Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If priors shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]], and the length of max_shape should also be B. Default None.
- Returns
Boxes with shape (N, 4) or (B, N, 4)
- Return type
Tensor
- encode(points, gt_bboxes, max_dis=None, eps=0.1)[source]¶
Encode bounding box to distances.
- Parameters
points (Tensor) – Shape (N, 2), The format is [x, y].
gt_bboxes (Tensor) – Shape (N, 4), The format is “xyxy”
max_dis (float) – Upper bound of the distance. Default None.
eps (float) – a small value to ensure target < max_dis, instead <=. Default 0.1.
- Returns
Box transformation deltas. The shape is (N, 4).
- Return type
Tensor
- class mmdet.core.bbox.InstanceBalancedPosSampler(num, pos_fraction, neg_pos_ub=-1, add_gt_as_proposals=True, **kwargs)[source]¶
Instance balanced sampler that samples equal number of positive samples for each instance.
- class mmdet.core.bbox.IoUBalancedNegSampler(num, pos_fraction, floor_thr=-1, floor_fraction=0, num_bins=3, **kwargs)[source]¶
IoU Balanced Sampling.
arXiv: https://arxiv.org/pdf/1904.02701.pdf (CVPR 2019)
Sampling proposals according to their IoU. floor_fraction of needed RoIs are sampled from proposals whose IoU are lower than floor_thr randomly. The others are sampled from proposals whose IoU are higher than floor_thr. These proposals are sampled from some bins evenly, which are split by num_bins via IoU evenly.
- Parameters
num (int) – number of proposals.
pos_fraction (float) – fraction of positive proposals.
floor_thr (float) – threshold (minimum) IoU for IoU balanced sampling, set to -1 if all using IoU balanced sampling.
floor_fraction (float) – sampling fraction of proposals under floor_thr.
num_bins (int) – number of bins in IoU balanced sampling.
- sample_via_interval(max_overlaps, full_set, num_expected)[source]¶
Sample according to the iou interval.
- Parameters
max_overlaps (torch.Tensor) – IoU between bounding boxes and ground truth boxes.
full_set (set(int)) – A full set of indices of boxes。
num_expected (int) – Number of expected samples。
- Returns
Indices of samples
- Return type
np.ndarray
- class mmdet.core.bbox.MaxIoUAssigner(pos_iou_thr, neg_iou_thr, min_pos_iou=0.0, gt_max_assign_all=True, ignore_iof_thr=-1, ignore_wrt_candidates=True, match_low_quality=True, gpu_assign_thr=-1, iou_calculator={'type': 'BboxOverlaps2D'})[source]¶
Assign a corresponding gt bbox or background to each bbox.
Each proposals will be assigned with -1, or a semi-positive integer indicating the ground truth index.
-1: negative sample, no assigned gt
semi-positive integer: positive sample, index (0-based) of assigned gt
- Parameters
pos_iou_thr (float) – IoU threshold for positive bboxes.
neg_iou_thr (float or tuple) – IoU threshold for negative bboxes.
min_pos_iou (float) – Minimum iou for a bbox to be considered as a positive bbox. Positive samples can have smaller IoU than pos_iou_thr due to the 4th step (assign max IoU sample to each gt). min_pos_iou is set to avoid assigning bboxes that have extremely small iou with GT as positive samples. It brings about 0.3 mAP improvements in 1x schedule but does not affect the performance of 3x schedule. More comparisons can be found in PR #7464.
gt_max_assign_all (bool) – Whether to assign all bboxes with the same highest overlap with some gt to that gt.
ignore_iof_thr (float) – IoF threshold for ignoring bboxes (if gt_bboxes_ignore is specified). Negative values mean not ignoring any bboxes.
ignore_wrt_candidates (bool) – Whether to compute the iof between bboxes and gt_bboxes_ignore, or the contrary.
match_low_quality (bool) – Whether to allow low quality matches. This is usually allowed for RPN and single stage detectors, but not allowed in the second stage. Details are demonstrated in Step 4.
gpu_assign_thr (int) – The upper bound of the number of GT for GPU assign. When the number of gt is above this threshold, will assign on CPU device. Negative values mean not assign on CPU.
- assign(bboxes, gt_bboxes, gt_bboxes_ignore=None, gt_labels=None)[source]¶
Assign gt to bboxes.
This method assign a gt bbox to every bbox (proposal/anchor), each bbox will be assigned with -1, or a semi-positive number. -1 means negative sample, semi-positive number is the index (0-based) of assigned gt. The assignment is done in following steps, the order matters.
assign every bbox to the background
assign proposals whose iou with all gts < neg_iou_thr to 0
for each bbox, if the iou with its nearest gt >= pos_iou_thr, assign it to that bbox
for each gt bbox, assign its nearest proposals (may be more than one) to itself
- Parameters
bboxes (Tensor) – Bounding boxes to be assigned, shape(n, 4).
gt_bboxes (Tensor) – Groundtruth boxes, shape (k, 4).
gt_bboxes_ignore (Tensor, optional) – Ground truth bboxes that are labelled as ignored, e.g., crowd boxes in COCO.
gt_labels (Tensor, optional) – Label of gt_bboxes, shape (k, ).
- Returns
The assign result.
- Return type
Example
>>> self = MaxIoUAssigner(0.5, 0.5) >>> bboxes = torch.Tensor([[0, 0, 10, 10], [10, 10, 20, 20]]) >>> gt_bboxes = torch.Tensor([[0, 0, 10, 9]]) >>> assign_result = self.assign(bboxes, gt_bboxes) >>> expected_gt_inds = torch.LongTensor([1, 0]) >>> assert torch.all(assign_result.gt_inds == expected_gt_inds)
- class mmdet.core.bbox.OHEMSampler(num, pos_fraction, context, neg_pos_ub=-1, add_gt_as_proposals=True, loss_key='loss_cls', **kwargs)[source]¶
Online Hard Example Mining Sampler described in Training Region-based Object Detectors with Online Hard Example Mining.
- class mmdet.core.bbox.PseudoSampler(**kwargs)[source]¶
A pseudo sampler that does not do sampling actually.
- sample(assign_result, bboxes, gt_bboxes, *args, **kwargs)[source]¶
Directly returns the positive and negative indices of samples.
- Parameters
assign_result (
AssignResult
) – Assigned resultsbboxes (torch.Tensor) – Bounding boxes
gt_bboxes (torch.Tensor) – Ground truth boxes
- Returns
sampler results
- Return type
- class mmdet.core.bbox.RandomSampler(num, pos_fraction, neg_pos_ub=-1, add_gt_as_proposals=True, **kwargs)[source]¶
Random sampler.
- Parameters
num (int) – Number of samples
pos_fraction (float) – Fraction of positive samples
neg_pos_ub (int, optional) – Upper bound number of negative and positive samples. Defaults to -1.
add_gt_as_proposals (bool, optional) – Whether to add ground truth boxes as proposals. Defaults to True.
- random_choice(gallery, num)[source]¶
Random select some elements from the gallery.
If gallery is a Tensor, the returned indices will be a Tensor; If gallery is a ndarray or list, the returned indices will be a ndarray.
- Parameters
gallery (Tensor | ndarray | list) – indices pool.
num (int) – expected sample num.
- Returns
sampled indices.
- Return type
Tensor or ndarray
- class mmdet.core.bbox.RegionAssigner(center_ratio=0.2, ignore_ratio=0.5)[source]¶
Assign a corresponding gt bbox or background to each bbox.
Each proposals will be assigned with -1, 0, or a positive integer indicating the ground truth index.
-1: don’t care
0: negative sample, no assigned gt
positive integer: positive sample, index (1-based) of assigned gt
- Parameters
center_ratio – ratio of the region in the center of the bbox to define positive sample.
ignore_ratio – ratio of the region to define ignore samples.
- assign(mlvl_anchors, mlvl_valid_flags, gt_bboxes, img_meta, featmap_sizes, anchor_scale, anchor_strides, gt_bboxes_ignore=None, gt_labels=None, allowed_border=0)[source]¶
Assign gt to anchors.
This method assign a gt bbox to every bbox (proposal/anchor), each bbox will be assigned with -1, 0, or a positive number. -1 means don’t care, 0 means negative sample, positive number is the index (1-based) of assigned gt.
The assignment is done in following steps, and the order matters.
Assign every anchor to 0 (negative)
(For each gt_bboxes) Compute ignore flags based on ignore_region then assign -1 to anchors w.r.t. ignore flags
(For each gt_bboxes) Compute pos flags based on center_region then assign gt_bboxes to anchors w.r.t. pos flags
(For each gt_bboxes) Compute ignore flags based on adjacent anchor level then assign -1 to anchors w.r.t. ignore flags
Assign anchor outside of image to -1
- Parameters
mlvl_anchors (list[Tensor]) – Multi level anchors.
mlvl_valid_flags (list[Tensor]) – Multi level valid flags.
gt_bboxes (Tensor) – Ground truth bboxes of image
img_meta (dict) – Meta info of image.
featmap_sizes (list[Tensor]) – Feature mapsize each level
anchor_scale (int) – Scale of the anchor.
anchor_strides (list[int]) – Stride of the anchor.
gt_bboxes – Groundtruth boxes, shape (k, 4).
gt_bboxes_ignore (Tensor, optional) – Ground truth bboxes that are labelled as ignored, e.g., crowd boxes in COCO.
gt_labels (Tensor, optional) – Label of gt_bboxes, shape (k, ).
allowed_border (int, optional) – The border to allow the valid anchor. Defaults to 0.
- Returns
The assign result.
- Return type
- class mmdet.core.bbox.SamplingResult(pos_inds, neg_inds, bboxes, gt_bboxes, assign_result, gt_flags)[source]¶
Bbox sampling result.
Example
>>> # xdoctest: +IGNORE_WANT >>> from mmdet.core.bbox.samplers.sampling_result import * # NOQA >>> self = SamplingResult.random(rng=10) >>> print(f'self = {self}') self = <SamplingResult({ 'neg_bboxes': torch.Size([12, 4]), 'neg_inds': tensor([ 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12]), 'num_gts': 4, 'pos_assigned_gt_inds': tensor([], dtype=torch.int64), 'pos_bboxes': torch.Size([0, 4]), 'pos_inds': tensor([], dtype=torch.int64), 'pos_is_gt': tensor([], dtype=torch.uint8) })>
- property bboxes¶
concatenated positive and negative boxes
- Type
torch.Tensor
- property info¶
Returns a dictionary of info about the object.
- classmethod random(rng=None, **kwargs)[source]¶
- Parameters
rng (None | int | numpy.random.RandomState) – seed or state.
kwargs (keyword arguments) –
num_preds: number of predicted boxes
num_gts: number of true boxes
p_ignore (float): probability of a predicted box assigned to an ignored truth.
p_assigned (float): probability of a predicted box not being assigned.
p_use_label (float | bool): with labels or not.
- Returns
Randomly generated sampling result.
- Return type
Example
>>> from mmdet.core.bbox.samplers.sampling_result import * # NOQA >>> self = SamplingResult.random() >>> print(self.__dict__)
- class mmdet.core.bbox.ScoreHLRSampler(num, pos_fraction, context, neg_pos_ub=-1, add_gt_as_proposals=True, k=0.5, bias=0, score_thr=0.05, iou_thr=0.5, **kwargs)[source]¶
Importance-based Sample Reweighting (ISR_N), described in Prime Sample Attention in Object Detection.
Score hierarchical local rank (HLR) differentiates with RandomSampler in negative part. It firstly computes Score-HLR in a two-step way, then linearly maps score hlr to the loss weights.
- Parameters
num (int) – Total number of sampled RoIs.
pos_fraction (float) – Fraction of positive samples.
context (
BaseRoIHead
) – RoI head that the sampler belongs to.neg_pos_ub (int) – Upper bound of the ratio of num negative to num positive, -1 means no upper bound.
add_gt_as_proposals (bool) – Whether to add ground truth as proposals.
k (float) – Power of the non-linear mapping.
bias (float) – Shift of the non-linear mapping.
score_thr (float) – Minimum score that a negative sample is to be considered as valid bbox.
- static random_choice(gallery, num)[source]¶
Randomly select some elements from the gallery.
If gallery is a Tensor, the returned indices will be a Tensor; If gallery is a ndarray or list, the returned indices will be a ndarray.
- Parameters
gallery (Tensor | ndarray | list) – indices pool.
num (int) – expected sample num.
- Returns
sampled indices.
- Return type
Tensor or ndarray
- sample(assign_result, bboxes, gt_bboxes, gt_labels=None, img_meta=None, **kwargs)[source]¶
Sample positive and negative bboxes.
This is a simple implementation of bbox sampling given candidates, assigning results and ground truth bboxes.
- Parameters
assign_result (
AssignResult
) – Bbox assigning results.bboxes (Tensor) – Boxes to be sampled from.
gt_bboxes (Tensor) – Ground truth bboxes.
gt_labels (Tensor, optional) – Class labels of ground truth bboxes.
- Returns
- Sampling result and negative
label weights.
- Return type
tuple[
SamplingResult
, Tensor]
- class mmdet.core.bbox.TBLRBBoxCoder(normalizer=4.0, clip_border=True)[source]¶
TBLR BBox coder.
Following the practice in FSAF, this coder encodes gt bboxes (x1, y1, x2, y2) into (top, bottom, left, right) and decode it back to the original.
- Parameters
normalizer (list | float) – Normalization factor to be divided with when coding the coordinates. If it is a list, it should have length of 4 indicating normalization factor in tblr dims. Otherwise it is a unified float factor for all dims. Default: 4.0
clip_border (bool, optional) – Whether clip the objects outside the border of the image. Defaults to True.
- decode(bboxes, pred_bboxes, max_shape=None)[source]¶
Apply transformation pred_bboxes to boxes.
- Parameters
bboxes (torch.Tensor) – Basic boxes.Shape (B, N, 4) or (N, 4)
pred_bboxes (torch.Tensor) – Encoded boxes with shape (B, N, 4) or (N, 4)
Sequence[ (max_shape (Sequence[int] or torch.Tensor or) – Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If bboxes shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]] and the length of max_shape should also be B.
- Returns
Decoded boxes.
- Return type
torch.Tensor
- encode(bboxes, gt_bboxes)[source]¶
Get box regression transformation deltas that can be used to transform the
bboxes
into thegt_bboxes
in the (top, left, bottom, right) order.- Parameters
bboxes (torch.Tensor) – source boxes, e.g., object proposals.
gt_bboxes (torch.Tensor) – target of the transformation, e.g., ground truth boxes.
- Returns
Box transformation deltas
- Return type
torch.Tensor
- mmdet.core.bbox.bbox2distance(points, bbox, max_dis=None, eps=0.1)[source]¶
Decode bounding box based on distances.
- Parameters
points (Tensor) – Shape (n, 2), [x, y].
bbox (Tensor) – Shape (n, 4), “xyxy” format
max_dis (float) – Upper bound of the distance.
eps (float) – a small value to ensure target < max_dis, instead <=
- Returns
Decoded distances.
- Return type
Tensor
- mmdet.core.bbox.bbox2result(bboxes, labels, num_classes)[source]¶
Convert detection results to a list of numpy arrays.
- Parameters
bboxes (torch.Tensor | np.ndarray) – shape (n, 5)
labels (torch.Tensor | np.ndarray) – shape (n, )
num_classes (int) – class number, including background class
- Returns
bbox results of each class
- Return type
list(ndarray)
- mmdet.core.bbox.bbox2roi(bbox_list)[source]¶
Convert a list of bboxes to roi format.
- Parameters
bbox_list (list[Tensor]) – a list of bboxes corresponding to a batch of images.
- Returns
shape (n, 5), [batch_ind, x1, y1, x2, y2]
- Return type
Tensor
- mmdet.core.bbox.bbox_cxcywh_to_xyxy(bbox)[source]¶
Convert bbox coordinates from (cx, cy, w, h) to (x1, y1, x2, y2).
- Parameters
bbox (Tensor) – Shape (n, 4) for bboxes.
- Returns
Converted bboxes.
- Return type
Tensor
- mmdet.core.bbox.bbox_flip(bboxes, img_shape, direction='horizontal')[source]¶
Flip bboxes horizontally or vertically.
- Parameters
bboxes (Tensor) – Shape (…, 4*k)
img_shape (tuple) – Image shape.
direction (str) – Flip direction, options are “horizontal”, “vertical”, “diagonal”. Default: “horizontal”
- Returns
Flipped bboxes.
- Return type
Tensor
- mmdet.core.bbox.bbox_mapping(bboxes, img_shape, scale_factor, flip, flip_direction='horizontal')[source]¶
Map bboxes from the original image scale to testing scale.
- mmdet.core.bbox.bbox_mapping_back(bboxes, img_shape, scale_factor, flip, flip_direction='horizontal')[source]¶
Map bboxes from testing scale to original image scale.
- mmdet.core.bbox.bbox_overlaps(bboxes1, bboxes2, mode='iou', is_aligned=False, eps=1e-06)[source]¶
Calculate overlap between two set of bboxes.
FP16 Contributed by https://github.com/open-mmlab/mmdetection/pull/4889 .. note:
Assume bboxes1 is M x 4, bboxes2 is N x 4, when mode is 'iou', there are some new generated variable when calculating IOU using bbox_overlaps function: 1) is_aligned is False area1: M x 1 area2: N x 1 lt: M x N x 2 rb: M x N x 2 wh: M x N x 2 overlap: M x N x 1 union: M x N x 1 ious: M x N x 1 Total memory: S = (9 x N x M + N + M) * 4 Byte, When using FP16, we can reduce: R = (9 x N x M + N + M) * 4 / 2 Byte R large than (N + M) * 4 * 2 is always true when N and M >= 1. Obviously, N + M <= N * M < 3 * N * M, when N >=2 and M >=2, N + 1 < 3 * N, when N or M is 1. Given M = 40 (ground truth), N = 400000 (three anchor boxes in per grid, FPN, R-CNNs), R = 275 MB (one times) A special case (dense detection), M = 512 (ground truth), R = 3516 MB = 3.43 GB When the batch size is B, reduce: B x R Therefore, CUDA memory runs out frequently. Experiments on GeForce RTX 2080Ti (11019 MiB): | dtype | M | N | Use | Real | Ideal | |:----:|:----:|:----:|:----:|:----:|:----:| | FP32 | 512 | 400000 | 8020 MiB | -- | -- | | FP16 | 512 | 400000 | 4504 MiB | 3516 MiB | 3516 MiB | | FP32 | 40 | 400000 | 1540 MiB | -- | -- | | FP16 | 40 | 400000 | 1264 MiB | 276MiB | 275 MiB | 2) is_aligned is True area1: N x 1 area2: N x 1 lt: N x 2 rb: N x 2 wh: N x 2 overlap: N x 1 union: N x 1 ious: N x 1 Total memory: S = 11 x N * 4 Byte When using FP16, we can reduce: R = 11 x N * 4 / 2 Byte So do the 'giou' (large than 'iou'). Time-wise, FP16 is generally faster than FP32. When gpu_assign_thr is not -1, it takes more time on cpu but not reduce memory. There, we can reduce half the memory and keep the speed.
If
is_aligned
isFalse
, then calculate the overlaps between each bbox of bboxes1 and bboxes2, otherwise the overlaps between each aligned pair of bboxes1 and bboxes2.- Parameters
bboxes1 (Tensor) – shape (B, m, 4) in <x1, y1, x2, y2> format or empty.
bboxes2 (Tensor) – shape (B, n, 4) in <x1, y1, x2, y2> format or empty. B indicates the batch dim, in shape (B1, B2, …, Bn). If
is_aligned
isTrue
, then m and n must be equal.mode (str) – “iou” (intersection over union), “iof” (intersection over foreground) or “giou” (generalized intersection over union). Default “iou”.
is_aligned (bool, optional) – If True, then m and n must be equal. Default False.
eps (float, optional) – A value added to the denominator for numerical stability. Default 1e-6.
- Returns
shape (m, n) if
is_aligned
is False else shape (m,)- Return type
Tensor
Example
>>> bboxes1 = torch.FloatTensor([ >>> [0, 0, 10, 10], >>> [10, 10, 20, 20], >>> [32, 32, 38, 42], >>> ]) >>> bboxes2 = torch.FloatTensor([ >>> [0, 0, 10, 20], >>> [0, 10, 10, 19], >>> [10, 10, 20, 20], >>> ]) >>> overlaps = bbox_overlaps(bboxes1, bboxes2) >>> assert overlaps.shape == (3, 3) >>> overlaps = bbox_overlaps(bboxes1, bboxes2, is_aligned=True) >>> assert overlaps.shape == (3, )
Example
>>> empty = torch.empty(0, 4) >>> nonempty = torch.FloatTensor([[0, 0, 10, 9]]) >>> assert tuple(bbox_overlaps(empty, nonempty).shape) == (0, 1) >>> assert tuple(bbox_overlaps(nonempty, empty).shape) == (1, 0) >>> assert tuple(bbox_overlaps(empty, empty).shape) == (0, 0)
- mmdet.core.bbox.bbox_rescale(bboxes, scale_factor=1.0)[source]¶
Rescale bounding box w.r.t. scale_factor.
- Parameters
bboxes (Tensor) – Shape (n, 4) for bboxes or (n, 5) for rois
scale_factor (float) – rescale factor
- Returns
Rescaled bboxes.
- Return type
Tensor
- mmdet.core.bbox.bbox_xyxy_to_cxcywh(bbox)[source]¶
Convert bbox coordinates from (x1, y1, x2, y2) to (cx, cy, w, h).
- Parameters
bbox (Tensor) – Shape (n, 4) for bboxes.
- Returns
Converted bboxes.
- Return type
Tensor
- mmdet.core.bbox.distance2bbox(points, distance, max_shape=None)[source]¶
Decode distance prediction to bounding box.
- Parameters
points (Tensor) – Shape (B, N, 2) or (N, 2).
distance (Tensor) – Distance from the given point to 4 boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4)
Sequence[ (max_shape (Sequence[int] or torch.Tensor or) – Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If priors shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]] and the length of max_shape should also be B.
- Returns
Boxes with shape (N, 4) or (B, N, 4)
- Return type
Tensor
export¶
- mmdet.core.export.add_dummy_nms_for_onnx(boxes, scores, max_output_boxes_per_class=1000, iou_threshold=0.5, score_threshold=0.05, pre_top_k=-1, after_top_k=-1, labels=None)[source]¶
Create a dummy onnx::NonMaxSuppression op while exporting to ONNX.
This function helps exporting to onnx with batch and multiclass NMS op. It only supports class-agnostic detection results. That is, the scores is of shape (N, num_bboxes, num_classes) and the boxes is of shape (N, num_boxes, 4).
