Source code for mmdet.models.dense_heads.yolox_head

# Copyright (c) OpenMMLab. All rights reserved.
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import (ConvModule, DepthwiseSeparableConvModule,
                      bias_init_with_prob)
from mmcv.ops.nms import batched_nms

from mmdet.core import (MlvlPointGenerator, bbox_xyxy_to_cxcywh,
                        build_assigner, build_sampler, multi_apply)
from ..builder import HEADS, build_loss
from .base_dense_head import BaseDenseHead
from .dense_test_mixins import BBoxTestMixin


[docs]@HEADS.register_module() class YOLOXHead(BaseDenseHead, BBoxTestMixin): """YOLOXHead head used in `YOLOX <https://arxiv.org/abs/2107.08430>`_. Args: num_classes (int): Number of categories excluding the background category. in_channels (int): Number of channels in the input feature map. feat_channels (int): Number of hidden channels in stacking convs. Default: 256 stacked_convs (int): Number of stacking convs of the head. Default: 2. strides (tuple): Downsample factor of each feature map. use_depthwise (bool): Whether to depthwise separable convolution in blocks. Default: False dcn_on_last_conv (bool): If true, use dcn in the last layer of towers. Default: False. conv_bias (bool | str): If specified as `auto`, it will be decided by the norm_cfg. Bias of conv will be set as True if `norm_cfg` is None, otherwise False. Default: "auto". conv_cfg (dict): Config dict for convolution layer. Default: None. norm_cfg (dict): Config dict for normalization layer. Default: None. act_cfg (dict): Config dict for activation layer. Default: None. loss_cls (dict): Config of classification loss. loss_bbox (dict): Config of localization loss. loss_obj (dict): Config of objectness loss. loss_l1 (dict): Config of L1 loss. train_cfg (dict): Training config of anchor head. test_cfg (dict): Testing config of anchor head. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, num_classes, in_channels, feat_channels=256, stacked_convs=2, strides=[8, 16, 32], use_depthwise=False, dcn_on_last_conv=False, conv_bias='auto', conv_cfg=None, norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), act_cfg=dict(type='Swish'), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, reduction='sum', loss_weight=1.0), loss_bbox=dict( type='IoULoss', mode='square', eps=1e-16, reduction='sum', loss_weight=5.0), loss_obj=dict( type='CrossEntropyLoss', use_sigmoid=True, reduction='sum', loss_weight=1.0), loss_l1=dict(type='L1Loss', reduction='sum', loss_weight=1.0), train_cfg=None, test_cfg=None, init_cfg=dict( type='Kaiming', layer='Conv2d', a=math.sqrt(5), distribution='uniform', mode='fan_in', nonlinearity='leaky_relu')): super().__init__(init_cfg=init_cfg) self.num_classes = num_classes self.cls_out_channels = num_classes self.in_channels = in_channels self.feat_channels = feat_channels self.stacked_convs = stacked_convs self.strides = strides self.use_depthwise = use_depthwise self.dcn_on_last_conv = dcn_on_last_conv assert conv_bias == 'auto' or isinstance(conv_bias, bool) self.conv_bias = conv_bias self.use_sigmoid_cls = True self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg self.loss_cls = build_loss(loss_cls) self.loss_bbox = build_loss(loss_bbox) self.loss_obj = build_loss(loss_obj) self.use_l1 = False # This flag will be modified by hooks. self.loss_l1 = build_loss(loss_l1) self.prior_generator = MlvlPointGenerator(strides, offset=0) self.test_cfg = test_cfg self.train_cfg = train_cfg self.sampling = False if self.train_cfg: self.assigner = build_assigner(self.train_cfg.assigner) # sampling=False so use PseudoSampler sampler_cfg = dict(type='PseudoSampler') self.sampler = build_sampler(sampler_cfg, context=self) self._init_layers() def _init_layers(self): self.multi_level_cls_convs = nn.ModuleList() self.multi_level_reg_convs = nn.ModuleList() self.multi_level_conv_cls = nn.ModuleList() self.multi_level_conv_reg = nn.ModuleList() self.multi_level_conv_obj = nn.ModuleList() for _ in self.strides: self.multi_level_cls_convs.append(self._build_stacked_convs()) self.multi_level_reg_convs.append(self._build_stacked_convs()) conv_cls, conv_reg, conv_obj = self._build_predictor() self.multi_level_conv_cls.append(conv_cls) self.multi_level_conv_reg.append(conv_reg) self.multi_level_conv_obj.append(conv_obj) def _build_stacked_convs(self): """Initialize conv layers of a single level head.""" conv = DepthwiseSeparableConvModule \ if self.use_depthwise else ConvModule stacked_convs = [] for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels if self.dcn_on_last_conv and i == self.stacked_convs - 1: conv_cfg = dict(type='DCNv2') else: conv_cfg = self.conv_cfg stacked_convs.append( conv( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, bias=self.conv_bias)) return nn.Sequential(*stacked_convs) def _build_predictor(self): """Initialize predictor layers of a single level head.""" conv_cls = nn.Conv2d(self.feat_channels, self.cls_out_channels, 1) conv_reg = nn.Conv2d(self.feat_channels, 4, 1) conv_obj = nn.Conv2d(self.feat_channels, 1, 1) return conv_cls, conv_reg, conv_obj
[docs] def init_weights(self): super(YOLOXHead, self).init_weights() # Use prior in model initialization to improve stability bias_init = bias_init_with_prob(0.01) for conv_cls, conv_obj in zip(self.multi_level_conv_cls, self.multi_level_conv_obj): conv_cls.bias.data.fill_(bias_init) conv_obj.bias.data.fill_(bias_init)
[docs] def forward_single(self, x, cls_convs, reg_convs, conv_cls, conv_reg, conv_obj): """Forward feature of a single scale level.""" cls_feat = cls_convs(x) reg_feat = reg_convs(x) cls_score = conv_cls(cls_feat) bbox_pred = conv_reg(reg_feat) objectness = conv_obj(reg_feat) return cls_score, bbox_pred, objectness
[docs] def forward(self, feats): """Forward features from the upstream network. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple[Tensor]: A tuple of multi-level predication map, each is a 4D-tensor of shape (batch_size, 5+num_classes, height, width). """ return multi_apply(self.forward_single, feats, self.multi_level_cls_convs, self.multi_level_reg_convs, self.multi_level_conv_cls, self.multi_level_conv_reg, self.multi_level_conv_obj)
[docs] def get_bboxes(self, cls_scores, bbox_preds, objectnesses, img_metas=None, cfg=None, rescale=False, with_nms=True): """Transform network outputs of a batch into bbox results. Args: cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). objectnesses (list[Tensor], Optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, 1, H, W). img_metas (list[dict], Optional): Image meta info. Default None. cfg (mmcv.Config, Optional): Test / postprocessing configuration, if None, test_cfg would be used. Default None. rescale (bool): If True, return boxes in original image space. Default False. with_nms (bool): If True, do nms before return boxes. Default True. Returns: list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple. The first item is an (n, 5) tensor, where the first 4 columns are bounding box positions (tl_x, tl_y, br_x, br_y) and the 5-th column is a score between 0 and 1. The second item is a (n,) tensor where each item is the predicted class label of the corresponding box. """ assert len(cls_scores) == len(bbox_preds) == len(objectnesses) cfg = self.test_cfg if cfg is None else cfg scale_factors = [img_meta['scale_factor'] for img_meta in img_metas] num_imgs = len(img_metas) featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores] mlvl_priors = self.prior_generator.grid_priors( featmap_sizes, cls_scores[0].device, with_stride=True) # flatten