- Parameters
boxes (Tensor) – The bounding boxes of shape [N, num_boxes, 4]
scores (Tensor) – The detection scores of shape [N, num_boxes, num_classes]
max_output_boxes_per_class (int) – Maximum number of output boxes per class of nms. Defaults to 1000.
iou_threshold (float) – IOU threshold of nms. Defaults to 0.5
score_threshold (float) – score threshold of nms. Defaults to 0.05.
pre_top_k (bool) – Number of top K boxes to keep before nms. Defaults to -1.
after_top_k (int) – Number of top K boxes to keep after nms. Defaults to -1.
labels (Tensor, optional) – It not None, explicit labels would be used. Otherwise, labels would be automatically generated using num_classed. Defaults to None.
- Returns
- dets of shape [N, num_det, 5]
and class labels of shape [N, num_det].
- Return type
tuple[Tensor, Tensor]
- mmdet.core.export.build_model_from_cfg(config_path, checkpoint_path, cfg_options=None)[source]¶
Build a model from config and load the given checkpoint.
- Parameters
config_path (str) – the OpenMMLab config for the model we want to export to ONNX
checkpoint_path (str) – Path to the corresponding checkpoint
- Returns
the built model
- Return type
torch.nn.Module
- mmdet.core.export.dynamic_clip_for_onnx(x1, y1, x2, y2, max_shape)[source]¶
Clip boxes dynamically for onnx.
- Since torch.clamp cannot have dynamic min and max, we scale the
boxes by 1/max_shape and clamp in the range [0, 1].
- Parameters
x1 (Tensor) – The x1 for bounding boxes.
y1 (Tensor) – The y1 for bounding boxes.
x2 (Tensor) – The x2 for bounding boxes.
y2 (Tensor) – The y2 for bounding boxes.
max_shape (Tensor or torch.Size) – The (H,W) of original image.
- Returns
The clipped x1, y1, x2, y2.
- Return type
tuple(Tensor)
- mmdet.core.export.generate_inputs_and_wrap_model(config_path, checkpoint_path, input_config, cfg_options=None)[source]¶
Prepare sample input and wrap model for ONNX export.
The ONNX export API only accept args, and all inputs should be torch.Tensor or corresponding types (such as tuple of tensor). So we should call this function before exporting. This function will:
generate corresponding inputs which are used to execute the model.
Wrap the model’s forward function.
For example, the MMDet models’ forward function has a parameter
return_loss:bool
. As we want to set it as False while export API supports neither bool type or kwargs. So we have to replace the forward method likemodel.forward = partial(model.forward, return_loss=False)
.- Parameters
config_path (str) – the OpenMMLab config for the model we want to export to ONNX
checkpoint_path (str) – Path to the corresponding checkpoint
input_config (dict) – the exactly data in this dict depends on the framework. For MMSeg, we can just declare the input shape, and generate the dummy data accordingly. However, for MMDet, we may pass the real img path, or the NMS will return None as there is no legal bbox.
- Returns
- (model, tensor_data) wrapped model which can be called by
model(*tensor_data)
and a list of inputs which are used to execute the model while exporting.
- Return type
tuple
- mmdet.core.export.get_k_for_topk(k, size)[source]¶
Get k of TopK for onnx exporting.
- The K of TopK in TensorRT should not be a Tensor, while in ONNX Runtime
it could be a Tensor.Due to dynamic shape feature, we have to decide whether to do TopK and what K it should be while exporting to ONNX.
- If returned K is less than zero, it means we do not have to do
TopK operation.
- Parameters
k (int or Tensor) – The set k value for nms from config file.
size (Tensor or torch.Size) – The number of elements of TopK’s input tensor
- Returns
(int or Tensor): The final K for TopK.
- Return type
tuple
- mmdet.core.export.preprocess_example_input(input_config)[source]¶
Prepare an example input image for
generate_inputs_and_wrap_model
.- Parameters
input_config (dict) – customized config describing the example input.
- Returns
(one_img, one_meta), tensor of the example input image and meta information for the example input image.
- Return type
tuple
Examples
>>> from mmdet.core.export import preprocess_example_input >>> input_config = { >>> 'input_shape': (1,3,224,224), >>> 'input_path': 'demo/demo.jpg', >>> 'normalize_cfg': { >>> 'mean': (123.675, 116.28, 103.53), >>> 'std': (58.395, 57.12, 57.375) >>> } >>> } >>> one_img, one_meta = preprocess_example_input(input_config) >>> print(one_img.shape) torch.Size([1, 3, 224, 224]) >>> print(one_meta) {'img_shape': (224, 224, 3), 'ori_shape': (224, 224, 3), 'pad_shape': (224, 224, 3), 'filename': '<demo>.png', 'scale_factor': 1.0, 'flip': False}
mask¶
- class mmdet.core.mask.BaseInstanceMasks[source]¶
Base class for instance masks.
- abstract property areas¶
areas of each instance.
- Type
ndarray
- abstract crop(bbox)[source]¶
Crop each mask by the given bbox.
- Parameters
bbox (ndarray) – Bbox in format [x1, y1, x2, y2], shape (4, ).
- Returns
The cropped masks.
- Return type
- abstract crop_and_resize(bboxes, out_shape, inds, device, interpolation='bilinear', binarize=True)[source]¶
Crop and resize masks by the given bboxes.
This function is mainly used in mask targets computation. It firstly align mask to bboxes by assigned_inds, then crop mask by the assigned bbox and resize to the size of (mask_h, mask_w)
- Parameters
bboxes (Tensor) – Bboxes in format [x1, y1, x2, y2], shape (N, 4)
out_shape (tuple[int]) – Target (h, w) of resized mask
inds (ndarray) – Indexes to assign masks to each bbox, shape (N,) and values should be between [0, num_masks - 1].
device (str) – Device of bboxes
interpolation (str) – See mmcv.imresize
binarize (bool) – if True fractional values are rounded to 0 or 1 after the resize operation. if False and unsupported an error will be raised. Defaults to True.
- Returns
the cropped and resized masks.
- Return type
- abstract flip(flip_direction='horizontal')[source]¶
Flip masks alone the given direction.
- Parameters
flip_direction (str) – Either ‘horizontal’ or ‘vertical’.
- Returns
The flipped masks.
- Return type
- abstract pad(out_shape, pad_val)[source]¶
Pad masks to the given size of (h, w).
- Parameters
out_shape (tuple[int]) – Target (h, w) of padded mask.
pad_val (int) – The padded value.
- Returns
The padded masks.
- Return type
- abstract rescale(scale, interpolation='nearest')[source]¶
Rescale masks as large as possible while keeping the aspect ratio. For details can refer to mmcv.imrescale.
- Parameters
scale (tuple[int]) – The maximum size (h, w) of rescaled mask.
interpolation (str) – Same as
mmcv.imrescale()
.
- Returns
The rescaled masks.
- Return type
- abstract resize(out_shape, interpolation='nearest')[source]¶
Resize masks to the given out_shape.
- Parameters
out_shape – Target (h, w) of resized mask.
interpolation (str) – See
mmcv.imresize()
.
- Returns
The resized masks.
- Return type
- abstract rotate(out_shape, angle, center=None, scale=1.0, fill_val=0)[source]¶
Rotate the masks.
- Parameters
out_shape (tuple[int]) – Shape for output mask, format (h, w).
angle (int | float) – Rotation angle in degrees. Positive values mean counter-clockwise rotation.
center (tuple[float], optional) – Center point (w, h) of the rotation in source image. If not specified, the center of the image will be used.
scale (int | float) – Isotropic scale factor.
fill_val (int | float) – Border value. Default 0 for masks.
- Returns
Rotated masks.
- shear(out_shape, magnitude, direction='horizontal', border_value=0, interpolation='bilinear')[source]¶
Shear the masks.
- Parameters
out_shape (tuple[int]) – Shape for output mask, format (h, w).
magnitude (int | float) – The magnitude used for shear.
direction (str) – The shear direction, either “horizontal” or “vertical”.
border_value (int | tuple[int]) – Value used in case of a constant border. Default 0.
interpolation (str) – Same as in
mmcv.imshear()
.
- Returns
Sheared masks.
- Return type
ndarray
- abstract to_ndarray()[source]¶
Convert masks to the format of ndarray.
- Returns
Converted masks in the format of ndarray.
- Return type
ndarray
- abstract to_tensor(dtype, device)[source]¶
Convert masks to the format of Tensor.
- Parameters
dtype (str) – Dtype of converted mask.
device (torch.device) – Device of converted masks.
- Returns
Converted masks in the format of Tensor.
- Return type
Tensor
- abstract translate(out_shape, offset, direction='horizontal', fill_val=0, interpolation='bilinear')[source]¶
Translate the masks.
- Parameters
out_shape (tuple[int]) – Shape for output mask, format (h, w).
offset (int | float) – The offset for translate.
direction (str) – The translate direction, either “horizontal” or “vertical”.
fill_val (int | float) – Border value. Default 0.
interpolation (str) – Same as
mmcv.imtranslate()
.
- Returns
Translated masks.
- class mmdet.core.mask.BitmapMasks(masks, height, width)[source]¶
This class represents masks in the form of bitmaps.
- Parameters
masks (ndarray) – ndarray of masks in shape (N, H, W), where N is the number of objects.
height (int) – height of masks
width (int) – width of masks
Example
>>> from mmdet.core.mask.structures import * # NOQA >>> num_masks, H, W = 3, 32, 32 >>> rng = np.random.RandomState(0) >>> masks = (rng.rand(num_masks, H, W) > 0.1).astype(np.int) >>> self = BitmapMasks(masks, height=H, width=W)
>>> # demo crop_and_resize >>> num_boxes = 5 >>> bboxes = np.array([[0, 0, 30, 10.0]] * num_boxes) >>> out_shape = (14, 14) >>> inds = torch.randint(0, len(self), size=(num_boxes,)) >>> device = 'cpu' >>> interpolation = 'bilinear' >>> new = self.crop_and_resize( ... bboxes, out_shape, inds, device, interpolation) >>> assert len(new) == num_boxes >>> assert new.height, new.width == out_shape
- property areas¶
- crop_and_resize(bboxes, out_shape, inds, device='cpu', interpolation='bilinear', binarize=True)[source]¶
- classmethod random(num_masks=3, height=32, width=32, dtype=<class 'numpy.uint8'>, rng=None)[source]¶
Generate random bitmap masks for demo / testing purposes.
Example
>>> from mmdet.core.mask.structures import BitmapMasks >>> self = BitmapMasks.random() >>> print('self = {}'.format(self)) self = BitmapMasks(num_masks=3, height=32, width=32)
- rotate(out_shape, angle, center=None, scale=1.0, fill_val=0)[source]¶
Rotate the BitmapMasks.
- Parameters
out_shape (tuple[int]) – Shape for output mask, format (h, w).
angle (int | float) – Rotation angle in degrees. Positive values mean counter-clockwise rotation.
center (tuple[float], optional) – Center point (w, h) of the rotation in source image. If not specified, the center of the image will be used.
scale (int | float) – Isotropic scale factor.
fill_val (int | float) – Border value. Default 0 for masks.
- Returns
Rotated BitmapMasks.
- Return type
- shear(out_shape, magnitude, direction='horizontal', border_value=0, interpolation='bilinear')[source]¶
Shear the BitmapMasks.
- Parameters
out_shape (tuple[int]) – Shape for output mask, format (h, w).
magnitude (int | float) – The magnitude used for shear.
direction (str) – The shear direction, either “horizontal” or “vertical”.
border_value (int | tuple[int]) – Value used in case of a constant border.
interpolation (str) – Same as in
mmcv.imshear()
.
- Returns
The sheared masks.
- Return type
- translate(out_shape, offset, direction='horizontal', fill_val=0, interpolation='bilinear')[source]¶
Translate the BitmapMasks.
- Parameters
out_shape (tuple[int]) – Shape for output mask, format (h, w).
offset (int | float) – The offset for translate.
direction (str) – The translate direction, either “horizontal” or “vertical”.
fill_val (int | float) – Border value. Default 0 for masks.
interpolation (str) – Same as
mmcv.imtranslate()
.
- Returns
Translated BitmapMasks.
- Return type
Example
>>> from mmdet.core.mask.structures import BitmapMasks >>> self = BitmapMasks.random(dtype=np.uint8) >>> out_shape = (32, 32) >>> offset = 4 >>> direction = 'horizontal' >>> fill_val = 0 >>> interpolation = 'bilinear' >>> # Note, There seem to be issues when: >>> # * out_shape is different than self's shape >>> # * the mask dtype is not supported by cv2.AffineWarp >>> new = self.translate(out_shape, offset, direction, fill_val, >>> interpolation) >>> assert len(new) == len(self) >>> assert new.height, new.width == out_shape
- class mmdet.core.mask.PolygonMasks(masks, height, width)[source]¶
This class represents masks in the form of polygons.
Polygons is a list of three levels. The first level of the list corresponds to objects, the second level to the polys that compose the object, the third level to the poly coordinates
- Parameters
masks (list[list[ndarray]]) – The first level of the list corresponds to objects, the second level to the polys that compose the object, the third level to the poly coordinates
height (int) – height of masks
width (int) – width of masks
Example
>>> from mmdet.core.mask.structures import * # NOQA >>> masks = [ >>> [ np.array([0, 0, 10, 0, 10, 10., 0, 10, 0, 0]) ] >>> ] >>> height, width = 16, 16 >>> self = PolygonMasks(masks, height, width)
>>> # demo translate >>> new = self.translate((16, 16), 4., direction='horizontal') >>> assert np.all(new.masks[0][0][1::2] == masks[0][0][1::2]) >>> assert np.all(new.masks[0][0][0::2] == masks[0][0][0::2] + 4)
>>> # demo crop_and_resize >>> num_boxes = 3 >>> bboxes = np.array([[0, 0, 30, 10.0]] * num_boxes) >>> out_shape = (16, 16) >>> inds = torch.randint(0, len(self), size=(num_boxes,)) >>> device = 'cpu' >>> interpolation = 'bilinear' >>> new = self.crop_and_resize( ... bboxes, out_shape, inds, device, interpolation) >>> assert len(new) == num_boxes >>> assert new.height, new.width == out_shape
- property areas¶
Compute areas of masks.
This func is modified from detectron2. The function only works with Polygons using the shoelace formula.
- Returns
areas of each instance
- Return type
ndarray
- crop_and_resize(bboxes, out_shape, inds, device='cpu', interpolation='bilinear', binarize=True)[source]¶
- classmethod random(num_masks=3, height=32, width=32, n_verts=5, dtype=<class 'numpy.float32'>, rng=None)[source]¶
Generate random polygon masks for demo / testing purposes.
Adapted from 1
References
- 1(1,2)
https://gitlab.kitware.com/computer-vision/kwimage/-/blob/928cae35ca8/kwimage/structs/polygon.py#L379 # noqa: E501
Example
>>> from mmdet.core.mask.structures import PolygonMasks >>> self = PolygonMasks.random() >>> print('self = {}'.format(self))
- shear(out_shape, magnitude, direction='horizontal', border_value=0, interpolation='bilinear')[source]¶
- translate(out_shape, offset, direction='horizontal', fill_val=None, interpolation=None)[source]¶
Translate the PolygonMasks.
Example
>>> self = PolygonMasks.random(dtype=np.int) >>> out_shape = (self.height, self.width) >>> new = self.translate(out_shape, 4., direction='horizontal') >>> assert np.all(new.masks[0][0][1::2] == self.masks[0][0][1::2]) >>> assert np.all(new.masks[0][0][0::2] == self.masks[0][0][0::2] + 4) # noqa: E501
- mmdet.core.mask.encode_mask_results(mask_results)[source]¶
Encode bitmap mask to RLE code.
- Parameters
mask_results (list | tuple[list]) – bitmap mask results. In mask scoring rcnn, mask_results is a tuple of (segm_results, segm_cls_score).
- Returns
RLE encoded mask.
- Return type
list | tuple
- mmdet.core.mask.mask2bbox(masks)[source]¶
Obtain tight bounding boxes of binary masks.
- Parameters
masks (Tensor) – Binary mask of shape (n, h, w).
- Returns
Bboxe with shape (n, 4) of positive region in binary mask.
- Return type
Tensor
- mmdet.core.mask.mask_target(pos_proposals_list, pos_assigned_gt_inds_list, gt_masks_list, cfg)[source]¶
Compute mask target for positive proposals in multiple images.
- Parameters
pos_proposals_list (list[Tensor]) – Positive proposals in multiple images.
pos_assigned_gt_inds_list (list[Tensor]) – Assigned GT indices for each positive proposals.
gt_masks_list (list[
BaseInstanceMasks
]) – Ground truth masks of each image.cfg (dict) – Config dict that specifies the mask size.
- Returns
Mask target of each image.
- Return type
list[Tensor]
Example
>>> import mmcv >>> import mmdet >>> from mmdet.core.mask import BitmapMasks >>> from mmdet.core.mask.mask_target import * >>> H, W = 17, 18 >>> cfg = mmcv.Config({'mask_size': (13, 14)}) >>> rng = np.random.RandomState(0) >>> # Positive proposals (tl_x, tl_y, br_x, br_y) for each image >>> pos_proposals_list = [ >>> torch.Tensor([ >>> [ 7.2425, 5.5929, 13.9414, 14.9541], >>> [ 7.3241, 3.6170, 16.3850, 15.3102], >>> ]), >>> torch.Tensor([ >>> [ 4.8448, 6.4010, 7.0314, 9.7681], >>> [ 5.9790, 2.6989, 7.4416, 4.8580], >>> [ 0.0000, 0.0000, 0.1398, 9.8232], >>> ]), >>> ] >>> # Corresponding class index for each proposal for each image >>> pos_assigned_gt_inds_list = [ >>> torch.LongTensor([7, 0]), >>> torch.LongTensor([5, 4, 1]), >>> ] >>> # Ground truth mask for each true object for each image >>> gt_masks_list = [ >>> BitmapMasks(rng.rand(8, H, W), height=H, width=W), >>> BitmapMasks(rng.rand(6, H, W), height=H, width=W), >>> ] >>> mask_targets = mask_target( >>> pos_proposals_list, pos_assigned_gt_inds_list, >>> gt_masks_list, cfg) >>> assert mask_targets.shape == (5,) + cfg['mask_size']
- mmdet.core.mask.split_combined_polys(polys, poly_lens, polys_per_mask)[source]¶
Split the combined 1-D polys into masks.
A mask is represented as a list of polys, and a poly is represented as a 1-D array. In dataset, all masks are concatenated into a single 1-D tensor. Here we need to split the tensor into original representations.
- Parameters
polys (list) – a list (length = image num) of 1-D tensors
poly_lens (list) – a list (length = image num) of poly length
polys_per_mask (list) – a list (length = image num) of poly number of each mask
- Returns
a list (length = image num) of list (length = mask num) of list (length = poly num) of numpy array.
- Return type
list
evaluation¶
- mmdet.core.evaluation.average_precision(recalls, precisions, mode='area')[source]¶
Calculate average precision (for single or multiple scales).
- Parameters
recalls (ndarray) – shape (num_scales, num_dets) or (num_dets, )
precisions (ndarray) – shape (num_scales, num_dets) or (num_dets, )
mode (str) – ‘area’ or ‘11points’, ‘area’ means calculating the area under precision-recall curve, ‘11points’ means calculating the average precision of recalls at [0, 0.1, …, 1]
- Returns
calculated average precision
- Return type
float or ndarray
- mmdet.core.evaluation.eval_map(det_results, annotations, scale_ranges=None, iou_thr=0.5, ioa_thr=None, dataset=None, logger=None, tpfp_fn=None, nproc=4, use_legacy_coordinate=False, use_group_of=False, mode='area')[source]¶
Evaluate mAP of a dataset.
- Parameters
det_results (list[list]) – [[cls1_det, cls2_det, …], …]. The outer list indicates images, and the inner list indicates per-class detected bboxes.
annotations (list[dict]) –
Ground truth annotations where each item of the list indicates an image. Keys of annotations are:
bboxes: numpy array of shape (n, 4)
labels: numpy array of shape (n, )
bboxes_ignore (optional): numpy array of shape (k, 4)
labels_ignore (optional): numpy array of shape (k, )
scale_ranges (list[tuple] | None) – Range of scales to be evaluated, in the format [(min1, max1), (min2, max2), …]. A range of (32, 64) means the area range between (32**2, 64**2). Defaults to None.
iou_thr (float) – IoU threshold to be considered as matched. Defaults to 0.5.
ioa_thr (float | None) – IoA threshold to be considered as matched, which only used in OpenImages evaluation. Defaults to None.
dataset (list[str] | str | None) – Dataset name or dataset classes, there are minor differences in metrics for different datasets, e.g. “voc07”, “imagenet_det”, etc. Defaults to None.
logger (logging.Logger | str | None) – The way to print the mAP summary. See mmcv.utils.print_log() for details. Defaults to None.
tpfp_fn (callable | None) – The function used to determine true/ false positives. If None,
tpfp_default()
is used as default unless dataset is ‘det’ or ‘vid’ (tpfp_imagenet()
in this case). If it is given as a function, then this function is used to evaluate tp & fp. Default None.nproc (int) – Processes used for computing TP and FP. Defaults to 4.
use_legacy_coordinate (bool) – Whether to use coordinate system in mmdet v1.x. which means width, height should be calculated as ‘x2 - x1 + 1` and ‘y2 - y1 + 1’ respectively. Defaults to False.
use_group_of (bool) – Whether to use group of when calculate TP and FP, which only used in OpenImages evaluation. Defaults to False.
mode (str) – ‘area’ or ‘11points’, ‘area’ means calculating the area under precision-recall curve, ‘11points’ means calculating the average precision of recalls at [0, 0.1, …, 1]. Defaults to ‘area’.
- Returns
(mAP, [dict, dict, …])
- Return type
tuple
- mmdet.core.evaluation.eval_recalls(gts, proposals, proposal_nums=None, iou_thrs=0.5, logger=None, use_legacy_coordinate=False)[source]¶
Calculate recalls.
- Parameters
gts (list[ndarray]) – a list of arrays of shape (n, 4)
proposals (list[ndarray]) – a list of arrays of shape (k, 4) or (k, 5)
proposal_nums (int | Sequence[int]) – Top N proposals to be evaluated.
iou_thrs (float | Sequence[float]) – IoU thresholds. Default: 0.5.
logger (logging.Logger | str | None) – The way to print the recall summary. See mmcv.utils.print_log() for details. Default: None.
use_legacy_coordinate (bool) – Whether use coordinate system in mmdet v1.x. “1” was added to both height and width which means w, h should be computed as ‘x2 - x1 + 1` and ‘y2 - y1 + 1’. Default: False.
- Returns
recalls of different ious and proposal nums
- Return type
ndarray
- mmdet.core.evaluation.plot_iou_recall(recalls, iou_thrs)[source]¶
Plot IoU-Recalls curve.
- Parameters
recalls (ndarray or list) – shape (k,)
iou_thrs (ndarray or list) – same shape as recalls
- mmdet.core.evaluation.plot_num_recall(recalls, proposal_nums)[source]¶
Plot Proposal_num-Recalls curve.
- Parameters
recalls (ndarray or list) – shape (k,)
proposal_nums (ndarray or list) – same shape as recalls
- mmdet.core.evaluation.print_map_summary(mean_ap, results, dataset=None, scale_ranges=None, logger=None)[source]¶
Print mAP and results of each class.
A table will be printed to show the gts/dets/recall/AP of each class and the mAP.
- Parameters
mean_ap (float) – Calculated from eval_map().
results (list[dict]) – Calculated from eval_map().
dataset (list[str] | str | None) – Dataset name or dataset classes.
scale_ranges (list[tuple] | None) – Range of scales to be evaluated.
logger (logging.Logger | str | None) – The way to print the mAP summary. See mmcv.utils.print_log() for details. Defaults to None.
- mmdet.core.evaluation.print_recall_summary(recalls, proposal_nums, iou_thrs, row_idxs=None, col_idxs=None, logger=None)[source]¶
Print recalls in a table.
- Parameters
recalls (ndarray) – calculated from bbox_recalls
proposal_nums (ndarray or list) – top N proposals
iou_thrs (ndarray or list) – iou thresholds
row_idxs (ndarray) – which rows(proposal nums) to print
col_idxs (ndarray) – which cols(iou thresholds) to print
logger (logging.Logger | str | None) – The way to print the recall summary. See mmcv.utils.print_log() for details. Default: None.
post_processing¶
- mmdet.core.post_processing.fast_nms(multi_bboxes, multi_scores, multi_coeffs, score_thr, iou_thr, top_k, max_num=-1)[source]¶
Fast NMS in YOLACT.
Fast NMS allows already-removed detections to suppress other detections so that every instance can be decided to be kept or discarded in parallel, which is not possible in traditional NMS. This relaxation allows us to implement Fast NMS entirely in standard GPU-accelerated matrix operations.
- Parameters
multi_bboxes (Tensor) – shape (n, #class*4) or (n, 4)
multi_scores (Tensor) – shape (n, #class+1), where the last column contains scores of the background class, but this will be ignored.
multi_coeffs (Tensor) – shape (n, #class*coeffs_dim).
score_thr (float) – bbox threshold, bboxes with scores lower than it will not be considered.
iou_thr (float) – IoU threshold to be considered as conflicted.
top_k (int) – if there are more than top_k bboxes before NMS, only top top_k will be kept.
max_num (int) – if there are more than max_num bboxes after NMS, only top max_num will be kept. If -1, keep all the bboxes. Default: -1.
- Returns
- (dets, labels, coefficients), tensors of shape (k, 5), (k, 1),
and (k, coeffs_dim). Dets are boxes with scores. Labels are 0-based.
- Return type
tuple
- mmdet.core.post_processing.mask_matrix_nms(masks, labels, scores, filter_thr=-1, nms_pre=-1, max_num=-1, kernel='gaussian', sigma=2.0, mask_area=None)[source]¶
Matrix NMS for multi-class masks.
- Parameters
masks (Tensor) – Has shape (num_instances, h, w)
labels (Tensor) – Labels of corresponding masks, has shape (num_instances,).
scores (Tensor) – Mask scores of corresponding masks, has shape (num_instances).
filter_thr (float) – Score threshold to filter the masks after matrix nms. Default: -1, which means do not use filter_thr.
nms_pre (int) – The max number of instances to do the matrix nms. Default: -1, which means do not use nms_pre.
max_num (int, optional) – If there are more than max_num masks after matrix, only top max_num will be kept. Default: -1, which means do not use max_num.
kernel (str) – ‘linear’ or ‘gaussian’.
sigma (float) – std in gaussian method.
mask_area (Tensor) – The sum of seg_masks.
- Returns
Processed mask results.
scores (Tensor): Updated scores, has shape (n,).
labels (Tensor): Remained labels, has shape (n,).
masks (Tensor): Remained masks, has shape (n, w, h).
- keep_inds (Tensor): The indices number of
the remaining mask in the input mask, has shape (n,).
- Return type
tuple(Tensor)
- mmdet.core.post_processing.merge_aug_bboxes(aug_bboxes, aug_scores, img_metas, rcnn_test_cfg)[source]¶
Merge augmented detection bboxes and scores.
- Parameters
aug_bboxes (list[Tensor]) – shape (n, 4*#class)
aug_scores (list[Tensor] or None) – shape (n, #class)
img_shapes (list[Tensor]) – shape (3, ).
rcnn_test_cfg (dict) – rcnn test config.
- Returns
(bboxes, scores)
- Return type
tuple
- mmdet.core.post_processing.merge_aug_masks(aug_masks, img_metas, rcnn_test_cfg, weights=None)[source]¶
Merge augmented mask prediction.
- Parameters
aug_masks (list[ndarray]) – shape (n, #class, h, w)
img_shapes (list[ndarray]) – shape (3, ).
rcnn_test_cfg (dict) – rcnn test config.
- Returns
(bboxes, scores)
- Return type
tuple
- mmdet.core.post_processing.merge_aug_proposals(aug_proposals, img_metas, cfg)[source]¶
Merge augmented proposals (multiscale, flip, etc.)
- Parameters
aug_proposals (list[Tensor]) – proposals from different testing schemes, shape (n, 5). Note that they are not rescaled to the original image size.
img_metas (list[dict]) – list of image info dict where each dict has: ‘img_shape’, ‘scale_factor’, ‘flip’, and may also contain ‘filename’, ‘ori_shape’, ‘pad_shape’, and ‘img_norm_cfg’. For details on the values of these keys see mmdet/datasets/pipelines/formatting.py:Collect.
cfg (dict) – rpn test config.
- Returns
shape (n, 4), proposals corresponding to original image scale.
- Return type
Tensor
- mmdet.core.post_processing.multiclass_nms(multi_bboxes, multi_scores, score_thr, nms_cfg, max_num=-1, score_factors=None, return_inds=False)[source]¶
NMS for multi-class bboxes.
- Parameters
multi_bboxes (Tensor) – shape (n, #class*4) or (n, 4)
multi_scores (Tensor) – shape (n, #class), where the last column contains scores of the background class, but this will be ignored.
score_thr (float) – bbox threshold, bboxes with scores lower than it will not be considered.
nms_cfg (dict) – a dict that contains the arguments of nms operations
max_num (int, optional) – if there are more than max_num bboxes after NMS, only top max_num will be kept. Default to -1.
score_factors (Tensor, optional) – The factors multiplied to scores before applying NMS. Default to None.
return_inds (bool, optional) – Whether return the indices of kept bboxes. Default to False.
- Returns
- (dets, labels, indices (optional)), tensors of shape (k, 5),
(k), and (k). Dets are boxes with scores. Labels are 0-based.
- Return type
tuple
utils¶
- class mmdet.core.utils.DistOptimizerHook(*args, **kwargs)[source]¶
Deprecated optimizer hook for distributed training.
- mmdet.core.utils.all_reduce_dict(py_dict, op='sum', group=None, to_float=True)[source]¶
Apply all reduce function for python dict object.
The code is modified from https://github.com/Megvii- BaseDetection/YOLOX/blob/main/yolox/utils/allreduce_norm.py.
NOTE: make sure that py_dict in different ranks has the same keys and the values should be in the same shape. Currently only supports nccl backend.
- Parameters
py_dict (dict) – Dict to be applied all reduce op.
op (str) – Operator, could be ‘sum’ or ‘mean’. Default: ‘sum’
group (
torch.distributed.group
, optional) – Distributed group, Default: None.to_float (bool) – Whether to convert all values of dict to float. Default: True.
- Returns
reduced python dict object.
- Return type
OrderedDict
- mmdet.core.utils.allreduce_grads(params, coalesce=True, bucket_size_mb=-1)[source]¶
Allreduce gradients.
- Parameters
params (list[torch.Parameters]) – List of parameters of a model
coalesce (bool, optional) – Whether allreduce parameters as a whole. Defaults to True.
bucket_size_mb (int, optional) – Size of bucket, the unit is MB. Defaults to -1.
- mmdet.core.utils.center_of_mass(mask, esp=1e-06)[source]¶
Calculate the centroid coordinates of the mask.
- Parameters
mask (Tensor) – The mask to be calculated, shape (h, w).
esp (float) – Avoid dividing by zero. Default: 1e-6.
- Returns
the coordinates of the center point of the mask.
center_h (Tensor): the center point of the height.
center_w (Tensor): the center point of the width.
- Return type
tuple[Tensor]
- mmdet.core.utils.filter_scores_and_topk(scores, score_thr, topk, results=None)[source]¶
Filter results using score threshold and topk candidates.
- Parameters
scores (Tensor) – The scores, shape (num_bboxes, K).
score_thr (float) – The score filter threshold.
topk (int) – The number of topk candidates.
results (dict or list or Tensor, Optional) – The results to which the filtering rule is to be applied. The shape of each item is (num_bboxes, N).
- Returns
Filtered results
scores (Tensor): The scores after being filtered, shape (num_bboxes_filtered, ).
labels (Tensor): The class labels, shape (num_bboxes_filtered, ).
anchor_idxs (Tensor): The anchor indexes, shape (num_bboxes_filtered, ).
filtered_results (dict or list or Tensor, Optional): The filtered results. The shape of each item is (num_bboxes_filtered, N).
- Return type
tuple
- mmdet.core.utils.flip_tensor(src_tensor, flip_direction)[source]¶
flip tensor base on flip_direction.
- Parameters
src_tensor (Tensor) – input feature map, shape (B, C, H, W).
flip_direction (str) – The flipping direction. Options are ‘horizontal’, ‘vertical’, ‘diagonal’.
- Returns
Flipped tensor.
- Return type
out_tensor (Tensor)
- mmdet.core.utils.generate_coordinate(featmap_sizes, device='cuda')[source]¶
Generate the coordinate.
- Parameters
featmap_sizes (tuple) – The feature to be calculated, of shape (N, C, W, H).
device (str) – The device where the feature will be put on.
- Returns
The coordinate feature, of shape (N, 2, W, H).
- Return type
coord_feat (Tensor)
- mmdet.core.utils.mask2ndarray(mask)[source]¶
Convert Mask to ndarray..
:param mask (
BitmapMasks
orPolygonMasks
or: :param torch.Tensor or np.ndarray): The mask to be converted.- Returns
Ndarray mask of shape (n, h, w) that has been converted
- Return type
np.ndarray
- mmdet.core.utils.multi_apply(func, *args, **kwargs)[source]¶
Apply function to a list of arguments.
Note
This function applies the
func
to multiple inputs and map the multiple outputs of thefunc
into different list. Each list contains the same type of outputs corresponding to different inputs.- Parameters
func (Function) – A function that will be applied to a list of arguments
- Returns
A tuple containing multiple list, each list contains a kind of returned results by the function
- Return type
tuple(list)
- mmdet.core.utils.select_single_mlvl(mlvl_tensors, batch_id, detach=True)[source]¶
Extract a multi-scale single image tensor from a multi-scale batch tensor based on batch index.
Note: The default value of detach is True, because the proposal gradient needs to be detached during the training of the two-stage model. E.g Cascade Mask R-CNN.
- Parameters
mlvl_tensors (list[Tensor]) – Batch tensor for all scale levels, each is a 4D-tensor.
batch_id (int) – Batch index.
detach (bool) – Whether detach gradient. Default True.
- Returns
Multi-scale single image tensor.
- Return type
list[Tensor]
- mmdet.core.utils.sync_random_seed(seed=None, device='cuda')[source]¶
Make sure different ranks share the same seed.
All workers must call this function, otherwise it will deadlock. This method is generally used in DistributedSampler, because the seed should be identical across all processes in the distributed group.
In distributed sampling, different ranks should sample non-overlapped data in the dataset. Therefore, this function is used to make sure that each rank shuffles the data indices in the same order based on the same seed. Then different ranks could use different indices to select non-overlapped data from the same data list.
- Parameters
seed (int, Optional) – The seed. Default to None.
device (str) – The device where the seed will be put on. Default to ‘cuda’.
- Returns
Seed to be used.
- Return type
int
mmdet.datasets¶
datasets¶
- class mmdet.datasets.CityscapesDataset(ann_file, pipeline, classes=None, data_root=None, img_prefix='', seg_prefix=None, seg_suffix='.png', proposal_file=None, test_mode=False, filter_empty_gt=True, file_client_args={'backend': 'disk'})[source]¶
- evaluate(results, metric='bbox', logger=None, outfile_prefix=None, classwise=False, proposal_nums=(100, 300, 1000), iou_thrs=array([0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95]))[source]¶
Evaluation in Cityscapes/COCO protocol.
- Parameters
results (list[list | tuple]) – Testing results of the dataset.
metric (str | list[str]) – Metrics to be evaluated. Options are ‘bbox’, ‘segm’, ‘proposal’, ‘proposal_fast’.
logger (logging.Logger | str | None) – Logger used for printing related information during evaluation. Default: None.
outfile_prefix (str | None) – The prefix of output file. It includes the file path and the prefix of filename, e.g., “a/b/prefix”. If results are evaluated with COCO protocol, it would be the prefix of output json file. For example, the metric is ‘bbox’ and ‘segm’, then json files would be “a/b/prefix.bbox.json” and “a/b/prefix.segm.json”. If results are evaluated with cityscapes protocol, it would be the prefix of output txt/png files. The output files would be png images under folder “a/b/prefix/xxx/” and the file name of images would be written into a txt file “a/b/prefix/xxx_pred.txt”, where “xxx” is the video name of cityscapes. If not specified, a temp file will be created. Default: None.
classwise (bool) – Whether to evaluating the AP for each class.
proposal_nums (Sequence[int]) – Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000).
iou_thrs (Sequence[float]) – IoU threshold used for evaluating recalls. If set to a list, the average recall of all IoUs will also be computed. Default: 0.5.
- Returns
COCO style evaluation metric or cityscapes mAP and AP@50.
- Return type
dict[str, float]
- format_results(results, txtfile_prefix=None)[source]¶
Format the results to txt (standard format for Cityscapes evaluation).
- Parameters
results (list) – Testing results of the dataset.
txtfile_prefix (str | None) – The prefix of txt files. It includes the file path and the prefix of filename, e.g., “a/b/prefix”. If not specified, a temp file will be created. Default: None.
- Returns
(result_files, tmp_dir), result_files is a dict containing the json filepaths, tmp_dir is the temporal directory created for saving txt/png files when txtfile_prefix is not specified.
- Return type
tuple
- results2txt(results, outfile_prefix)[source]¶
Dump the detection results to a txt file.
- Parameters
results (list[list | tuple]) – Testing results of the dataset.
outfile_prefix (str) – The filename prefix of the json files. If the prefix is “somepath/xxx”, the txt files will be named “somepath/xxx.txt”.
- Returns
Result txt files which contains corresponding instance segmentation images.
- Return type
list[str]
- class mmdet.datasets.ClassBalancedDataset(dataset, oversample_thr, filter_empty_gt=True)[source]¶
A wrapper of repeated dataset with repeat factor.
Suitable for training on class imbalanced datasets like LVIS. Following the sampling strategy in the paper, in each epoch, an image may appear multiple times based on its “repeat factor”. The repeat factor for an image is a function of the frequency the rarest category labeled in that image. The “frequency of category c” in [0, 1] is defined by the fraction of images in the training set (without repeats) in which category c appears. The dataset needs to instantiate
self.get_cat_ids()
to support ClassBalancedDataset.The repeat factor is computed as followed.
For each category c, compute the fraction # of images that contain it: \(f(c)\)
For each category c, compute the category-level repeat factor: \(r(c) = max(1, sqrt(t/f(c)))\)
For each image I, compute the image-level repeat factor: \(r(I) = max_{c in I} r(c)\)
- Parameters
dataset (
CustomDataset
) – The dataset to be repeated.oversample_thr (float) – frequency threshold below which data is repeated. For categories with
f_c >= oversample_thr
, there is no oversampling. For categories withf_c < oversample_thr
, the degree of oversampling following the square-root inverse frequency heuristic above.filter_empty_gt (bool, optional) – If set true, images without bounding boxes will not be oversampled. Otherwise, they will be categorized as the pure background class and involved into the oversampling. Default: True.
- class mmdet.datasets.CocoDataset(ann_file, pipeline, classes=None, data_root=None, img_prefix='', seg_prefix=None, seg_suffix='.png', proposal_file=None, test_mode=False, filter_empty_gt=True, file_client_args={'backend': 'disk'})[source]¶
- evaluate(results, metric='bbox', logger=None, jsonfile_prefix=None, classwise=False, proposal_nums=(100, 300, 1000), iou_thrs=None, metric_items=None)[source]¶
Evaluation in COCO protocol.
- Parameters
results (list[list | tuple]) – Testing results of the dataset.
metric (str | list[str]) – Metrics to be evaluated. Options are ‘bbox’, ‘segm’, ‘proposal’, ‘proposal_fast’.
logger (logging.Logger | str | None) – Logger used for printing related information during evaluation. Default: None.
jsonfile_prefix (str | None) – The prefix of json files. It includes the file path and the prefix of filename, e.g., “a/b/prefix”. If not specified, a temp file will be created. Default: None.
classwise (bool) – Whether to evaluating the AP for each class.
proposal_nums (Sequence[int]) – Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000).
iou_thrs (Sequence[float], optional) – IoU threshold used for evaluating recalls/mAPs. If set to a list, the average of all IoUs will also be computed. If not specified, [0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95] will be used. Default: None.
metric_items (list[str] | str, optional) – Metric items that will be returned. If not specified,
['AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ]
will be used whenmetric=='proposal'
,['mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l']
will be used whenmetric=='bbox' or metric=='segm'
.
- Returns
COCO style evaluation metric.
- Return type
dict[str, float]
- evaluate_det_segm(results, result_files, coco_gt, metrics, logger=None, classwise=False, proposal_nums=(100, 300, 1000), iou_thrs=None, metric_items=None)[source]¶
Instance segmentation and object detection evaluation in COCO protocol.
- Parameters
results (list[list | tuple | dict]) – Testing results of the dataset.
result_files (dict[str, str]) – a dict contains json file path.
coco_gt (COCO) – COCO API object with ground truth annotation.
metric (str | list[str]) – Metrics to be evaluated. Options are ‘bbox’, ‘segm’, ‘proposal’, ‘proposal_fast’.
logger (logging.Logger | str | None) – Logger used for printing related information during evaluation. Default: None.
classwise (bool) – Whether to evaluating the AP for each class.
proposal_nums (Sequence[int]) – Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000).
iou_thrs (Sequence[float], optional) – IoU threshold used for evaluating recalls/mAPs. If set to a list, the average of all IoUs will also be computed. If not specified, [0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95] will be used. Default: None.
metric_items (list[str] | str, optional) – Metric items that will be returned. If not specified,
['AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ]
will be used whenmetric=='proposal'
,['mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l']
will be used whenmetric=='bbox' or metric=='segm'
.
- Returns
COCO style evaluation metric.
- Return type
dict[str, float]
- format_results(results, jsonfile_prefix=None, **kwargs)[source]¶
Format the results to json (standard format for COCO evaluation).
- Parameters
results (list[tuple | numpy.ndarray]) – Testing results of the dataset.
jsonfile_prefix (str | None) – The prefix of json files. It includes the file path and the prefix of filename, e.g., “a/b/prefix”. If not specified, a temp file will be created. Default: None.
- Returns
(result_files, tmp_dir), result_files is a dict containing the json filepaths, tmp_dir is the temporal directory created for saving json files when jsonfile_prefix is not specified.
- Return type
tuple
- get_ann_info(idx)[source]¶
Get COCO annotation by index.
- Parameters
idx (int) – Index of data.
- Returns
Annotation info of specified index.
- Return type
dict
- get_cat_ids(idx)[source]¶
Get COCO category ids by index.
- Parameters
idx (int) – Index of data.
- Returns
All categories in the image of specified index.
- Return type
list[int]
- load_annotations(ann_file)[source]¶
Load annotation from COCO style annotation file.
- Parameters
ann_file (str) – Path of annotation file.
- Returns
Annotation info from COCO api.
- Return type
list[dict]
- results2json(results, outfile_prefix)[source]¶
Dump the detection results to a COCO style json file.
There are 3 types of results: proposals, bbox predictions, mask predictions, and they have different data types. This method will automatically recognize the type, and dump them to json files.
- Parameters
results (list[list | tuple | ndarray]) – Testing results of the dataset.
outfile_prefix (str) – The filename prefix of the json files. If the prefix is “somepath/xxx”, the json files will be named “somepath/xxx.bbox.json”, “somepath/xxx.segm.json”, “somepath/xxx.proposal.json”.
- Returns
str]: Possible keys are “bbox”, “segm”, “proposal”, and values are corresponding filenames.
- Return type
dict[str
- class mmdet.datasets.CocoPanopticDataset(ann_file, pipeline, ins_ann_file=None, classes=None, data_root=None, img_prefix='', seg_prefix=None, proposal_file=None, test_mode=False, filter_empty_gt=True, file_client_args={'backend': 'disk'})[source]¶
Coco dataset for Panoptic segmentation.
The annotation format is shown as follows. The ann field is optional for testing.
[ { 'filename': f'{image_id:012}.png', 'image_id':9 'segments_info': { [ { 'id': 8345037, (segment_id in panoptic png, convert from rgb) 'category_id': 51, 'iscrowd': 0, 'bbox': (x1, y1, w, h), 'area': 24315, 'segmentation': list,(coded mask) }, ... } } }, ... ]
- Parameters
ann_file (str) – Panoptic segmentation annotation file path.
pipeline (list[dict]) – Processing pipeline.
ins_ann_file (str) – Instance segmentation annotation file path. Defaults to None.
classes (str | Sequence[str], optional) – Specify classes to load. If is None,
cls.CLASSES
will be used. Defaults to None.data_root (str, optional) – Data root for
ann_file
,ins_ann_file
img_prefix
,seg_prefix
,proposal_file
if specified. Defaults to None.img_prefix (str, optional) – Prefix of path to images. Defaults to ‘’.
seg_prefix (str, optional) – Prefix of path to segmentation files. Defaults to None.
proposal_file (str, optional) – Path to proposal file. Defaults to None.
test_mode (bool, optional) – If set True, annotation will not be loaded. Defaults to False.
filter_empty_gt (bool, optional) – If set true, images without bounding boxes of the dataset’s classes will be filtered out. This option only works when test_mode=False, i.e., we never filter images during tests. Defaults to True.
file_client_args (
mmcv.ConfigDict
| dict) – file client args. Defaults to dict(backend=’disk’).
- evaluate(results, metric='PQ', logger=None, jsonfile_prefix=None, classwise=False, nproc=32, **kwargs)[source]¶
Evaluation in COCO Panoptic protocol.
- Parameters
results (list[dict]) – Testing results of the dataset.
metric (str | list[str]) – Metrics to be evaluated. ‘PQ’, ‘bbox’, ‘segm’, ‘proposal’ are supported. ‘pq’ will be regarded as ‘PQ.
logger (logging.Logger | str | None) – Logger used for printing related information during evaluation. Default: None.
jsonfile_prefix (str | None) – The prefix of json files. It includes the file path and the prefix of filename, e.g., “a/b/prefix”. If not specified, a temp file will be created. Default: None.
classwise (bool) – Whether to print classwise evaluation results. Default: False.
nproc (int) – Number of processes for panoptic quality computing. Defaults to 32. When nproc exceeds the number of cpu cores, the number of cpu cores is used.
- Returns
COCO Panoptic style evaluation metric.
- Return type
dict[str, float]
- evaluate_pan_json(result_files, outfile_prefix, logger=None, classwise=False, nproc=32)[source]¶
Evaluate PQ according to the panoptic results json file.
- get_ann_info(idx)[source]¶
Get COCO annotation by index.
- Parameters
idx (int) – Index of data.
- Returns
Annotation info of specified index.
- Return type
dict
- load_annotations(ann_file)[source]¶
Load annotation from COCO Panoptic style annotation file.
- Parameters
ann_file (str) – Path of annotation file.
- Returns
Annotation info from COCO api.
- Return type
list[dict]
- results2json(results, outfile_prefix)[source]¶
Dump the results to a COCO style json file.
There are 4 types of results: proposals, bbox predictions, mask predictions, panoptic segmentation predictions, and they have different data types. This method will automatically recognize the type, and dump them to json files.
[ { 'pan_results': np.array, # shape (h, w) # ins_results which includes bboxes and RLE encoded masks # is optional. 'ins_results': (list[np.array], list[list[str]]) }, ... ]
- Parameters
results (list[dict]) – Testing results of the dataset.
outfile_prefix (str) – The filename prefix of the json files. If the prefix is “somepath/xxx”, the json files will be named “somepath/xxx.panoptic.json”, “somepath/xxx.bbox.json”, “somepath/xxx.segm.json”
- Returns
str]: Possible keys are “panoptic”, “bbox”, “segm”, “proposal”, and values are corresponding filenames.
- Return type
dict[str
- class mmdet.datasets.ConcatDataset(datasets, separate_eval=True)[source]¶
A wrapper of concatenated dataset.
Same as
torch.utils.data.dataset.ConcatDataset
, but concat the group flag for image aspect ratio.- Parameters
datasets (list[
Dataset
]) – A list of datasets.separate_eval (bool) – Whether to evaluate the results separately if it is used as validation dataset. Defaults to True.
- evaluate(results, logger=None, **kwargs)[source]¶
Evaluate the results.
- Parameters
results (list[list | tuple]) – Testing results of the dataset.
logger (logging.Logger | str | None) – Logger used for printing related information during evaluation. Default: None.
- Returns
float]: AP results of the total dataset or each separate dataset if self.separate_eval=True.
- Return type
dict[str
- class mmdet.datasets.CustomDataset(ann_file, pipeline, classes=None, data_root=None, img_prefix='', seg_prefix=None, seg_suffix='.png', proposal_file=None, test_mode=False, filter_empty_gt=True, file_client_args={'backend': 'disk'})[source]¶
Custom dataset for detection.
The annotation format is shown as follows. The ann field is optional for testing.
[ { 'filename': 'a.jpg', 'width': 1280, 'height': 720, 'ann': { 'bboxes': <np.ndarray> (n, 4) in (x1, y1, x2, y2) order. 'labels': <np.ndarray> (n, ), 'bboxes_ignore': <np.ndarray> (k, 4), (optional field) 'labels_ignore': <np.ndarray> (k, 4) (optional field) } }, ... ]
- Parameters
ann_file (str) – Annotation file path.
pipeline (list[dict]) – Processing pipeline.
classes (str | Sequence[str], optional) – Specify classes to load. If is None,
cls.CLASSES
will be used. Default: None.data_root (str, optional) – Data root for
ann_file
,img_prefix
,seg_prefix
,proposal_file
if specified.test_mode (bool, optional) – If set True, annotation will not be loaded.
filter_empty_gt (bool, optional) – If set true, images without bounding boxes of the dataset’s classes will be filtered out. This option only works when test_mode=False, i.e., we never filter images during tests.
- evaluate(results, metric='mAP', logger=None, proposal_nums=(100, 300, 1000), iou_thr=0.5, scale_ranges=None)[source]¶
Evaluate the dataset.
- Parameters
results (list) – Testing results of the dataset.
metric (str | list[str]) – Metrics to be evaluated.
logger (logging.Logger | None | str) – Logger used for printing related information during evaluation. Default: None.
proposal_nums (Sequence[int]) – Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000).
iou_thr (float | list[float]) – IoU threshold. Default: 0.5.
scale_ranges (list[tuple] | None) – Scale ranges for evaluating mAP. Default: None.
- format_results(results, **kwargs)[source]¶
Place holder to format result to dataset specific output.
- get_ann_info(idx)[source]¶
Get annotation by index.
- Parameters
idx (int) – Index of data.
- Returns
Annotation info of specified index.
- Return type
dict
- get_cat2imgs()[source]¶
Get a dict with class as key and img_ids as values, which will be used in
ClassAwareSampler
.- Returns
A dict of per-label image list, the item of the dict indicates a label index, corresponds to the image index that contains the label.
- Return type
dict[list]
- get_cat_ids(idx)[source]¶
Get category ids by index.
- Parameters
idx (int) – Index of data.
- Returns
All categories in the image of specified index.
- Return type
list[int]
- classmethod get_classes(classes=None)[source]¶
Get class names of current dataset.
- Parameters
classes (Sequence[str] | str | None) – If classes is None, use default CLASSES defined by builtin dataset. If classes is a string, take it as a file name. The file contains the name of classes where each line contains one class name. If classes is a tuple or list, override the CLASSES defined by the dataset.
- Returns
Names of categories of the dataset.
- Return type
tuple[str] or list[str]
- class mmdet.datasets.DeepFashionDataset(ann_file, pipeline, classes=None, data_root=None, img_prefix='', seg_prefix=None, seg_suffix='.png', proposal_file=None, test_mode=False, filter_empty_gt=True, file_client_args={'backend': 'disk'})[source]¶
- class mmdet.datasets.DistributedGroupSampler(dataset, samples_per_gpu=1, num_replicas=None, rank=None, seed=0)[source]¶
Sampler that restricts data loading to a subset of the dataset.
It is especially useful in conjunction with
torch.nn.parallel.DistributedDataParallel
. In such case, each process can pass a DistributedSampler instance as a DataLoader sampler, and load a subset of the original dataset that is exclusive to it.Note
Dataset is assumed to be of constant size.
- Parameters
dataset – Dataset used for sampling.
num_replicas (optional) – Number of processes participating in distributed training.
rank (optional) – Rank of the current process within num_replicas.
seed (int, optional) – random seed used to shuffle the sampler if
shuffle=True
. This number should be identical across all processes in the distributed group. Default: 0.
- class mmdet.datasets.DistributedSampler(dataset, num_replicas=None, rank=None, shuffle=True, seed=0)[source]¶
- mmdet.datasets.LVISDataset¶
alias of
LVISV05Dataset
- class mmdet.datasets.LVISV05Dataset(ann_file, pipeline, classes=None, data_root=None, img_prefix='', seg_prefix=None, seg_suffix='.png', proposal_file=None, test_mode=False, filter_empty_gt=True, file_client_args={'backend': 'disk'})[source]¶
- PALETTE = None¶
- evaluate(results, metric='bbox', logger=None, jsonfile_prefix=None, classwise=False, proposal_nums=(100, 300, 1000), iou_thrs=array([0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95]))[source]¶
Evaluation in LVIS protocol.
- Parameters
results (list[list | tuple]) – Testing results of the dataset.
metric (str | list[str]) – Metrics to be evaluated. Options are ‘bbox’, ‘segm’, ‘proposal’, ‘proposal_fast’.
logger (logging.Logger | str | None) – Logger used for printing related information during evaluation. Default: None.
jsonfile_prefix (str | None) –
classwise (bool) – Whether to evaluating the AP for each class.
proposal_nums (Sequence[int]) – Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000).
iou_thrs (Sequence[float]) – IoU threshold used for evaluating recalls. If set to a list, the average recall of all IoUs will also be computed. Default: 0.5.
- Returns
LVIS style metrics.
- Return type
dict[str, float]
- class mmdet.datasets.LVISV1Dataset(ann_file, pipeline, classes=None, data_root=None, img_prefix='', seg_prefix=None, seg_suffix='.png', proposal_file=None, test_mode=False, filter_empty_gt=True, file_client_args={'backend': 'disk'})[source]¶
- class mmdet.datasets.MultiImageMixDataset(dataset, pipeline, dynamic_scale=None, skip_type_keys=None, max_refetch=15)[source]¶
A wrapper of multiple images mixed dataset.
Suitable for training on multiple images mixed data augmentation like mosaic and mixup. For the augmentation pipeline of mixed image data, the get_indexes method needs to be provided to obtain the image indexes, and you can set skip_flags to change the pipeline running process. At the same time, we provide the dynamic_scale parameter to dynamically change the output image size.
- Parameters
dataset (
CustomDataset
) – The dataset to be mixed.pipeline (Sequence[dict]) – Sequence of transform object or config dict to be composed.
dynamic_scale (tuple[int], optional) – The image scale can be changed dynamically. Default to None. It is deprecated.
skip_type_keys (list[str], optional) – Sequence of type string to be skip pipeline. Default to None.
max_refetch (int) – The maximum number of retry iterations for getting valid results from the pipeline. If the number of iterations is greater than max_refetch, but results is still None, then the iteration is terminated and raise the error. Default: 15.
- class mmdet.datasets.Objects365V1Dataset(ann_file, pipeline, classes=None, data_root=None, img_prefix='', seg_prefix=None, seg_suffix='.png', proposal_file=None, test_mode=False, filter_empty_gt=True, file_client_args={'backend': 'disk'})[source]¶
Objects365 v1 dataset for detection.
- PALETTE = None¶
- class mmdet.datasets.Objects365V2Dataset(ann_file, pipeline, classes=None, data_root=None, img_prefix='', seg_prefix=None, seg_suffix='.png', proposal_file=None, test_mode=False, filter_empty_gt=True, file_client_args={'backend': 'disk'})[source]¶
Objects365 v2 dataset for detection.
- class mmdet.datasets.OccludedSeparatedCocoDataset(*args, occluded_ann='https://www.robots.ox.ac.uk/~vgg/research/tpod/datasets/occluded_coco.pkl', separated_ann='https://www.robots.ox.ac.uk/~vgg/research/tpod/datasets/separated_coco.pkl', **kwargs)[source]¶
COCO dataset with evaluation on separated and occluded masks which presented in paper `A Tri-Layer Plugin to Improve Occluded Detection.
<https://arxiv.org/abs/2210.10046>`_.
Separated COCO and Occluded COCO are automatically generated subsets of COCO val dataset, collecting separated objects and partially occluded objects for a large variety of categories. In this way, we define occlusion into two major categories: separated and partially occluded.
Separation: target object segmentation mask is separated into distinct regions by the occluder.
Partial Occlusion: target object is partially occluded but the segmentation mask is connected.
These two new scalable real-image datasets are to benchmark a model’s capability to detect occluded objects of 80 common categories.
Please cite the paper if you use this dataset:
- @article{zhan2022triocc,
title={A Tri-Layer Plugin to Improve Occluded Detection}, author={Zhan, Guanqi and Xie, Weidi and Zisserman, Andrew}, journal={British Machine Vision Conference}, year={2022}
}
- Parameters
occluded_ann (str) – Path to the occluded coco annotation file.
separated_ann (str) – Path to the separated coco annotation file.
- compute_recall(result_dict, gt_ann, score_thr=0.3, iou_thr=0.75, is_occ=True)[source]¶
Compute the recall of occluded or separated masks.
- Parameters
results (list[tuple]) – Testing results of the dataset.
gt_ann (list) – Occluded or separated coco annotations.
score_thr (float) – Score threshold of the detection masks. Defaults to 0.3.
iou_thr (float) – IoU threshold for the recall calculation. Defaults to 0.75.
is_occ (bool) – Whether the annotation is occluded mask. Defaults to True.
- Returns
number of correct masks and the recall.
- Return type
tuple
- evaluate(results, metric=[], score_thr=0.3, iou_thr=0.75, **kwargs)[source]¶
Occluded and separated mask evaluation in COCO protocol.
- Parameters
results (list[tuple]) – Testing results of the dataset.
metric (str | list[str]) – Metrics to be evaluated. Options are ‘bbox’, ‘segm’, ‘proposal’, ‘proposal_fast’. Defaults to [].
score_thr (float) – Score threshold of the detection masks. Defaults to 0.3.
iou_thr (float) – IoU threshold for the recall calculation. Defaults to 0.75.
- Returns
The recall of occluded and separated masks and COCO style evaluation metric.
- Return type
dict[str, float]
- evaluate_occluded_separated(results, score_thr=0.3, iou_thr=0.75)[source]¶
Compute the recall of occluded and separated masks.
- Parameters
results (list[tuple]) – Testing results of the dataset.
score_thr (float) – Score threshold of the detection masks. Defaults to 0.3.
iou_thr (float) – IoU threshold for the recall calculation. Defaults to 0.75.
- Returns
The recall of occluded and separated masks.
- Return type
dict[str, float]
- class mmdet.datasets.OpenImagesChallengeDataset(ann_file, **kwargs)[source]¶
Open Images Challenge dataset for detection.
- get_ann_info(idx)[source]¶
Get OpenImages annotation by index.
- Parameters
idx (int) – Index of data.
- Returns
Annotation info of specified index.
- Return type
dict
- get_classes_from_csv(label_file)[source]¶
Get classes name from file.
- Parameters
label_file (str) – File path of the label description file that maps the classes names in MID format to their short descriptions.
- Returns
Class name of OpenImages.
- Return type
list
- get_relation_matrix(hierarchy_file)[source]¶
Get hierarchy for classes.
- Parameters
hierarchy_file (str) – File path to the hierarchy for classes.
- Returns
The matrix of the corresponding relationship between the parent class and the child class, of shape (class_num, class_num).
- Return type
ndarray
- load_image_label_from_csv(image_level_ann_file)[source]¶
Load image level annotations from csv style ann_file.
- Parameters
image_level_ann_file (str) – CSV style image level annotation file path.
- Returns
Annotations where item of the defaultdict indicates an image, each of which has (n) dicts. Keys of dicts are:
image_level_label (int): of shape 1.
confidence (float): of shape 1.
- Return type
defaultdict[list[dict]]
- class mmdet.datasets.OpenImagesDataset(ann_file, label_file='', image_level_ann_file='', get_supercategory=True, hierarchy_file=None, get_metas=True, load_from_file=True, meta_file='', filter_labels=True, load_image_level_labels=True, file_client_args={'backend': 'disk'}, **kwargs)[source]¶
Open Images dataset for detection.
- Parameters
ann_file (str) – Annotation file path.
label_file (str) – File path of the label description file that maps the classes names in MID format to their short descriptions.
image_level_ann_file (str) – Image level annotation, which is used in evaluation.
get_supercategory (bool) – Whether to get parent class of the current class. Default: True.
hierarchy_file (str) – The file path of the class hierarchy. Default: None.
get_metas (bool) –
Whether to get image metas in testing or validation time. This should be True during evaluation. Default: True. The OpenImages annotations do not have image metas (width and height of the image), which will be used during evaluation. We provide two ways to get image metas in OpenImagesDataset:
1. load from file: Load image metas from pkl file, which is suggested to use. We provided a script to get image metas: tools/misc/get_image_metas.py, which need to run this script before training/testing. Please refer to config/openimages/README.md for more details.
2. load from pipeline, which will get image metas during test time. However, this may reduce the inference speed, especially when using distribution.
load_from_file (bool) – Whether to get image metas from pkl file.
meta_file (str) – File path to get image metas.
filter_labels (bool) – Whether filter unannotated classes. Default: True.
load_image_level_labels (bool) – Whether load and consider image level labels during evaluation. Default: True.
file_client_args (dict) – Arguments to instantiate a FileClient. See
mmcv.fileio.FileClient
for details. Defaults todict(backend='disk')
.
- add_supercategory_ann(annotations)[source]¶
Add parent classes of the corresponding class of the ground truth bboxes.
- denormalize_gt_bboxes(annotations)[source]¶
Convert ground truth bboxes from relative position to absolute position.
Only used in evaluating time.
- evaluate(results, metric='mAP', logger=None, iou_thr=0.5, ioa_thr=0.5, scale_ranges=None, denorm_gt_bbox=True, use_group_of=True)[source]¶
Evaluate in OpenImages.
- Parameters
results (list[list | tuple]) – Testing results of the dataset.
metric (str | list[str]) – Metrics to be evaluated. Option is ‘mAP’. Default: ‘mAP’.
logger (logging.Logger | str, optional) – Logger used for printing related information during evaluation. Default: None.
iou_thr (float | list[float]) – IoU threshold. Default: 0.5.
ioa_thr (float | list[float]) – IoA threshold. Default: 0.5.
scale_ranges (list[tuple], optional) – Scale ranges for evaluating mAP. If not specified, all bounding boxes would be included in evaluation. Default: None
denorm_gt_bbox (bool) – Whether to denorm ground truth bboxes from relative position to absolute position. Default: True
use_group_of (bool) – Whether consider group of groud truth bboxes during evaluating. Default: True.
- Returns
AP metrics.
- Return type
dict[str, float]
- get_ann_info(idx)[source]¶
Get OpenImages annotation by index.
- Parameters
idx (int) – Index of data.
- Returns
Annotation info of specified index.
- Return type
dict
- get_cat_ids(idx)[source]¶
Get category ids by index.
- Parameters
idx (int) – Index of data.
- Returns
All categories in the image of specified index.
- Return type
list[int]
- get_classes_from_csv(label_file)[source]¶
Get classes name from file.
- Parameters
label_file (str) – File path of the label description file that maps the classes names in MID format to their short descriptions.
- Returns
Class name of OpenImages.
- Return type
list[str]
- get_image_level_ann(image_level_ann_file)[source]¶
Get OpenImages annotation by index.
- Parameters
image_level_ann_file (str) – CSV style image level annotation file path.
- Returns
Annotation info of specified index.
- Return type
dict
- get_relation_matrix(hierarchy_file)[source]¶
Get hierarchy for classes.
- Parameters
hierarchy_file (sty) – File path to the hierarchy for classes.
- Returns
The matrix of the corresponding relationship between the parent class and the child class, of shape (class_num, class_num).
- Return type
ndarray
- load_annotations(ann_file)[source]¶
Load annotation from annotation file.
Special described self.data_infos (defaultdict[list[dict]]) in this function: Annotations where item of the defaultdict indicates an image, each of which has (n) dicts. Keys of dicts are:
bbox (list): coordinates of the box, in normalized image coordinates, of shape 4.
label (int): the label id.
is_group_of (bool): Indicates that the box spans a group of objects (e.g., a bed of flowers or a crowd of people).
is_occluded (bool): Indicates that the object is occluded by another object in the image.
is_truncated (bool): Indicates that the object extends beyond the boundary of the image.
is_depiction (bool): Indicates that the object is a depiction.
is_inside (bool): Indicates a picture taken from the inside of the object.
- Parameters
ann_file (str) – CSV style annotation file path.
- Returns
Data infos where each item of the list indicates an image. Keys of annotations are:
img_id (str): Image name.
filename (str): Image name with suffix.
- Return type
list[dict]
- load_image_label_from_csv(image_level_ann_file)[source]¶
Load image level annotations from csv style ann_file.
- Parameters
image_level_ann_file (str) – CSV style image level annotation file path.
- Returns
Annotations where item of the defaultdict indicates an image, each of which has (n) dicts. Keys of dicts are:
image_level_label (int): Label id.
confidence (float): Labels that are human-verified to be present in an image have confidence = 1 (positive labels). Labels that are human-verified to be absent from an image have confidence = 0 (negative labels). Machine-generated labels have fractional confidences, generally >= 0.5. The higher the confidence, the smaller the chance for the label to be a false positive.
- Return type
defaultdict[list[dict]]
- process_results(det_results, annotations, image_level_annotations)[source]¶
Process results of the corresponding class of the detection bboxes.
Note: It will choose to do the following two processing according to the parameters:
1. Whether to add parent classes of the corresponding class of the detection bboxes.
Whether to ignore the classes that unannotated on that image.
- class mmdet.datasets.RepeatDataset(dataset, times)[source]¶
A wrapper of repeated dataset.
The length of repeated dataset will be times larger than the original dataset. This is useful when the data loading time is long but the dataset is small. Using RepeatDataset can reduce the data loading time between epochs.
- Parameters
dataset (
Dataset
) – The dataset to be repeated.times (int) – Repeat times.
- class mmdet.datasets.VOCDataset(**kwargs)[source]¶
- evaluate(results, metric='mAP', logger=None, proposal_nums=(100, 300, 1000), iou_thr=0.5, scale_ranges=None)[source]¶
Evaluate in VOC protocol.
- Parameters
results (list[list | tuple]) – Testing results of the dataset.
metric (str | list[str]) – Metrics to be evaluated. Options are ‘mAP’, ‘recall’.
logger (logging.Logger | str, optional) – Logger used for printing related information during evaluation. Default: None.
proposal_nums (Sequence[int]) – Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000).
iou_thr (float | list[float]) – IoU threshold. Default: 0.5.
scale_ranges (list[tuple], optional) – Scale ranges for evaluating mAP. If not specified, all bounding boxes would be included in evaluation. Default: None.
- Returns
AP/recall metrics.
- Return type
dict[str, float]
- class mmdet.datasets.WIDERFaceDataset(**kwargs)[source]¶
Reader for the WIDER Face dataset in PASCAL VOC format.
Conversion scripts can be found in https://github.com/sovrasov/wider-face-pascal-voc-annotations
- class mmdet.datasets.XMLDataset(min_size=None, img_subdir='JPEGImages', ann_subdir='Annotations', **kwargs)[source]¶
XML dataset for detection.
- Parameters
min_size (int | float, optional) – The minimum size of bounding boxes in the images. If the size of a bounding box is less than
min_size
, it would be add to ignored field.img_subdir (str) – Subdir where images are stored. Default: JPEGImages.
ann_subdir (str) – Subdir where annotations are. Default: Annotations.
- get_ann_info(idx)[source]¶
Get annotation from XML file by index.
- Parameters
idx (int) – Index of data.
- Returns
Annotation info of specified index.
- Return type
dict
- mmdet.datasets.build_dataloader(dataset, samples_per_gpu, workers_per_gpu, num_gpus=1, dist=True, shuffle=True, seed=None, runner_type='EpochBasedRunner', persistent_workers=False, class_aware_sampler=None, **kwargs)[source]¶
Build PyTorch DataLoader.
In distributed training, each GPU/process has a dataloader. In non-distributed training, there is only one dataloader for all GPUs.
- Parameters
dataset (Dataset) – A PyTorch dataset.
samples_per_gpu (int) – Number of training samples on each GPU, i.e., batch size of each GPU.
workers_per_gpu (int) – How many subprocesses to use for data loading for each GPU.
num_gpus (int) – Number of GPUs. Only used in non-distributed training.
dist (bool) – Distributed training/test or not. Default: True.
shuffle (bool) – Whether to shuffle the data at every epoch. Default: True.
seed (int, Optional) – Seed to be used. Default: None.
runner_type (str) – Type of runner. Default: EpochBasedRunner
persistent_workers (bool) – If True, the data loader will not shutdown the worker processes after a dataset has been consumed once. This allows to maintain the workers Dataset instances alive. This argument is only valid when PyTorch>=1.7.0. Default: False.
class_aware_sampler (dict) – Whether to use ClassAwareSampler during training. Default: None.
kwargs – any keyword argument to be used to initialize DataLoader
- Returns
A PyTorch dataloader.
- Return type
DataLoader
- mmdet.datasets.get_loading_pipeline(pipeline)[source]¶
Only keep loading image and annotations related configuration.
- Parameters
pipeline (list[dict]) – Data pipeline configs.
- Returns
- The new pipeline list with only keep
loading image and annotations related configuration.
- Return type
list[dict]
Examples
>>> pipelines = [ ... dict(type='LoadImageFromFile'), ... dict(type='LoadAnnotations', with_bbox=True), ... dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), ... dict(type='RandomFlip', flip_ratio=0.5), ... dict(type='Normalize', **img_norm_cfg), ... dict(type='Pad', size_divisor=32), ... dict(type='DefaultFormatBundle'), ... dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ... ] >>> expected_pipelines = [ ... dict(type='LoadImageFromFile'), ... dict(type='LoadAnnotations', with_bbox=True) ... ] >>> assert expected_pipelines == ... get_loading_pipeline(pipelines)
- mmdet.datasets.replace_ImageToTensor(pipelines)[source]¶
Replace the ImageToTensor transform in a data pipeline to DefaultFormatBundle, which is normally useful in batch inference.
- Parameters
pipelines (list[dict]) – Data pipeline configs.
- Returns
- The new pipeline list with all ImageToTensor replaced by
DefaultFormatBundle.
- Return type
list
Examples
>>> pipelines = [ ... dict(type='LoadImageFromFile'), ... dict( ... type='MultiScaleFlipAug', ... img_scale=(1333, 800), ... flip=False, ... transforms=[ ... dict(type='Resize', keep_ratio=True), ... dict(type='RandomFlip'), ... dict(type='Normalize', mean=[0, 0, 0], std=[1, 1, 1]), ... dict(type='Pad', size_divisor=32), ... dict(type='ImageToTensor', keys=['img']), ... dict(type='Collect', keys=['img']), ... ]) ... ] >>> expected_pipelines = [ ... dict(type='LoadImageFromFile'), ... dict( ... type='MultiScaleFlipAug', ... img_scale=(1333, 800), ... flip=False, ... transforms=[ ... dict(type='Resize', keep_ratio=True), ... dict(type='RandomFlip'), ... dict(type='Normalize', mean=[0, 0, 0], std=[1, 1, 1]), ... dict(type='Pad', size_divisor=32), ... dict(type='DefaultFormatBundle'), ... dict(type='Collect', keys=['img']), ... ]) ... ] >>> assert expected_pipelines == replace_ImageToTensor(pipelines)
pipelines¶
- class mmdet.datasets.pipelines.Albu(transforms, bbox_params=None, keymap=None, update_pad_shape=False, skip_img_without_anno=False)[source]¶
Albumentation augmentation.
Adds custom transformations from Albumentations library. Please, visit https://albumentations.readthedocs.io to get more information.
An example of
transforms
is as followed:[ dict( type='ShiftScaleRotate', shift_limit=0.0625, scale_limit=0.0, rotate_limit=0, interpolation=1, p=0.5), dict( type='RandomBrightnessContrast', brightness_limit=[0.1, 0.3], contrast_limit=[0.1, 0.3], p=0.2), dict(type='ChannelShuffle', p=0.1), dict( type='OneOf', transforms=[ dict(type='Blur', blur_limit=3, p=1.0), dict(type='MedianBlur', blur_limit=3, p=1.0) ], p=0.1), ]
- Parameters
transforms (list[dict]) – A list of albu transformations
bbox_params (dict) – Bbox_params for albumentation Compose
keymap (dict) – Contains {‘input key’:’albumentation-style key’}
skip_img_without_anno (bool) – Whether to skip the image if no ann left after aug
- class mmdet.datasets.pipelines.AutoAugment(policies)[source]¶
Auto augmentation.
This data augmentation is proposed in Learning Data Augmentation Strategies for Object Detection.
TODO: Implement ‘Shear’, ‘Sharpness’ and ‘Rotate’ transforms
- Parameters
policies (list[list[dict]]) – The policies of auto augmentation. Each policy in
policies
is a specific augmentation policy, and is composed by several augmentations (dict). When AutoAugment is called, a random policy inpolicies
will be selected to augment images.
Examples
>>> replace = (104, 116, 124) >>> policies = [ >>> [ >>> dict(type='Sharpness', prob=0.0, level=8), >>> dict( >>> type='Shear', >>> prob=0.4, >>> level=0, >>> replace=replace, >>> axis='x') >>> ], >>> [ >>> dict( >>> type='Rotate', >>> prob=0.6, >>> level=10, >>> replace=replace), >>> dict(type='Color', prob=1.0, level=6) >>> ] >>> ] >>> augmentation = AutoAugment(policies) >>> img = np.ones(100, 100, 3) >>> gt_bboxes = np.ones(10, 4) >>> results = dict(img=img, gt_bboxes=gt_bboxes) >>> results = augmentation(results)
- class mmdet.datasets.pipelines.BrightnessTransform(level, prob=0.5)[source]¶
Apply Brightness transformation to image. The bboxes, masks and segmentations are not modified.
- Parameters
level (int | float) – Should be in range [0,_MAX_LEVEL].
prob (float) – The probability for performing Brightness transformation.
- class mmdet.datasets.pipelines.Collect(keys, meta_keys=('filename', 'ori_filename', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor', 'flip', 'flip_direction', 'img_norm_cfg'))[source]¶
Collect data from the loader relevant to the specific task.
This is usually the last stage of the data loader pipeline. Typically keys is set to some subset of “img”, “proposals”, “gt_bboxes”, “gt_bboxes_ignore”, “gt_labels”, and/or “gt_masks”.
The “img_meta” item is always populated. The contents of the “img_meta” dictionary depends on “meta_keys”. By default this includes:
“img_shape”: shape of the image input to the network as a tuple (h, w, c). Note that images may be zero padded on the bottom/right if the batch tensor is larger than this shape.
“scale_factor”: a float indicating the preprocessing scale
“flip”: a boolean indicating if image flip transform was used
“filename”: path to the image file
“ori_shape”: original shape of the image as a tuple (h, w, c)
“pad_shape”: image shape after padding
“img_norm_cfg”: a dict of normalization information:
mean - per channel mean subtraction
std - per channel std divisor
to_rgb - bool indicating if bgr was converted to rgb
- Parameters
keys (Sequence[str]) – Keys of results to be collected in
data
.meta_keys (Sequence[str], optional) – Meta keys to be converted to
mmcv.DataContainer
and collected indata[img_metas]
. Default:('filename', 'ori_filename', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor', 'flip', 'flip_direction', 'img_norm_cfg')
- class mmdet.datasets.pipelines.ColorTransform(level, prob=0.5)[source]¶
Apply Color transformation to image. The bboxes, masks, and segmentations are not modified.
- Parameters
level (int | float) – Should be in range [0,_MAX_LEVEL].
prob (float) – The probability for performing Color transformation.
- class mmdet.datasets.pipelines.Compose(transforms)[source]¶
Compose multiple transforms sequentially.
- Parameters
transforms (Sequence[dict | callable]) – Sequence of transform object or config dict to be composed.
- class mmdet.datasets.pipelines.ContrastTransform(level, prob=0.5)[source]¶
Apply Contrast transformation to image. The bboxes, masks and segmentations are not modified.
- Parameters
level (int | float) – Should be in range [0,_MAX_LEVEL].
prob (float) – The probability for performing Contrast transformation.
- class mmdet.datasets.pipelines.CopyPaste(max_num_pasted=100, bbox_occluded_thr=10, mask_occluded_thr=300, selected=True)[source]¶
Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation The simple copy-paste transform steps are as follows:
The destination image is already resized with aspect ratio kept, cropped and padded.
Randomly select a source image, which is also already resized with aspect ratio kept, cropped and padded in a similar way as the destination image.
Randomly select some objects from the source image.
Paste these source objects to the destination image directly, due to the source and destination image have the same size.
Update object masks of the destination image, for some origin objects may be occluded.
Generate bboxes from the updated destination masks and filter some objects which are totally occluded, and adjust bboxes which are partly occluded.
Append selected source bboxes, masks, and labels.
- Parameters
max_num_pasted (int) – The maximum number of pasted objects. Default: 100.
bbox_occluded_thr (int) – The threshold of occluded bbox. Default: 10.
mask_occluded_thr (int) – The threshold of occluded mask. Default: 300.
selected (bool) – Whether select objects or not. If select is False, all objects of the source image will be pasted to the destination image. Default: True.
- gen_masks_from_bboxes(bboxes, img_shape)[source]¶
Generate gt_masks based on gt_bboxes.
- Parameters
bboxes (list) – The bboxes’s list.
img_shape (tuple) – The shape of image.
- Returns
BitmapMasks
- class mmdet.datasets.pipelines.CutOut(n_holes, cutout_shape=None, cutout_ratio=None, fill_in=(0, 0, 0))[source]¶
CutOut operation.
Randomly drop some regions of image used in Cutout.
- Parameters
n_holes (int | tuple[int, int]) – Number of regions to be dropped. If it is given as a list, number of holes will be randomly selected from the closed interval [n_holes[0], n_holes[1]].
cutout_shape (tuple[int, int] | list[tuple[int, int]]) – The candidate shape of dropped regions. It can be tuple[int, int] to use a fixed cutout shape, or list[tuple[int, int]] to randomly choose shape from the list.
cutout_ratio (tuple[float, float] | list[tuple[float, float]]) – The candidate ratio of dropped regions. It can be tuple[float, float] to use a fixed ratio or list[tuple[float, float]] to randomly choose ratio from the list. Please note that cutout_shape and cutout_ratio cannot be both given at the same time.
fill_in (tuple[float, float, float] | tuple[int, int, int]) – The value of pixel to fill in the dropped regions. Default: (0, 0, 0).
- class mmdet.datasets.pipelines.DefaultFormatBundle(img_to_float=True, pad_val={'img': 0, 'masks': 0, 'seg': 255})[source]¶
Default formatting bundle.
It simplifies the pipeline of formatting common fields, including “img”, “proposals”, “gt_bboxes”, “gt_labels”, “gt_masks” and “gt_semantic_seg”. These fields are formatted as follows.
img: (1)transpose & to tensor, (2)to DataContainer (stack=True)
proposals: (1)to tensor, (2)to DataContainer
gt_bboxes: (1)to tensor, (2)to DataContainer
gt_bboxes_ignore: (1)to tensor, (2)to DataContainer
gt_labels: (1)to tensor, (2)to DataContainer
gt_masks: (1)to tensor, (2)to DataContainer (cpu_only=True)
gt_semantic_seg: (1)unsqueeze dim-0 (2)to tensor, (3)to DataContainer (stack=True)
- Parameters
img_to_float (bool) – Whether to force the image to be converted to float type. Default: True.
pad_val (dict) – A dict for padding value in batch collating, the default value is dict(img=0, masks=0, seg=255). Without this argument, the padding value of “gt_semantic_seg” will be set to 0 by default, which should be 255.
- class mmdet.datasets.pipelines.EqualizeTransform(prob=0.5)[source]¶
Apply Equalize transformation to image. The bboxes, masks and segmentations are not modified.
- Parameters
prob (float) – The probability for performing Equalize transformation.
- class mmdet.datasets.pipelines.Expand(mean=(0, 0, 0), to_rgb=True, ratio_range=(1, 4), seg_ignore_label=None, prob=0.5)[source]¶
Random expand the image & bboxes.
Randomly place the original image on a canvas of ‘ratio’ x original image size filled with mean values. The ratio is in the range of ratio_range.
- Parameters
mean (tuple) – mean value of dataset.
to_rgb (bool) – if need to convert the order of mean to align with RGB.
ratio_range (tuple) – range of expand ratio.
prob (float) – probability of applying this transformation
- class mmdet.datasets.pipelines.FilterAnnotations(min_gt_bbox_wh=(1.0, 1.0), min_gt_mask_area=1, by_box=True, by_mask=False, keep_empty=True)[source]¶
Filter invalid annotations.
- Parameters
min_gt_bbox_wh (tuple[float]) – Minimum width and height of ground truth boxes. Default: (1., 1.)
min_gt_mask_area (int) – Minimum foreground area of ground truth masks. Default: 1
by_box (bool) – Filter instances with bounding boxes not meeting the min_gt_bbox_wh threshold. Default: True
by_mask (bool) – Filter instances with masks not meeting min_gt_mask_area threshold. Default: False
keep_empty (bool) – Whether to return None when it becomes an empty bbox after filtering. Default: True
- class mmdet.datasets.pipelines.ImageToTensor(keys)[source]¶
Convert image to
torch.Tensor
by given keys.The dimension order of input image is (H, W, C). The pipeline will convert it to (C, H, W). If only 2 dimension (H, W) is given, the output would be (1, H, W).
- Parameters
keys (Sequence[str]) – Key of images to be converted to Tensor.
- class mmdet.datasets.pipelines.InstaBoost(action_candidate=('normal', 'horizontal', 'skip'), action_prob=(1, 0, 0), scale=(0.8, 1.2), dx=15, dy=15, theta=(-1, 1), color_prob=0.5, hflag=False, aug_ratio=0.5)[source]¶
Data augmentation method in InstaBoost: Boosting Instance Segmentation Via Probability Map Guided Copy-Pasting.
Refer to https://github.com/GothicAi/Instaboost for implementation details.
- Parameters
action_candidate (tuple) – Action candidates. “normal”, “horizontal”, “vertical”, “skip” are supported. Default: (‘normal’, ‘horizontal’, ‘skip’).
action_prob (tuple) – Corresponding action probabilities. Should be the same length as action_candidate. Default: (1, 0, 0).
scale (tuple) – (min scale, max scale). Default: (0.8, 1.2).
dx (int) – The maximum x-axis shift will be (instance width) / dx. Default 15.
dy (int) – The maximum y-axis shift will be (instance height) / dy. Default 15.
theta (tuple) – (min rotation degree, max rotation degree). Default: (-1, 1).
color_prob (float) – Probability of images for color augmentation. Default 0.5.
heatmap_flag (bool) – Whether to use heatmap guided. Default False.
aug_ratio (float) – Probability of applying this transformation. Default 0.5.
- class mmdet.datasets.pipelines.LoadAnnotations(with_bbox=True, with_label=True, with_mask=False, with_seg=False, poly2mask=True, denorm_bbox=False, file_client_args={'backend': 'disk'})[source]¶
Load multiple types of annotations.
- Parameters
with_bbox (bool) – Whether to parse and load the bbox annotation. Default: True.
with_label (bool) – Whether to parse and load the label annotation. Default: True.
with_mask (bool) – Whether to parse and load the mask annotation. Default: False.
with_seg (bool) – Whether to parse and load the semantic segmentation annotation. Default: False.
poly2mask (bool) – Whether to convert the instance masks from polygons to bitmaps. Default: True.
denorm_bbox (bool) – Whether to convert bbox from relative value to absolute value. Only used in OpenImage Dataset. Default: False.
file_client_args (dict) – Arguments to instantiate a FileClient. See
mmcv.fileio.FileClient
for details. Defaults todict(backend='disk')
.
- class mmdet.datasets.pipelines.LoadImageFromFile(to_float32=False, color_type='color', channel_order='bgr', file_client_args={'backend': 'disk'})[source]¶
Load an image from file.
Required keys are “img_prefix” and “img_info” (a dict that must contain the key “filename”). Added or updated keys are “filename”, “img”, “img_shape”, “ori_shape” (same as img_shape), “pad_shape” (same as img_shape), “scale_factor” (1.0) and “img_norm_cfg” (means=0 and stds=1).
- Parameters
to_float32 (bool) – Whether to convert the loaded image to a float32 numpy array. If set to False, the loaded image is an uint8 array. Defaults to False.
color_type (str) – The flag argument for
mmcv.imfrombytes()
. Defaults to ‘color’.file_client_args (dict) – Arguments to instantiate a FileClient. See
mmcv.fileio.FileClient
for details. Defaults todict(backend='disk')
.
- class mmdet.datasets.pipelines.LoadImageFromWebcam(to_float32=False, color_type='color', channel_order='bgr', file_client_args={'backend': 'disk'})[source]¶
Load an image from webcam.
Similar with
LoadImageFromFile
, but the image read from webcam is inresults['img']
.
- class mmdet.datasets.pipelines.LoadMultiChannelImageFromFiles(to_float32=False, color_type='unchanged', file_client_args={'backend': 'disk'})[source]¶
Load multi-channel images from a list of separate channel files.
Required keys are “img_prefix” and “img_info” (a dict that must contain the key “filename”, which is expected to be a list of filenames). Added or updated keys are “filename”, “img”, “img_shape”, “ori_shape” (same as img_shape), “pad_shape” (same as img_shape), “scale_factor” (1.0) and “img_norm_cfg” (means=0 and stds=1).
- Parameters
to_float32 (bool) – Whether to convert the loaded image to a float32 numpy array. If set to False, the loaded image is an uint8 array. Defaults to False.
color_type (str) – The flag argument for
mmcv.imfrombytes()
. Defaults to ‘color’.file_client_args (dict) – Arguments to instantiate a FileClient. See
mmcv.fileio.FileClient
for details. Defaults todict(backend='disk')
.
- class mmdet.datasets.pipelines.LoadPanopticAnnotations(with_bbox=True, with_label=True, with_mask=True, with_seg=True, file_client_args={'backend': 'disk'})[source]¶
Load multiple types of panoptic annotations.
- Parameters
with_bbox (bool) – Whether to parse and load the bbox annotation. Default: True.
with_label (bool) – Whether to parse and load the label annotation. Default: True.
with_mask (bool) – Whether to parse and load the mask annotation. Default: True.
with_seg (bool) – Whether to parse and load the semantic segmentation annotation. Default: True.
file_client_args (dict) – Arguments to instantiate a FileClient. See
mmcv.fileio.FileClient
for details. Defaults todict(backend='disk')
.
- class mmdet.datasets.pipelines.LoadProposals(num_max_proposals=None)[source]¶
Load proposal pipeline.
Required key is “proposals”. Updated keys are “proposals”, “bbox_fields”.
- Parameters
num_max_proposals (int, optional) – Maximum number of proposals to load. If not specified, all proposals will be loaded.
- class mmdet.datasets.pipelines.MinIoURandomCrop(min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3, bbox_clip_border=True)[source]¶
Random crop the image & bboxes, the cropped patches have minimum IoU requirement with original image & bboxes, the IoU threshold is randomly selected from min_ious.
- Parameters
min_ious (tuple) – minimum IoU threshold for all intersections with
boxes (bounding) –
min_crop_size (float) – minimum crop’s size (i.e. h,w := a*h, a*w,
min_crop_size). (where a >=) –
bbox_clip_border (bool, optional) – Whether clip the objects outside the border of the image. Defaults to True.
Note
The keys for bboxes, labels and masks should be paired. That is, gt_bboxes corresponds to gt_labels and gt_masks, and gt_bboxes_ignore to gt_labels_ignore and gt_masks_ignore.
- class mmdet.datasets.pipelines.MixUp(img_scale=(640, 640), ratio_range=(0.5, 1.5), flip_ratio=0.5, pad_val=114, max_iters=15, min_bbox_size=5, min_area_ratio=0.2, max_aspect_ratio=20, bbox_clip_border=True, skip_filter=True)[source]¶
MixUp data augmentation.
mixup transform +------------------------------+ | mixup image | | | +--------|--------+ | | | | | | |---------------+ | | | | | | | | image | | | | | | | | | | | |-----------------+ | | pad | +------------------------------+ The mixup transform steps are as follows: 1. Another random image is picked by dataset and embedded in the top left patch(after padding and resizing) 2. The target of mixup transform is the weighted average of mixup image and origin image.
- Parameters
img_scale (Sequence[int]) – Image output size after mixup pipeline. The shape order should be (height, width). Default: (640, 640).
ratio_range (Sequence[float]) – Scale ratio of mixup image. Default: (0.5, 1.5).
flip_ratio (float) – Horizontal flip ratio of mixup image. Default: 0.5.
pad_val (int) – Pad value. Default: 114.
max_iters (int) – The maximum number of iterations. If the number of iterations is greater than max_iters, but gt_bbox is still empty, then the iteration is terminated. Default: 15.
min_bbox_size (float) – Width and height threshold to filter bboxes. If the height or width of a box is smaller than this value, it will be removed. Default: 5.
min_area_ratio (float) – Threshold of area ratio between original bboxes and wrapped bboxes. If smaller than this value, the box will be removed. Default: 0.2.
max_aspect_ratio (float) – Aspect ratio of width and height threshold to filter bboxes. If max(h/w, w/h) larger than this value, the box will be removed. Default: 20.
bbox_clip_border (bool, optional) – Whether to clip the objects outside the border of the image. In some dataset like MOT17, the gt bboxes are allowed to cross the border of images. Therefore, we don’t need to clip the gt bboxes in these cases. Defaults to True.
skip_filter (bool) – Whether to skip filtering rules. If it is True, the filter rule will not be applied, and the min_bbox_size and min_area_ratio and max_aspect_ratio is invalid. Default to True.
- class mmdet.datasets.pipelines.Mosaic(img_scale=(640, 640), center_ratio_range=(0.5, 1.5), min_bbox_size=0, bbox_clip_border=True, skip_filter=True, pad_val=114, prob=1.0)[source]¶
Mosaic augmentation.
Given 4 images, mosaic transform combines them into one output image. The output image is composed of the parts from each sub- image.
mosaic transform center_x +------------------------------+ | pad | pad | | +-----------+ | | | | | | | image1 |--------+ | | | | | | | | | image2 | | center_y |----+-------------+-----------| | | cropped | | |pad | image3 | image4 | | | | | +----|-------------+-----------+ | | +-------------+ The mosaic transform steps are as follows: 1. Choose the mosaic center as the intersections of 4 images 2. Get the left top image according to the index, and randomly sample another 3 images from the custom dataset. 3. Sub image will be cropped if image is larger than mosaic patch
- Parameters
img_scale (Sequence[int]) – Image size after mosaic pipeline of single image. The shape order should be (height, width). Default to (640, 640).
center_ratio_range (Sequence[float]) – Center ratio range of mosaic output. Default to (0.5, 1.5).
min_bbox_size (int | float) – The minimum pixel for filtering invalid bboxes after the mosaic pipeline. Default to 0.
bbox_clip_border (bool, optional) – Whether to clip the objects outside the border of the image. In some dataset like MOT17, the gt bboxes are allowed to cross the border of images. Therefore, we don’t need to clip the gt bboxes in these cases. Defaults to True.
skip_filter (bool) – Whether to skip filtering rules. If it is True, the filter rule will not be applied, and the min_bbox_size is invalid. Default to True.
pad_val (int) – Pad value. Default to 114.
prob (float) – Probability of applying this transformation. Default to 1.0.
- class mmdet.datasets.pipelines.MultiScaleFlipAug(transforms, img_scale=None, scale_factor=None, flip=False, flip_direction='horizontal')[source]¶
Test-time augmentation with multiple scales and flipping.
An example configuration is as followed:
img_scale=[(1333, 400), (1333, 800)], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]
After MultiScaleFLipAug with above configuration, the results are wrapped into lists of the same length as followed:
dict( img=[...], img_shape=[...], scale=[(1333, 400), (1333, 400), (1333, 800), (1333, 800)] flip=[False, True, False, True] ... )
- Parameters
transforms (list[dict]) – Transforms to apply in each augmentation.
img_scale (tuple | list[tuple] | None) – Images scales for resizing.
scale_factor (float | list[float] | None) – Scale factors for resizing.
flip (bool) – Whether apply flip augmentation. Default: False.
flip_direction (str | list[str]) – Flip augmentation directions, options are “horizontal”, “vertical” and “diagonal”. If flip_direction is a list, multiple flip augmentations will be applied. It has no effect when flip == False. Default: “horizontal”.
- class mmdet.datasets.pipelines.Normalize(mean, std, to_rgb=True)[source]¶
Normalize the image.
Added key is “img_norm_cfg”.
- Parameters
mean (sequence) – Mean values of 3 channels.
std (sequence) – Std values of 3 channels.
to_rgb (bool) – Whether to convert the image from BGR to RGB, default is true.
- class mmdet.datasets.pipelines.Pad(size=None, size_divisor=None, pad_to_square=False, pad_val={'img': 0, 'masks': 0, 'seg': 255})[source]¶
Pad the image & masks & segmentation map.
There are two padding modes: (1) pad to a fixed size and (2) pad to the minimum size that is divisible by some number. Added keys are “pad_shape”, “pad_fixed_size”, “pad_size_divisor”,
- Parameters
size (tuple, optional) – Fixed padding size.
size_divisor (int, optional) – The divisor of padded size.
pad_to_square (bool) – Whether to pad the image into a square. Currently only used for YOLOX. Default: False.
pad_val (dict, optional) – A dict for padding value, the default value is dict(img=0, masks=0, seg=255).
- class mmdet.datasets.pipelines.PhotoMetricDistortion(brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18)[source]¶
Apply photometric distortion to image sequentially, every transformation is applied with a probability of 0.5. The position of random contrast is in second or second to last.
random brightness
random contrast (mode 0)
convert color from BGR to HSV
random saturation
random hue
convert color from HSV to BGR
random contrast (mode 1)
randomly swap channels
- Parameters
brightness_delta (int) – delta of brightness.
contrast_range (tuple) – range of contrast.
saturation_range (tuple) – range of saturation.
hue_delta (int) – delta of hue.
- class mmdet.datasets.pipelines.RandomAffine(max_rotate_degree=10.0, max_translate_ratio=0.1, scaling_ratio_range=(0.5, 1.5), max_shear_degree=2.0, border=(0, 0), border_val=(114, 114, 114), min_bbox_size=2, min_area_ratio=0.2, max_aspect_ratio=20, bbox_clip_border=True, skip_filter=True)[source]¶
Random affine transform data augmentation.
This operation randomly generates affine transform matrix which including rotation, translation, shear and scaling transforms.
- Parameters
max_rotate_degree (float) – Maximum degrees of rotation transform. Default: 10.
max_translate_ratio (float) – Maximum ratio of translation. Default: 0.1.
scaling_ratio_range (tuple[float]) – Min and max ratio of scaling transform. Default: (0.5, 1.5).
max_shear_degree (float) – Maximum degrees of shear transform. Default: 2.
border (tuple[int]) – Distance from height and width sides of input image to adjust output shape. Only used in mosaic dataset. Default: (0, 0).
border_val (tuple[int]) – Border padding values of 3 channels. Default: (114, 114, 114).
min_bbox_size (float) – Width and height threshold to filter bboxes. If the height or width of a box is smaller than this value, it will be removed. Default: 2.
min_area_ratio (float) – Threshold of area ratio between original bboxes and wrapped bboxes. If smaller than this value, the box will be removed. Default: 0.2.
max_aspect_ratio (float) – Aspect ratio of width and height threshold to filter bboxes. If max(h/w, w/h) larger than this value, the box will be removed.
bbox_clip_border (bool, optional) – Whether to clip the objects outside the border of the image. In some dataset like MOT17, the gt bboxes are allowed to cross the border of images. Therefore, we don’t need to clip the gt bboxes in these cases. Defaults to True.
skip_filter (bool) – Whether to skip filtering rules. If it is True, the filter rule will not be applied, and the min_bbox_size and min_area_ratio and max_aspect_ratio is invalid. Default to True.
- class mmdet.datasets.pipelines.RandomCenterCropPad(crop_size=None, ratios=(0.9, 1.0, 1.1), border=128, mean=None, std=None, to_rgb=None, test_mode=False, test_pad_mode=('logical_or', 127), test_pad_add_pix=0, bbox_clip_border=True)[source]¶
Random center crop and random around padding for CornerNet.
This operation generates randomly cropped image from the original image and pads it simultaneously. Different from
RandomCrop
, the output shape may not equal tocrop_size
strictly. We choose a random value fromratios
and the output shape could be larger or smaller thancrop_size
. The padding operation is also different fromPad
, here we use around padding instead of right-bottom padding.The relation between output image (padding image) and original image:
output image +----------------------------+ | padded area | +------|----------------------------|----------+ | | cropped area | | | | +---------------+ | | | | | . center | | | original image | | | range | | | | | +---------------+ | | +------|----------------------------|----------+ | padded area | +----------------------------+
There are 5 main areas in the figure:
output image: output image of this operation, also called padding image in following instruction.
original image: input image of this operation.
padded area: non-intersect area of output image and original image.
cropped area: the overlap of output image and original image.
center range: a smaller area where random center chosen from. center range is computed by
border
and original image’s shape to avoid our random center is too close to original image’s border.
Also this operation act differently in train and test mode, the summary pipeline is listed below.
Train pipeline:
Choose a
random_ratio
fromratios
, the shape of padding image will berandom_ratio * crop_size
.Choose a
random_center
in center range.Generate padding image with center matches the
random_center
.Initialize the padding image with pixel value equals to
mean
.Copy the cropped area to padding image.
Refine annotations.
Test pipeline:
Compute output shape according to
test_pad_mode
.Generate padding image with center matches the original image center.
Initialize the padding image with pixel value equals to
mean
.Copy the
cropped area
to padding image.
- Parameters
crop_size (tuple | None) – expected size after crop, final size will computed according to ratio. Requires (h, w) in train mode, and None in test mode.
ratios (tuple) – random select a ratio from tuple and crop image to (crop_size[0] * ratio) * (crop_size[1] * ratio). Only available in train mode.
border (int) – max distance from center select area to image border. Only available in train mode.
mean (sequence) – Mean values of 3 channels.
std (sequence) – Std values of 3 channels.
to_rgb (bool) – Whether to convert the image from BGR to RGB.
test_mode (bool) – whether involve random variables in transform. In train mode, crop_size is fixed, center coords and ratio is random selected from predefined lists. In test mode, crop_size is image’s original shape, center coords and ratio is fixed.
test_pad_mode (tuple) –
padding method and padding shape value, only available in test mode. Default is using ‘logical_or’ with 127 as padding shape value.
’logical_or’: final_shape = input_shape | padding_shape_value
’size_divisor’: final_shape = int( ceil(input_shape / padding_shape_value) * padding_shape_value)
test_pad_add_pix (int) – Extra padding pixel in test mode. Default 0.
bbox_clip_border (bool, optional) – Whether clip the objects outside the border of the image. Defaults to True.
- class mmdet.datasets.pipelines.RandomCrop(crop_size, crop_type='absolute', allow_negative_crop=False, recompute_bbox=False, bbox_clip_border=True)[source]¶
Random crop the image & bboxes & masks.
The absolute crop_size is sampled based on crop_type and image_size, then the cropped results are generated.
- Parameters
crop_size (tuple) – The relative ratio or absolute pixels of height and width.
crop_type (str, optional) – one of “relative_range”, “relative”, “absolute”, “absolute_range”. “relative” randomly crops (h * crop_size[0], w * crop_size[1]) part from an input of size (h, w). “relative_range” uniformly samples relative crop size from range [crop_size[0], 1] and [crop_size[1], 1] for height and width respectively. “absolute” crops from an input with absolute size (crop_size[0], crop_size[1]). “absolute_range” uniformly samples crop_h in range [crop_size[0], min(h, crop_size[1])] and crop_w in range [crop_size[0], min(w, crop_size[1])]. Default “absolute”.
allow_negative_crop (bool, optional) – Whether to allow a crop that does not contain any bbox area. Default False.
recompute_bbox (bool, optional) – Whether to re-compute the boxes based on cropped instance masks. Default False.
bbox_clip_border (bool, optional) – Whether clip the objects outside the border of the image. Defaults to True.
Note
- If the image is smaller than the absolute crop size, return the
original image.
The keys for bboxes, labels and masks must be aligned. That is, gt_bboxes corresponds to gt_labels and gt_masks, and gt_bboxes_ignore corresponds to gt_labels_ignore and gt_masks_ignore.
If the crop does not contain any gt-bbox region and allow_negative_crop is set to False, skip this image.
- class mmdet.datasets.pipelines.RandomFlip(flip_ratio=None, direction='horizontal')[source]¶
Flip the image & bbox & mask.
If the input dict contains the key “flip”, then the flag will be used, otherwise it will be randomly decided by a ratio specified in the init method.
When random flip is enabled,
flip_ratio
/direction
can either be a float/string or tuple of float/string. There are 3 flip modes:flip_ratio
is float,direction
is string: the image will bedirection``ly flipped with probability of ``flip_ratio
. E.g.,flip_ratio=0.5
,direction='horizontal'
, then image will be horizontally flipped with probability of 0.5.
flip_ratio
is float,direction
is list of string: the image willbe
direction[i]``ly flipped with probability of ``flip_ratio/len(direction)
. E.g.,flip_ratio=0.5
,direction=['horizontal', 'vertical']
, then image will be horizontally flipped with probability of 0.25, vertically with probability of 0.25.
flip_ratio
is list of float,direction
is list of string:given
len(flip_ratio) == len(direction)
, the image will bedirection[i]``ly flipped with probability of ``flip_ratio[i]
. E.g.,flip_ratio=[0.3, 0.5]
,direction=['horizontal', 'vertical']
, then image will be horizontally flipped with probability of 0.3, vertically with probability of 0.5.
- Parameters
flip_ratio (float | list[float], optional) – The flipping probability. Default: None.
direction (str | list[str], optional) – The flipping direction. Options are ‘horizontal’, ‘vertical’, ‘diagonal’. Default: ‘horizontal’. If input is a list, the length must equal
flip_ratio
. Each element inflip_ratio
indicates the flip probability of corresponding direction.
- bbox_flip(bboxes, img_shape, direction)[source]¶
Flip bboxes horizontally.
- Parameters
bboxes (numpy.ndarray) – Bounding boxes, shape (…, 4*k)
img_shape (tuple[int]) – Image shape (height, width)
direction (str) – Flip direction. Options are ‘horizontal’, ‘vertical’.
- Returns
Flipped bounding boxes.
- Return type
numpy.ndarray
- class mmdet.datasets.pipelines.RandomShift(shift_ratio=0.5, max_shift_px=32, filter_thr_px=1)[source]¶
Shift the image and box given shift pixels and probability.
- Parameters
shift_ratio (float) – Probability of shifts. Default 0.5.
max_shift_px (int) – The max pixels for shifting. Default 32.
filter_thr_px (int) – The width and height threshold for filtering. The bbox and the rest of the targets below the width and height threshold will be filtered. Default 1.
- class mmdet.datasets.pipelines.Resize(img_scale=None, multiscale_mode='range', ratio_range=None, keep_ratio=True, bbox_clip_border=True, backend='cv2', interpolation='bilinear', override=False)[source]¶
Resize images & bbox & mask.
This transform resizes the input image to some scale. Bboxes and masks are then resized with the same scale factor. If the input dict contains the key “scale”, then the scale in the input dict is used, otherwise the specified scale in the init method is used. If the input dict contains the key “scale_factor” (if MultiScaleFlipAug does not give img_scale but scale_factor), the actual scale will be computed by image shape and scale_factor.
img_scale can either be a tuple (single-scale) or a list of tuple (multi-scale). There are 3 multiscale modes:
ratio_range is not None
: randomly sample a ratio from the ratio range and multiply it with the image scale.ratio_range is None
andmultiscale_mode == "range"
: randomly sample a scale from the multiscale range.ratio_range is None
andmultiscale_mode == "value"
: randomly sample a scale from multiple scales.
- Parameters
img_scale (tuple or list[tuple]) – Images scales for resizing.
multiscale_mode (str) – Either “range” or “value”.
ratio_range (tuple[float]) – (min_ratio, max_ratio)
keep_ratio (bool) – Whether to keep the aspect ratio when resizing the image.
bbox_clip_border (bool, optional) – Whether to clip the objects outside the border of the image. In some dataset like MOT17, the gt bboxes are allowed to cross the border of images. Therefore, we don’t need to clip the gt bboxes in these cases. Defaults to True.
backend (str) – Image resize backend, choices are ‘cv2’ and ‘pillow’. These two backends generates slightly different results. Defaults to ‘cv2’.
interpolation (str) – Interpolation method, accepted values are “nearest”, “bilinear”, “bicubic”, “area”, “lanczos” for ‘cv2’ backend, “nearest”, “bilinear” for ‘pillow’ backend.
override (bool, optional) – Whether to override scale and scale_factor so as to call resize twice. Default False. If True, after the first resizing, the existed scale and scale_factor will be ignored so the second resizing can be allowed. This option is a work-around for multiple times of resize in DETR. Defaults to False.
- static random_sample(img_scales)[source]¶
Randomly sample an img_scale when
multiscale_mode=='range'
.- Parameters
img_scales (list[tuple]) – Images scale range for sampling. There must be two tuples in img_scales, which specify the lower and upper bound of image scales.
- Returns
Returns a tuple
(img_scale, None)
, whereimg_scale
is sampled scale and None is just a placeholder to be consistent withrandom_select()
.- Return type
(tuple, None)
- static random_sample_ratio(img_scale, ratio_range)[source]¶
Randomly sample an img_scale when
ratio_range
is specified.A ratio will be randomly sampled from the range specified by
ratio_range
. Then it would be multiplied withimg_scale
to generate sampled scale.- Parameters
img_scale (tuple) – Images scale base to multiply with ratio.
ratio_range (tuple[float]) – The minimum and maximum ratio to scale the
img_scale
.
- Returns
Returns a tuple
(scale, None)
, wherescale
is sampled ratio multiplied withimg_scale
and None is just a placeholder to be consistent withrandom_select()
.- Return type
(tuple, None)
- static random_select(img_scales)[source]¶
Randomly select an img_scale from given candidates.
- Parameters
img_scales (list[tuple]) – Images scales for selection.
- Returns
Returns a tuple
(img_scale, scale_dix)
, whereimg_scale
is the selected image scale andscale_idx
is the selected index in the given candidates.- Return type
(tuple, int)
- class mmdet.datasets.pipelines.Rotate(level, scale=1, center=None, img_fill_val=128, seg_ignore_label=255, prob=0.5, max_rotate_angle=30, random_negative_prob=0.5)[source]¶
Apply Rotate Transformation to image (and its corresponding bbox, mask, segmentation).
- Parameters
level (int | float) – The level should be in range (0,_MAX_LEVEL].
scale (int | float) – Isotropic scale factor. Same in
mmcv.imrotate
.center (int | float | tuple[float]) – Center point (w, h) of the rotation in the source image. If None, the center of the image will be used. Same in
mmcv.imrotate
.img_fill_val (int | float | tuple) – The fill value for image border. If float, the same value will be used for all the three channels of image. If tuple, the should be 3 elements (e.g. equals the number of channels for image).
seg_ignore_label (int) – The fill value used for segmentation map. Note this value must equals
ignore_label
insemantic_head
of the corresponding config. Default 255.prob (float) – The probability for perform transformation and should be in range 0 to 1.
max_rotate_angle (int | float) – The maximum angles for rotate transformation.
random_negative_prob (float) – The probability that turns the offset negative.
- class mmdet.datasets.pipelines.SegRescale(scale_factor=1, backend='cv2')[source]¶
Rescale semantic segmentation maps.
- Parameters
scale_factor (float) – The scale factor of the final output.
backend (str) – Image rescale backend, choices are ‘cv2’ and ‘pillow’. These two backends generates slightly different results. Defaults to ‘cv2’.
- class mmdet.datasets.pipelines.Shear(level, img_fill_val=128, seg_ignore_label=255, prob=0.5, direction='horizontal', max_shear_magnitude=0.3, random_negative_prob=0.5, interpolation='bilinear')[source]¶
Apply Shear Transformation to image (and its corresponding bbox, mask, segmentation).
- Parameters
level (int | float) – The level should be in range [0,_MAX_LEVEL].
img_fill_val (int | float | tuple) – The filled values for image border. If float, the same fill value will be used for all the three channels of image. If tuple, the should be 3 elements.
seg_ignore_label (int) – The fill value used for segmentation map. Note this value must equals
ignore_label
insemantic_head
of the corresponding config. Default 255.prob (float) – The probability for performing Shear and should be in range [0, 1].
direction (str) – The direction for shear, either “horizontal” or “vertical”.
max_shear_magnitude (float) – The maximum magnitude for Shear transformation.
random_negative_prob (float) – The probability that turns the offset negative. Should be in range [0,1]
interpolation (str) – Same as in
mmcv.imshear()
.
- class mmdet.datasets.pipelines.ToDataContainer(fields=({'key': 'img', 'stack': True}, {'key': 'gt_bboxes'}, {'key': 'gt_labels'}))[source]¶
Convert results to
mmcv.DataContainer
by given fields.- Parameters
fields (Sequence[dict]) – Each field is a dict like
dict(key='xxx', **kwargs)
. Thekey
in result will be converted tommcv.DataContainer
with**kwargs
. Default:(dict(key='img', stack=True), dict(key='gt_bboxes'), dict(key='gt_labels'))
.
- class mmdet.datasets.pipelines.ToTensor(keys)[source]¶
Convert some results to
torch.Tensor
by given keys.- Parameters
keys (Sequence[str]) – Keys that need to be converted to Tensor.
- class mmdet.datasets.pipelines.Translate(level, prob=0.5, img_fill_val=128, seg_ignore_label=255, direction='horizontal', max_translate_offset=250.0, random_negative_prob=0.5, min_size=0)[source]¶
Translate the images, bboxes, masks and segmentation maps horizontally or vertically.
- Parameters
level (int | float) – The level for Translate and should be in range [0,_MAX_LEVEL].
prob (float) – The probability for performing translation and should be in range [0, 1].
img_fill_val (int | float | tuple) – The filled value for image border. If float, the same fill value will be used for all the three channels of image. If tuple, the should be 3 elements (e.g. equals the number of channels for image).
seg_ignore_label (int) – The fill value used for segmentation map. Note this value must equals
ignore_label
insemantic_head
of the corresponding config. Default 255.direction (str) – The translate direction, either “horizontal” or “vertical”.
max_translate_offset (int | float) – The maximum pixel’s offset for Translate.
random_negative_prob (float) – The probability that turns the offset negative.
min_size (int | float) – The minimum pixel for filtering invalid bboxes after the translation.
- class mmdet.datasets.pipelines.Transpose(keys, order)[source]¶
Transpose some results by given keys.
- Parameters
keys (Sequence[str]) – Keys of results to be transposed.
order (Sequence[int]) – Order of transpose.
- class mmdet.datasets.pipelines.YOLOXHSVRandomAug(hue_delta=5, saturation_delta=30, value_delta=30)[source]¶
Apply HSV augmentation to image sequentially. It is referenced from https://github.com/Megvii- BaseDetection/YOLOX/blob/main/yolox/data/data_augment.py#L21.
- Parameters
hue_delta (int) – delta of hue. Default: 5.
saturation_delta (int) – delta of saturation. Default: 30.
value_delta (int) – delat of value. Default: 30.
samplers¶
- class mmdet.datasets.samplers.ClassAwareSampler(dataset, samples_per_gpu=1, num_replicas=None, rank=None, seed=0, num_sample_class=1)[source]¶
Sampler that restricts data loading to the label of the dataset.
A class-aware sampling strategy to effectively tackle the non-uniform class distribution. The length of the training data is consistent with source data. Simple improvements based on Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks
The implementation logic is referred to https://github.com/Sense-X/TSD/blob/master/mmdet/datasets/samplers/distributed_classaware_sampler.py
- Parameters
dataset – Dataset used for sampling.
samples_per_gpu (int) – When model is
DistributedDataParallel
, it is the number of training samples on each GPU. When model isDataParallel
, it is num_gpus * samples_per_gpu. Default : 1.num_replicas (optional) – Number of processes participating in distributed training.
rank (optional) – Rank of the current process within num_replicas.
seed (int, optional) – random seed used to shuffle the sampler if
shuffle=True
. This number should be identical across all processes in the distributed group. Default: 0.num_sample_class (int) – The number of samples taken from each per-label list. Default: 1
- class mmdet.datasets.samplers.DistributedGroupSampler(dataset, samples_per_gpu=1, num_replicas=None, rank=None, seed=0)[source]¶
Sampler that restricts data loading to a subset of the dataset.
It is especially useful in conjunction with
torch.nn.parallel.DistributedDataParallel
. In such case, each process can pass a DistributedSampler instance as a DataLoader sampler, and load a subset of the original dataset that is exclusive to it.Note
Dataset is assumed to be of constant size.
- Parameters
dataset – Dataset used for sampling.
num_replicas (optional) – Number of processes participating in distributed training.
rank (optional) – Rank of the current process within num_replicas.
seed (int, optional) – random seed used to shuffle the sampler if
shuffle=True
. This number should be identical across all processes in the distributed group. Default: 0.
- class mmdet.datasets.samplers.DistributedSampler(dataset, num_replicas=None, rank=None, shuffle=True, seed=0)[source]¶
- class mmdet.datasets.samplers.InfiniteBatchSampler(dataset, batch_size=1, world_size=None, rank=None, seed=0, shuffle=True)[source]¶
Similar to BatchSampler warping a DistributedSampler. It is designed iteration-based runners like `IterBasedRunner and yields a mini-batch indices each time.
The implementation logic is referred to https://github.com/facebookresearch/detectron2/blob/main/detectron2/data/samplers/grouped_batch_sampler.py
- Parameters
dataset (object) – The dataset.
batch_size (int) – When model is
DistributedDataParallel
, it is the number of training samples on each GPU, When model isDataParallel
, it is num_gpus * samples_per_gpu. Default : 1.world_size (int, optional) – Number of processes participating in distributed training. Default: None.
rank (int, optional) – Rank of current process. Default: None.
seed (int) – Random seed. Default: 0.
shuffle (bool) – Whether shuffle the dataset or not. Default: True.
- class mmdet.datasets.samplers.InfiniteGroupBatchSampler(dataset, batch_size=1, world_size=None, rank=None, seed=0, shuffle=True)[source]¶
Similar to BatchSampler warping a GroupSampler. It is designed for iteration-based runners like `IterBasedRunner and yields a mini-batch indices each time, all indices in a batch should be in the same group.
The implementation logic is referred to https://github.com/facebookresearch/detectron2/blob/main/detectron2/data/samplers/grouped_batch_sampler.py
- Parameters
dataset (object) – The dataset.
batch_size (int) – When model is
DistributedDataParallel
, it is the number of training samples on each GPU. When model isDataParallel
, it is num_gpus * samples_per_gpu. Default : 1.world_size (int, optional) – Number of processes participating in distributed training. Default: None.
rank (int, optional) – Rank of current process. Default: None.
seed (int) – Random seed. Default: 0.
shuffle (bool) – Whether shuffle the indices of a dummy epoch, it should be noted that shuffle can not guarantee that you can generate sequential indices because it need to ensure that all indices in a batch is in a group. Default: True.
api_wrappers¶
- class mmdet.datasets.api_wrappers.COCO(*args: Any, **kwargs: Any)[source]¶
This class is almost the same as official pycocotools package.
It implements some snake case function aliases. So that the COCO class has the same interface as LVIS class.
- mmdet.datasets.api_wrappers.pq_compute_multi_core(matched_annotations_list, gt_folder, pred_folder, categories, file_client=None, nproc=32)[source]¶
Evaluate the metrics of Panoptic Segmentation with multithreading.
Same as the function with the same name in panopticapi.
- Parameters
matched_annotations_list (list) – The matched annotation list. Each element is a tuple of annotations of the same image with the format (gt_anns, pred_anns).
gt_folder (str) – The path of the ground truth images.
pred_folder (str) – The path of the prediction images.
categories (str) – The categories of the dataset.
file_client (object) – The file client of the dataset. If None, the backend will be set to disk.
nproc (int) – Number of processes for panoptic quality computing. Defaults to 32. When nproc exceeds the number of cpu cores, the number of cpu cores is used.
- mmdet.datasets.api_wrappers.pq_compute_single_core(proc_id, annotation_set, gt_folder, pred_folder, categories, file_client=None, print_log=False)[source]¶
The single core function to evaluate the metric of Panoptic Segmentation.
Same as the function with the same name in panopticapi. Only the function to load the images is changed to use the file client.
- Parameters
proc_id (int) – The id of the mini process.
gt_folder (str) – The path of the ground truth images.
pred_folder (str) – The path of the prediction images.
categories (str) – The categories of the dataset.
file_client (object) – The file client of the dataset. If None, the backend will be set to disk.
print_log (bool) – Whether to print the log. Defaults to False.
mmdet.models¶
detectors¶
- class mmdet.models.detectors.ATSS(backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None)[source]¶
Implementation of ATSS.
- class mmdet.models.detectors.AutoAssign(backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None)[source]¶
Implementation of AutoAssign: Differentiable Label Assignment for Dense Object Detection.
- class mmdet.models.detectors.BaseDetector(init_cfg=None)[source]¶
Base class for detectors.
- extract_feats(imgs)[source]¶
Extract features from multiple images.
- Parameters
imgs (list[torch.Tensor]) – A list of images. The images are augmented from the same image but in different ways.
- Returns
Features of different images
- Return type
list[torch.Tensor]
- forward(img, img_metas, return_loss=True, **kwargs)[source]¶
Calls either
forward_train()
orforward_test()
depending on whetherreturn_loss
isTrue
.Note this setting will change the expected inputs. When
return_loss=True
, img and img_meta are single-nested (i.e. Tensor and List[dict]), and whenresturn_loss=False
, img and img_meta should be double nested (i.e. List[Tensor], List[List[dict]]), with the outer list indicating test time augmentations.
- forward_test(imgs, img_metas, **kwargs)[source]¶
- Parameters
imgs (List[Tensor]) – the outer list indicates test-time augmentations and inner Tensor should have a shape NxCxHxW, which contains all images in the batch.
img_metas (List[List[dict]]) – the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch.
- forward_train(imgs, img_metas, **kwargs)[source]¶
- Parameters
img (Tensor) – of shape (N, C, H, W) encoding input images. Typically these should be mean centered and std scaled.
img_metas (list[dict]) – List of image info dict where each dict has: ‘img_shape’, ‘scale_factor’, ‘flip’, and may also contain ‘filename’, ‘ori_shape’, ‘pad_shape’, and ‘img_norm_cfg’. For details on the values of these keys, see
mmdet.datasets.pipelines.Collect
.kwargs (keyword arguments) – Specific to concrete implementation.
- show_result(img, result, score_thr=0.3, bbox_color=(72, 101, 241), text_color=(72, 101, 241), mask_color=None, thickness=2, font_size=13, win_name='', show=False, wait_time=0, out_file=None, show_box_only=False, show_mask_only=False)[source]¶
Draw result over img.
- Parameters
img (str or Tensor) – The image to be displayed.
result (Tensor or tuple) – The results to draw over img bbox_result or (bbox_result, segm_result).
score_thr (float, optional) – Minimum score of bboxes to be shown. Default: 0.3.
bbox_color (str or tuple(int) or
Color
) – Color of bbox lines. The tuple of color should be in BGR order. Default: ‘green’text_color (str or tuple(int) or
Color
) – Color of texts. The tuple of color should be in BGR order. Default: ‘green’mask_color (None or str or tuple(int) or
Color
) – Color of masks. The tuple of color should be in BGR order. Default: Nonethickness (int) – Thickness of lines. Default: 2
font_size (int) – Font size of texts. Default: 13
win_name (str) – The window name. Default: ‘’
wait_time (float) – Value of waitKey param. Default: 0.
show (bool) – Whether to show the image. Default: False.
out_file (str or None) – The filename to write the image. Default: None.
- Returns
Only if not show or out_file
- Return type
img (Tensor)
- train_step(data, optimizer)[source]¶
The iteration step during training.
This method defines an iteration step during training, except for the back propagation and optimizer updating, which are done in an optimizer hook. Note that in some complicated cases or models, the whole process including back propagation and optimizer updating is also defined in this method, such as GAN.
- Parameters
data (dict) – The output of dataloader.
optimizer (
torch.optim.Optimizer
| dict) – The optimizer of runner is passed totrain_step()
. This argument is unused and reserved.
- Returns
It should contain at least 3 keys:
loss
,log_vars
,num_samples
.loss
is a tensor for back propagation, which can be a weighted sum of multiple losses.log_vars
contains all the variables to be sent to the logger.num_samples
indicates the batch size (when the model is DDP, it means the batch size on each GPU), which is used for averaging the logs.
- Return type
dict
- val_step(data, optimizer=None)[source]¶
The iteration step during validation.
This method shares the same signature as
train_step()
, but used during val epochs. Note that the evaluation after training epochs is not implemented with this method, but an evaluation hook.
- property with_bbox¶
whether the detector has a bbox head
- Type
bool
- property with_mask¶
whether the detector has a mask head
- Type
bool
- property with_neck¶
whether the detector has a neck
- Type
bool
whether the detector has a shared head in the RoI Head
- Type
bool
- class mmdet.models.detectors.CascadeRCNN(backbone, neck=None, rpn_head=None, roi_head=None, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None)[source]¶
Implementation of Cascade R-CNN: Delving into High Quality Object Detection
- show_result(data, result, **kwargs)[source]¶
Show prediction results of the detector.
- Parameters
data (str or np.ndarray) – Image filename or loaded image.
result (Tensor or tuple) – The results to draw over img bbox_result or (bbox_result, segm_result).
- Returns
The image with bboxes drawn on it.
- Return type
np.ndarray
- class mmdet.models.detectors.CenterNet(backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None)[source]¶
Implementation of CenterNet(Objects as Points)
<https://arxiv.org/abs/1904.07850>.
- aug_test(imgs, img_metas, rescale=True)[source]¶
Augment testing of CenterNet. Aug test must have flipped image pair, and unlike CornerNet, it will perform an averaging operation on the feature map instead of detecting bbox.
- Parameters
imgs (list[Tensor]) – Augmented images.
img_metas (list[list[dict]]) – Meta information of each image, e.g., image size, scaling factor, etc.
rescale (bool) – If True, return boxes in original image space. Default: True.
Note
imgs
must including flipped image pairs.- Returns
- BBox results of each image and classes.
The outer list corresponds to each image. The inner list corresponds to each class.
- Return type
list[list[np.ndarray]]
- class mmdet.models.detectors.CornerNet(backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None)[source]¶
CornerNet.
This detector is the implementation of the paper CornerNet: Detecting Objects as Paired Keypoints .
- aug_test(imgs, img_metas, rescale=False)[source]¶
Augment testing of CornerNet.
- Parameters
imgs (list[Tensor]) – Augmented images.
img_metas (list[list[dict]]) – Meta information of each image, e.g., image size, scaling factor, etc.
rescale (bool) – If True, return boxes in original image space. Default: False.
Note
imgs
must including flipped image pairs.- Returns
- BBox results of each image and classes.
The outer list corresponds to each image. The inner list corresponds to each class.
- Return type
list[list[np.ndarray]]
- merge_aug_results(aug_results, img_metas)[source]¶
Merge augmented detection bboxes and score.
- Parameters
aug_results (list[list[Tensor]]) – Det_bboxes and det_labels of each image.
img_metas (list[list[dict]]) – Meta information of each image, e.g., image size, scaling factor, etc.
- Returns
(bboxes, labels)
- Return type
tuple
- class mmdet.models.detectors.DDOD(backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None)[source]¶
Implementation of DDOD.
- class mmdet.models.detectors.DETR(backbone, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None)[source]¶
Implementation of DETR: End-to-End Object Detection with Transformers
- forward_dummy(img)[source]¶
Used for computing network flops.
See mmdetection/tools/analysis_tools/get_flops.py
- onnx_export(img, img_metas)[source]¶
Test function for exporting to ONNX, without test time augmentation.
- Parameters
img (torch.Tensor) – input images.
img_metas (list[dict]) – List of image information.
- Returns
- dets of shape [N, num_det, 5]
and class labels of shape [N, num_det].
- Return type
tuple[Tensor, Tensor]
- class mmdet.models.detectors.FCOS(backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None)[source]¶
Implementation of FCOS
- class mmdet.models.detectors.FOVEA(backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None)[source]¶
Implementation of FoveaBox
- class mmdet.models.detectors.FSAF(backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None)[source]¶
Implementation of FSAF
- class mmdet.models.detectors.FastRCNN(backbone, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None)[source]¶
Implementation of Fast R-CNN
- forward_test(imgs, img_metas, proposals, **kwargs)[source]¶
- Parameters
imgs (List[Tensor]) – the outer list indicates test-time augmentations and inner Tensor should have a shape NxCxHxW, which contains all images in the batch.
img_metas (List[List[dict]]) – the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch.
proposals (List[List[Tensor]]) – the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. The Tensor should have a shape Px4, where P is the number of proposals.
- class mmdet.models.detectors.FasterRCNN(backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None)[source]¶
Implementation of Faster R-CNN
- class mmdet.models.detectors.GFL(backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None)[source]¶
- class mmdet.models.detectors.GridRCNN(backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None)[source]¶
Grid R-CNN.
This detector is the implementation of: - Grid R-CNN (https://arxiv.org/abs/1811.12030) - Grid R-CNN Plus: Faster and Better (https://arxiv.org/abs/1906.05688)
- class mmdet.models.detectors.HybridTaskCascade(**kwargs)[source]¶
Implementation of HTC
- property with_semantic¶
whether the detector has a semantic head
- Type
bool
- class mmdet.models.detectors.KnowledgeDistillationSingleStageDetector(backbone, neck, bbox_head, teacher_config, teacher_ckpt=None, eval_teacher=True, train_cfg=None, test_cfg=None, pretrained=None)[source]¶
Implementation of Distilling the Knowledge in a Neural Network..
- Parameters
teacher_config (str | dict) – Config file path or the config object of teacher model.
teacher_ckpt (str, optional) – Checkpoint path of teacher model. If left as None, the model will not load any weights.
- cuda(device=None)[source]¶
Since teacher_model is registered as a plain object, it is necessary to put the teacher model to cuda when calling cuda function.
- forward_train(img, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore=None)[source]¶
- Parameters
img (Tensor) – Input images of shape (N, C, H, W). Typically these should be mean centered and std scaled.
img_metas (list[dict]) – A List of image info dict where each dict has: ‘img_shape’, ‘scale_factor’, ‘flip’, and may also contain ‘filename’, ‘ori_shape’, ‘pad_shape’, and ‘img_norm_cfg’. For details on the values of these keys see
mmdet.datasets.pipelines.Collect
.gt_bboxes (list[Tensor]) – Each item are the truth boxes for each image in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]) – Class indices corresponding to each box
gt_bboxes_ignore (None | list[Tensor]) – Specify which bounding boxes can be ignored when computing the loss.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- class mmdet.models.detectors.LAD(backbone, neck, bbox_head, teacher_backbone, teacher_neck, teacher_bbox_head, teacher_ckpt, eval_teacher=True, train_cfg=None, test_cfg=None, pretrained=None)[source]¶
Implementation of LAD.
- forward_train(img, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore=None)[source]¶
- Parameters
img (Tensor) – Input images of shape (N, C, H, W). Typically these should be mean centered and std scaled.
img_metas (list[dict]) – A List of image info dict where each dict has: ‘img_shape’, ‘scale_factor’, ‘flip’, and may also contain ‘filename’, ‘ori_shape’, ‘pad_shape’, and ‘img_norm_cfg’. For details on the values of these keys see
mmdet.datasets.pipelines.Collect
.gt_bboxes (list[Tensor]) – Each item are the truth boxes for each image in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]) – Class indices corresponding to each box
gt_bboxes_ignore (None | list[Tensor]) – Specify which bounding boxes can be ignored when computing the loss.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- property with_teacher_neck¶
whether the detector has a teacher_neck
- Type
bool
- class mmdet.models.detectors.Mask2Former(backbone, neck=None, panoptic_head=None, panoptic_fusion_head=None, train_cfg=None, test_cfg=None, init_cfg=None)[source]¶
Implementation of Masked-attention Mask Transformer for Universal Image Segmentation.
- class mmdet.models.detectors.MaskFormer(backbone, neck=None, panoptic_head=None, panoptic_fusion_head=None, train_cfg=None, test_cfg=None, init_cfg=None)[source]¶
Implementation of Per-Pixel Classification is NOT All You Need for Semantic Segmentation.
- aug_test(imgs, img_metas, **kwargs)[source]¶
Test function with test time augmentation.
- Parameters
imgs (list[Tensor]) – the outer list indicates test-time augmentations and inner Tensor should have a shape NxCxHxW, which contains all images in the batch.
img_metas (list[list[dict]]) – the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. each dict has image information.
rescale (bool, optional) – Whether to rescale the results. Defaults to False.
- Returns
- BBox results of each image and classes.
The outer list corresponds to each image. The inner list corresponds to each class.
- Return type
list[list[np.ndarray]]
- forward_dummy(img, img_metas)[source]¶
Used for computing network flops. See mmdetection/tools/analysis_tools/get_flops.py
- Parameters
img (Tensor) – of shape (N, C, H, W) encoding input images. Typically these should be mean centered and std scaled.
img_metas (list[Dict]) – list of image info dict where each dict has: ‘img_shape’, ‘scale_factor’, ‘flip’, and may also contain ‘filename’, ‘ori_shape’, ‘pad_shape’, and ‘img_norm_cfg’. For details on the values of these keys see mmdet/datasets/pipelines/formatting.py:Collect.
- forward_train(img, img_metas, gt_bboxes, gt_labels, gt_masks, gt_semantic_seg=None, gt_bboxes_ignore=None, **kargs)[source]¶
- Parameters
img (Tensor) – of shape (N, C, H, W) encoding input images. Typically these should be mean centered and std scaled.
img_metas (list[Dict]) – list of image info dict where each dict has: ‘img_shape’, ‘scale_factor’, ‘flip’, and may also contain ‘filename’, ‘ori_shape’, ‘pad_shape’, and ‘img_norm_cfg’. For details on the values of these keys see mmdet/datasets/pipelines/formatting.py:Collect.
gt_bboxes (list[Tensor]) – Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]) – class indices corresponding to each box.
gt_masks (list[BitmapMasks]) – true segmentation masks for each box used if the architecture supports a segmentation task.
gt_semantic_seg (list[tensor]) – semantic segmentation mask for images for panoptic segmentation. Defaults to None for instance segmentation.
gt_bboxes_ignore (list[Tensor]) – specify which bounding boxes can be ignored when computing the loss. Defaults to None.
- Returns
a dictionary of loss components
- Return type
dict[str, Tensor]
- onnx_export(img, img_metas)[source]¶
Test function without test time augmentation.
- Parameters
img (torch.Tensor) – input images.
img_metas (list[dict]) – List of image information.
- Returns
- dets of shape [N, num_det, 5]
and class labels of shape [N, num_det].
- Return type
tuple[Tensor, Tensor]
- simple_test(imgs, img_metas, **kwargs)[source]¶
Test without augmentation.
- Parameters
imgs (Tensor) – A batch of images.
img_metas (list[dict]) – List of image information.
- Returns
Semantic segmentation results and panoptic segmentation results of each image for panoptic segmentation, or formatted bbox and mask results of each image for instance segmentation.
[ # panoptic segmentation { 'pan_results': np.array, # shape = [h, w] 'ins_results': tuple[list], # semantic segmentation results are not supported yet 'sem_results': np.array }, ... ]
or
[ # instance segmentation ( bboxes, # list[np.array] masks # list[list[np.array]] ), ... ]
- Return type
list[dict[str, np.array | tuple[list]] | tuple[list]]
- class mmdet.models.detectors.MaskRCNN(backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None)[source]¶
Implementation of Mask R-CNN
- class mmdet.models.detectors.MaskScoringRCNN(backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None)[source]¶
Mask Scoring RCNN.
- class mmdet.models.detectors.NASFCOS(backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None)[source]¶
NAS-FCOS: Fast Neural Architecture Search for Object Detection.
- class mmdet.models.detectors.PAA(backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None)[source]¶
Implementation of PAA.
- class mmdet.models.detectors.PanopticFPN(backbone, neck=None, rpn_head=None, roi_head=None, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None, semantic_head=None, panoptic_fusion_head=None)[source]¶
Implementation of Panoptic feature pyramid networks
- class mmdet.models.detectors.PointRend(backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None)[source]¶
PointRend: Image Segmentation as Rendering
This detector is the implementation of PointRend.
- class mmdet.models.detectors.QueryInst(backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None)[source]¶
Implementation of Instances as Queries
- class mmdet.models.detectors.RPN(backbone, neck, rpn_head, train_cfg, test_cfg, pretrained=None, init_cfg=None)[source]¶
Implementation of Region Proposal Network.
- aug_test(imgs, img_metas, rescale=False)[source]¶
Test function with test time augmentation.
- Parameters
imgs (list[torch.Tensor]) – List of multiple images
img_metas (list[dict]) – List of image information.
rescale (bool, optional) – Whether to rescale the results. Defaults to False.
- Returns
proposals
- Return type
list[np.ndarray]
- extract_feat(img)[source]¶
Extract features.
- Parameters
img (torch.Tensor) – Image tensor with shape (n, c, h ,w).
- Returns
- Multi-level features that may have
different resolutions.
- Return type
list[torch.Tensor]
- forward_train(img, img_metas, gt_bboxes=None, gt_bboxes_ignore=None)[source]¶
- Parameters
img (Tensor) – Input images of shape (N, C, H, W). Typically these should be mean centered and std scaled.
img_metas (list[dict]) – A List of image info dict where each dict has: ‘img_shape’, ‘scale_factor’, ‘flip’, and may also contain ‘filename’, ‘ori_shape’, ‘pad_shape’, and ‘img_norm_cfg’. For details on the values of these keys see
mmdet.datasets.pipelines.Collect
.gt_bboxes (list[Tensor]) – Each item are the truth boxes for each image in [tl_x, tl_y, br_x, br_y] format.
gt_bboxes_ignore (None | list[Tensor]) – Specify which bounding boxes can be ignored when computing the loss.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- show_result(data, result, top_k=20, **kwargs)[source]¶
Show RPN proposals on the image.
- Parameters
data (str or np.ndarray) – Image filename or loaded image.
result (Tensor or tuple) – The results to draw over img bbox_result or (bbox_result, segm_result).
top_k (int) – Plot the first k bboxes only if set positive. Default: 20
- Returns
The image with bboxes drawn on it.
- Return type
np.ndarray
- simple_test(img, img_metas, rescale=False)[source]¶
Test function without test time augmentation.
- Parameters
imgs (list[torch.Tensor]) – List of multiple images
img_metas (list[dict]) – List of image information.
rescale (bool, optional) – Whether to rescale the results. Defaults to False.
- Returns
proposals
- Return type
list[np.ndarray]
- class mmdet.models.detectors.RepPointsDetector(backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None)[source]¶
RepPoints: Point Set Representation for Object Detection.
This detector is the implementation of: - RepPoints detector (https://arxiv.org/pdf/1904.11490)
- class mmdet.models.detectors.RetinaNet(backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None)[source]¶
Implementation of RetinaNet
- class mmdet.models.detectors.SOLO(backbone, neck=None, bbox_head=None, mask_head=None, train_cfg=None, test_cfg=None, init_cfg=None, pretrained=None)[source]¶
- class mmdet.models.detectors.SOLOv2(backbone, neck=None, bbox_head=None, mask_head=None, train_cfg=None, test_cfg=None, init_cfg=None, pretrained=None)[source]¶
- class mmdet.models.detectors.SingleStageDetector(backbone, neck=None, bbox_head=None, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None)[source]¶
Base class for single-stage detectors.
Single-stage detectors directly and densely predict bounding boxes on the output features of the backbone+neck.
- aug_test(imgs, img_metas, rescale=False)[source]¶
Test function with test time augmentation.
- Parameters
imgs (list[Tensor]) – the outer list indicates test-time augmentations and inner Tensor should have a shape NxCxHxW, which contains all images in the batch.
img_metas (list[list[dict]]) – the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. each dict has image information.
rescale (bool, optional) – Whether to rescale the results. Defaults to False.
- Returns
- BBox results of each image and classes.
The outer list corresponds to each image. The inner list corresponds to each class.
- Return type
list[list[np.ndarray]]
- forward_dummy(img)[source]¶
Used for computing network flops.
See mmdetection/tools/analysis_tools/get_flops.py
- forward_train(img, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore=None)[source]¶
- Parameters
img (Tensor) – Input images of shape (N, C, H, W). Typically these should be mean centered and std scaled.
img_metas (list[dict]) – A List of image info dict where each dict has: ‘img_shape’, ‘scale_factor’, ‘flip’, and may also contain ‘filename’, ‘ori_shape’, ‘pad_shape’, and ‘img_norm_cfg’. For details on the values of these keys see
mmdet.datasets.pipelines.Collect
.gt_bboxes (list[Tensor]) – Each item are the truth boxes for each image in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]) – Class indices corresponding to each box
gt_bboxes_ignore (None | list[Tensor]) – Specify which bounding boxes can be ignored when computing the loss.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- onnx_export(img, img_metas, with_nms=True)[source]¶
Test function without test time augmentation.
- Parameters
img (torch.Tensor) – input images.
img_metas (list[dict]) – List of image information.
- Returns
- dets of shape [N, num_det, 5]
and class labels of shape [N, num_det].
- Return type
tuple[Tensor, Tensor]
- simple_test(img, img_metas, rescale=False)[source]¶
Test function without test-time augmentation.
- Parameters
img (torch.Tensor) – Images with shape (N, C, H, W).
img_metas (list[dict]) – List of image information.
rescale (bool, optional) – Whether to rescale the results. Defaults to False.
- Returns
- BBox results of each image and classes.
The outer list corresponds to each image. The inner list corresponds to each class.
- Return type
list[list[np.ndarray]]
- class mmdet.models.detectors.SparseRCNN(*args, **kwargs)[source]¶
Implementation of Sparse R-CNN: End-to-End Object Detection with Learnable Proposals
- forward_dummy(img)[source]¶
Used for computing network flops.
See mmdetection/tools/analysis_tools/get_flops.py
- forward_train(img, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore=None, gt_masks=None, proposals=None, **kwargs)[source]¶
Forward function of SparseR-CNN and QueryInst in train stage.
- Parameters
img (Tensor) – of shape (N, C, H, W) encoding input images. Typically these should be mean centered and std scaled.
img_metas (list[dict]) – list of image info dict where each dict has: ‘img_shape’, ‘scale_factor’, ‘flip’, and may also contain ‘filename’, ‘ori_shape’, ‘pad_shape’, and ‘img_norm_cfg’. For details on the values of these keys see
mmdet.datasets.pipelines.Collect
.gt_bboxes (list[Tensor]) – Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]) – class indices corresponding to each box
gt_bboxes_ignore (None | list[Tensor) – specify which bounding boxes can be ignored when computing the loss.
gt_masks (List[Tensor], optional) – Segmentation masks for each box. This is required to train QueryInst.
proposals (List[Tensor], optional) – override rpn proposals with custom proposals. Use when with_rpn is False.
- Returns
a dictionary of loss components
- Return type
dict[str, Tensor]
- simple_test(img, img_metas, rescale=False)[source]¶
Test function without test time augmentation.
- Parameters
imgs (list[torch.Tensor]) – List of multiple images
img_metas (list[dict]) – List of image information.
rescale (bool) – Whether to rescale the results. Defaults to False.
- Returns
- BBox results of each image and classes.
The outer list corresponds to each image. The inner list corresponds to each class.
- Return type
list[list[np.ndarray]]
- class mmdet.models.detectors.TOOD(backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None)[source]¶
Implementation of TOOD: Task-aligned One-stage Object Detection..
- class mmdet.models.detectors.TridentFasterRCNN(backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None)[source]¶
Implementation of TridentNet
- aug_test(imgs, img_metas, rescale=False)[source]¶
Test with augmentations.
If rescale is False, then returned bboxes and masks will fit the scale of imgs[0].
- class mmdet.models.detectors.TwoStageDetector(backbone, neck=None, rpn_head=None, roi_head=None, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None)[source]¶
Base class for two-stage detectors.
Two-stage detectors typically consisting of a region proposal network and a task-specific regression head.
- async async_simple_test(img, img_meta, proposals=None, rescale=False)[source]¶
Async test without augmentation.
- aug_test(imgs, img_metas, rescale=False)[source]¶
Test with augmentations.
If rescale is False, then returned bboxes and masks will fit the scale of imgs[0].
- forward_dummy(img)[source]¶
Used for computing network flops.
See mmdetection/tools/analysis_tools/get_flops.py
- forward_train(img, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore=None, gt_masks=None, proposals=None, **kwargs)[source]¶
- Parameters
img (Tensor) – of shape (N, C, H, W) encoding input images. Typically these should be mean centered and std scaled.
img_metas (list[dict]) – list of image info dict where each dict has: ‘img_shape’, ‘scale_factor’, ‘flip’, and may also contain ‘filename’, ‘ori_shape’, ‘pad_shape’, and ‘img_norm_cfg’. For details on the values of these keys see mmdet/datasets/pipelines/formatting.py:Collect.
gt_bboxes (list[Tensor]) – Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]) – class indices corresponding to each box
gt_bboxes_ignore (None | list[Tensor]) – specify which bounding boxes can be ignored when computing the loss.
gt_masks (None | Tensor) – true segmentation masks for each box used if the architecture supports a segmentation task.
proposals – override rpn proposals with custom proposals. Use when with_rpn is False.
- Returns
a dictionary of loss components
- Return type
dict[str, Tensor]
- property with_roi_head¶
whether the detector has a RoI head
- Type
bool
- property with_rpn¶
whether the detector has RPN
- Type
bool
- class mmdet.models.detectors.TwoStagePanopticSegmentor(backbone, neck=None, rpn_head=None, roi_head=None, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None, semantic_head=None, panoptic_fusion_head=None)[source]¶
Base class of Two-stage Panoptic Segmentor.
As well as the components in TwoStageDetector, Panoptic Segmentor has extra semantic_head and panoptic_fusion_head.
- forward_train(img, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore=None, gt_masks=None, gt_semantic_seg=None, proposals=None, **kwargs)[source]¶
- Parameters
img (Tensor) – of shape (N, C, H, W) encoding input images. Typically these should be mean centered and std scaled.
img_metas (list[dict]) – list of image info dict where each dict has: ‘img_shape’, ‘scale_factor’, ‘flip’, and may also contain ‘filename’, ‘ori_shape’, ‘pad_shape’, and ‘img_norm_cfg’. For details on the values of these keys see mmdet/datasets/pipelines/formatting.py:Collect.
gt_bboxes (list[Tensor]) – Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]) – class indices corresponding to each box
gt_bboxes_ignore (None | list[Tensor]) – specify which bounding boxes can be ignored when computing the loss.
gt_masks (None | Tensor) – true segmentation masks for each box used if the architecture supports a segmentation task.
proposals – override rpn proposals with custom proposals. Use when with_rpn is False.
- Returns
a dictionary of loss components
- Return type
dict[str, Tensor]
- show_result(img, result, score_thr=0.3, bbox_color=(72, 101, 241), text_color=(72, 101, 241), mask_color=None, thickness=2, font_size=13, win_name='', show=False, wait_time=0, out_file=None)[source]¶
Draw result over img.
- Parameters
img (str or Tensor) – The image to be displayed.
result (dict) – The results.
score_thr (float, optional) – Minimum score of bboxes to be shown. Default: 0.3.
bbox_color (str or tuple(int) or
Color
) – Color of bbox lines. The tuple of color should be in BGR order. Default: ‘green’.text_color (str or tuple(int) or
Color
) – Color of texts. The tuple of color should be in BGR order. Default: ‘green’.mask_color (None or str or tuple(int) or
Color
) – Color of masks. The tuple of color should be in BGR order. Default: None.thickness (int) – Thickness of lines. Default: 2.
font_size (int) – Font size of texts. Default: 13.
win_name (str) – The window name. Default: ‘’.
wait_time (float) – Value of waitKey param. Default: 0.
show (bool) – Whether to show the image. Default: False.
out_file (str or None) – The filename to write the image. Default: None.
- Returns
Only if not show or out_file.
- Return type
img (Tensor)
- class mmdet.models.detectors.VFNet(backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None)[source]¶
Implementation of `VarifocalNet (VFNet).<https://arxiv.org/abs/2008.13367>`_
- class mmdet.models.detectors.YOLACT(backbone, neck, bbox_head, segm_head, mask_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None)[source]¶
Implementation of YOLACT
- forward_dummy(img)[source]¶
Used for computing network flops.
See mmdetection/tools/analysis_tools/get_flops.py
- forward_train(img, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore=None, gt_masks=None)[source]¶
- Parameters
img (Tensor) – of shape (N, C, H, W) encoding input images. Typically these should be mean centered and std scaled.
img_metas (list[dict]) – list of image info dict where each dict has: ‘img_shape’, ‘scale_factor’, ‘flip’, and may also contain ‘filename’, ‘ori_shape’, ‘pad_shape’, and ‘img_norm_cfg’. For details on the values of these keys see mmdet/datasets/pipelines/formatting.py:Collect.
gt_bboxes (list[Tensor]) – Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]) – class indices corresponding to each box
gt_bboxes_ignore (None | list[Tensor]) – specify which bounding boxes can be ignored when computing the loss.
gt_masks (None | Tensor) – true segmentation masks for each box used if the architecture supports a segmentation task.
- Returns
a dictionary of loss components
- Return type
dict[str, Tensor]
- class mmdet.models.detectors.YOLOF(backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None)[source]¶
Implementation of You Only Look One-level Feature
- class mmdet.models.detectors.YOLOV3(backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None)[source]¶
- onnx_export(img, img_metas)[source]¶
Test function for exporting to ONNX, without test time augmentation.
- Parameters
img (torch.Tensor) – input images.
img_metas (list[dict]) – List of image information.
- Returns
- dets of shape [N, num_det, 5]
and class labels of shape [N, num_det].
- Return type
tuple[Tensor, Tensor]
- class mmdet.models.detectors.YOLOX(backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, input_size=(640, 640), size_multiplier=32, random_size_range=(15, 25), random_size_interval=10, init_cfg=None)[source]¶
Implementation of YOLOX: Exceeding YOLO Series in 2021
Note: Considering the trade-off between training speed and accuracy, multi-scale training is temporarily kept. More elegant implementation will be adopted in the future.
- Parameters
backbone (nn.Module) – The backbone module.
neck (nn.Module) – The neck module.
bbox_head (nn.Module) – The bbox head module.
(obj (test_cfg) – ConfigDict, optional): The training config of YOLOX. Default: None.
(obj – ConfigDict, optional): The testing config of YOLOX. Default: None.
pretrained (str, optional) – model pretrained path. Default: None.
input_size (tuple) – The model default input image size. The shape order should be (height, width). Default: (640, 640).
size_multiplier (int) – Image size multiplication factor. Default: 32.
random_size_range (tuple) – The multi-scale random range during multi-scale training. The real training image size will be multiplied by size_multiplier. Default: (15, 25).
random_size_interval (int) – The iter interval of change image size. Default: 10.
init_cfg (dict, optional) – Initialization config dict. Default: None.
- forward_train(img, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore=None)[source]¶
- Parameters
img (Tensor) – Input images of shape (N, C, H, W). Typically these should be mean centered and std scaled.
img_metas (list[dict]) – A List of image info dict where each dict has: ‘img_shape’, ‘scale_factor’, ‘flip’, and may also contain ‘filename’, ‘ori_shape’, ‘pad_shape’, and ‘img_norm_cfg’. For details on the values of these keys see
mmdet.datasets.pipelines.Collect
.gt_bboxes (list[Tensor]) – Each item are the truth boxes for each image in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]) – Class indices corresponding to each box
gt_bboxes_ignore (None | list[Tensor]) – Specify which bounding boxes can be ignored when computing the loss.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
backbones¶
- class mmdet.models.backbones.CSPDarknet(arch='P5', deepen_factor=1.0, widen_factor=1.0, out_indices=(2, 3, 4), frozen_stages=-1, use_depthwise=False, arch_ovewrite=None, spp_kernal_sizes=(5, 9, 13), conv_cfg=None, norm_cfg={'eps': 0.001, 'momentum': 0.03, 'type': 'BN'}, act_cfg={'type': 'Swish'}, norm_eval=False, init_cfg={'a': 2.23606797749979, 'distribution': 'uniform', 'layer': 'Conv2d', 'mode': 'fan_in', 'nonlinearity': 'leaky_relu', 'type': 'Kaiming'})[source]¶
CSP-Darknet backbone used in YOLOv5 and YOLOX.
- Parameters
arch (str) – Architecture of CSP-Darknet, from {P5, P6}. Default: P5.
deepen_factor (float) – Depth multiplier, multiply number of blocks in CSP layer by this amount. Default: 1.0.
widen_factor (float) – Width multiplier, multiply number of channels in each layer by this amount. Default: 1.0.
out_indices (Sequence[int]) – Output from which stages. Default: (2, 3, 4).
frozen_stages (int) – Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. Default: -1.
use_depthwise (bool) – Whether to use depthwise separable convolution. Default: False.
arch_ovewrite (list) – Overwrite default arch settings. Default: None.
spp_kernal_sizes – (tuple[int]): Sequential of kernel sizes of SPP layers. Default: (5, 9, 13).
conv_cfg (dict) – Config dict for convolution layer. Default: None.
norm_cfg (dict) – Dictionary to construct and config norm layer. Default: dict(type=’BN’, requires_grad=True).
act_cfg (dict) – Config dict for activation layer. Default: dict(type=’LeakyReLU’, negative_slope=0.1).
norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only.
init_cfg (dict or list[dict], optional) – Initialization config dict. Default: None.
Example
>>> from mmdet.models import CSPDarknet >>> import torch >>> self = CSPDarknet(depth=53) >>> self.eval() >>> inputs = torch.rand(1, 3, 416, 416) >>> level_outputs = self.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) ... (1, 256, 52, 52) (1, 512, 26, 26) (1, 1024, 13, 13)
- forward(x)[source]¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- train(mode=True)[source]¶
Sets the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns
self
- Return type
Module
- class mmdet.models.backbones.Darknet(depth=53, out_indices=(3, 4, 5), frozen_stages=-1, conv_cfg=None, norm_cfg={'requires_grad': True, 'type': 'BN'}, act_cfg={'negative_slope': 0.1, 'type': 'LeakyReLU'}, norm_eval=True, pretrained=None, init_cfg=None)[source]¶
Darknet backbone.
- Parameters
depth (int) – Depth of Darknet. Currently only support 53.
out_indices (Sequence[int]) – Output from which stages.
frozen_stages (int) – Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. Default: -1.
conv_cfg (dict) – Config dict for convolution layer. Default: None.
norm_cfg (dict) – Dictionary to construct and config norm layer. Default: dict(type=’BN’, requires_grad=True)
act_cfg (dict) – Config dict for activation layer. Default: dict(type=’LeakyReLU’, negative_slope=0.1).
norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only.
pretrained (str, optional) – model pretrained path. Default: None
init_cfg (dict or list[dict], optional) – Initialization config dict. Default: None
Example
>>> from mmdet.models import Darknet >>> import torch >>> self = Darknet(depth=53) >>> self.eval() >>> inputs = torch.rand(1, 3, 416, 416) >>> level_outputs = self.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) ... (1, 256, 52, 52) (1, 512, 26, 26) (1, 1024, 13, 13)
- forward(x)[source]¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- static make_conv_res_block(in_channels, out_channels, res_repeat, conv_cfg=None, norm_cfg={'requires_grad': True, 'type': 'BN'}, act_cfg={'negative_slope': 0.1, 'type': 'LeakyReLU'})[source]¶
In Darknet backbone, ConvLayer is usually followed by ResBlock. This function will make that. The Conv layers always have 3x3 filters with stride=2. The number of the filters in Conv layer is the same as the out channels of the ResBlock.
- Parameters
in_channels (int) – The number of input channels.
out_channels (int) – The number of output channels.
res_repeat (int) – The number of ResBlocks.
conv_cfg (dict) – Config dict for convolution layer. Default: None.
norm_cfg (dict) – Dictionary to construct and config norm layer. Default: dict(type=’BN’, requires_grad=True)
act_cfg (dict) – Config dict for activation layer. Default: dict(type=’LeakyReLU’, negative_slope=0.1).
- train(mode=True)[source]¶
Sets the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns
self
- Return type
Module
- class mmdet.models.backbones.DetectoRS_ResNeXt(groups=1, base_width=4, **kwargs)[source]¶
ResNeXt backbone for DetectoRS.
- Parameters
groups (int) – The number of groups in ResNeXt.
base_width (int) – The base width of ResNeXt.
- class mmdet.models.backbones.DetectoRS_ResNet(sac=None, stage_with_sac=(False, False, False, False), rfp_inplanes=None, output_img=False, pretrained=None, init_cfg=None, **kwargs)[source]¶
ResNet backbone for DetectoRS.
- Parameters
sac (dict, optional) – Dictionary to construct SAC (Switchable Atrous Convolution). Default: None.
stage_with_sac (list) – Which stage to use sac. Default: (False, False, False, False).
rfp_inplanes (int, optional) – The number of channels from RFP. Default: None. If specified, an additional conv layer will be added for
rfp_feat
. Otherwise, the structure is the same as base class.output_img (bool) – If
True
, the input image will be inserted into the starting position of output. Default: False.
- class mmdet.models.backbones.EfficientNet(arch='b0', drop_path_rate=0.0, out_indices=(6,), frozen_stages=0, conv_cfg={'type': 'Conv2dAdaptivePadding'}, norm_cfg={'eps': 0.001, 'type': 'BN'}, act_cfg={'type': 'Swish'}, norm_eval=False, with_cp=False, init_cfg=[{'type': 'Kaiming', 'layer': 'Conv2d'}, {'type': 'Constant', 'layer': ['_BatchNorm', 'GroupNorm'], 'val': 1}])[source]¶
EfficientNet backbone.
- Parameters
arch (str) – Architecture of efficientnet. Defaults to b0.
out_indices (Sequence[int]) – Output from which stages. Defaults to (6, ).
frozen_stages (int) – Stages to be frozen (all param fixed). Defaults to 0, which means not freezing any parameters.
conv_cfg (dict) – Config dict for convolution layer. Defaults to None, which means using conv2d.
norm_cfg (dict) – Config dict for normalization layer. Defaults to dict(type=’BN’).
act_cfg (dict) – Config dict for activation layer. Defaults to dict(type=’Swish’).
norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Defaults to False.
with_cp (bool) – Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Defaults to False.
- forward(x)[source]¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- train(mode=True)[source]¶
Sets the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns
self
- Return type
Module
- class mmdet.models.backbones.HRNet(extra, in_channels=3, conv_cfg=None, norm_cfg={'type': 'BN'}, norm_eval=True, with_cp=False, zero_init_residual=False, multiscale_output=True, pretrained=None, init_cfg=None)[source]¶
HRNet backbone.
High-Resolution Representations for Labeling Pixels and Regions arXiv:.
- Parameters
extra (dict) –
Detailed configuration for each stage of HRNet. There must be 4 stages, the configuration for each stage must have 5 keys:
num_modules(int): The number of HRModule in this stage.
num_branches(int): The number of branches in the HRModule.
block(str): The type of convolution block.
- num_blocks(tuple): The number of blocks in each branch.
The length must be equal to num_branches.
- num_channels(tuple): The number of channels in each branch.
The length must be equal to num_branches.
in_channels (int) – Number of input image channels. Default: 3.
conv_cfg (dict) – Dictionary to construct and config conv layer.
norm_cfg (dict) – Dictionary to construct and config norm layer.
norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Default: True.
with_cp (bool) – Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False.
zero_init_residual (bool) – Whether to use zero init for last norm layer in resblocks to let them behave as identity. Default: False.
multiscale_output (bool) – Whether to output multi-level features produced by multiple branches. If False, only the first level feature will be output. Default: True.
pretrained (str, optional) – Model pretrained path. Default: None.
init_cfg (dict or list[dict], optional) – Initialization config dict. Default: None.
Example
>>> from mmdet.models import HRNet >>> import torch >>> extra = dict( >>> stage1=dict( >>> num_modules=1, >>> num_branches=1, >>> block='BOTTLENECK', >>> num_blocks=(4, ), >>> num_channels=(64, )), >>> stage2=dict( >>> num_modules=1, >>> num_branches=2, >>> block='BASIC', >>> num_blocks=(4, 4), >>> num_channels=(32, 64)), >>> stage3=dict( >>> num_modules=4, >>> num_branches=3, >>> block='BASIC', >>> num_blocks=(4, 4, 4), >>> num_channels=(32, 64, 128)), >>> stage4=dict( >>> num_modules=3, >>> num_branches=4, >>> block='BASIC', >>> num_blocks=(4, 4, 4, 4), >>> num_channels=(32, 64, 128, 256))) >>> self = HRNet(extra, in_channels=1) >>> self.eval() >>> inputs = torch.rand(1, 1, 32, 32) >>> level_outputs = self.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) (1, 32, 8, 8) (1, 64, 4, 4) (1, 128, 2, 2) (1, 256, 1, 1)
- property norm1¶
the normalization layer named “norm1”
- Type
nn.Module
- property norm2¶
the normalization layer named “norm2”
- Type
nn.Module
- class mmdet.models.backbones.HourglassNet(downsample_times=5, num_stacks=2, stage_channels=(256, 256, 384, 384, 384, 512), stage_blocks=(2,