cls_scores, bbox_preds and objectness flatten_cls_scores = [ cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1, self.cls_out_channels) for cls_score in cls_scores ] flatten_bbox_preds = [ bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4) for bbox_pred in bbox_preds ] flatten_objectness = [ objectness.permute(0, 2, 3, 1).reshape(num_imgs, -1) for objectness in objectnesses ] flatten_cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid() flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1) flatten_objectness = torch.cat(flatten_objectness, dim=1).sigmoid() flatten_priors = torch.cat(mlvl_priors) flatten_bboxes = self._bbox_decode(flatten_priors, flatten_bbox_preds) if rescale: flatten_bboxes[..., :4] /= flatten_bboxes.new_tensor( scale_factors).unsqueeze(1) result_list = [] for img_id in range(len(img_metas)): cls_scores = flatten_cls_scores[img_id] score_factor = flatten_objectness[img_id] bboxes = flatten_bboxes[img_id] result_list.append( self._bboxes_nms(cls_scores, bboxes, score_factor, cfg)) return result_list
def _bbox_decode(self, priors, bbox_preds): xys = (bbox_preds[..., :2] * priors[:, 2:]) + priors[:, :2] whs = bbox_preds[..., 2:].exp() * priors[:, 2:] tl_x = (xys[..., 0] - whs[..., 0] / 2) tl_y = (xys[..., 1] - whs[..., 1] / 2) br_x = (xys[..., 0] + whs[..., 0] / 2) br_y = (xys[..., 1] + whs[..., 1] / 2) decoded_bboxes = torch.stack([tl_x, tl_y, br_x, br_y], -1) return decoded_bboxes def _bboxes_nms(self, cls_scores, bboxes, score_factor, cfg): max_scores, labels = torch.max(cls_scores, 1) valid_mask = score_factor * max_scores >= cfg.score_thr bboxes = bboxes[valid_mask] scores = max_scores[valid_mask] * score_factor[valid_mask] labels = labels[valid_mask] if labels.numel() == 0: return bboxes, labels else: dets, keep = batched_nms(bboxes, scores, labels, cfg.nms) return dets, labels[keep]
[docs] def loss(self, cls_scores, bbox_preds, objectnesses, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore=None): """Compute loss of the head. Args: cls_scores (list[Tensor]): Box scores for each scale level, each is a 4D-tensor, the channel number is num_priors * num_classes. bbox_preds (list[Tensor]): Box energies / deltas for each scale level, each is a 4D-tensor, the channel number is num_priors * 4. objectnesses (list[Tensor], Optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, 1, H, W). gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. """ num_imgs = len(img_metas) featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores] mlvl_priors = self.prior_generator.grid_priors( featmap_sizes, cls_scores[0].device, with_stride=True) flatten_cls_preds = [ cls_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, self.cls_out_channels) for cls_pred in cls_scores ] flatten_bbox_preds = [ bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4) for bbox_pred in bbox_preds ] flatten_objectness = [ objectness.permute(0, 2, 3, 1).reshape(num_imgs, -1) for objectness in objectnesses ] flatten_cls_preds = torch.cat(flatten_cls_preds, dim=1) flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1) flatten_objectness = torch.cat(flatten_objectness, dim=1) flatten_priors = torch.cat(mlvl_priors) flatten_bboxes = self._bbox_decode(flatten_priors, flatten_bbox_preds) (pos_masks, cls_targets, obj_targets, bbox_targets, l1_targets, num_fg_imgs) = multi_apply( self._get_target_single, flatten_cls_preds.detach(), flatten_objectness.detach(), flatten_priors.unsqueeze(0).repeat(num_imgs, 1, 1), flatten_bboxes.detach(), gt_bboxes, gt_labels) num_total_samples = max(sum(num_fg_imgs), 1) pos_masks = torch.cat(pos_masks, 0) cls_targets = torch.cat(cls_targets, 0) obj_targets = torch.cat(obj_targets, 0) bbox_targets = torch.cat(bbox_targets, 0) if self.use_l1: l1_targets = torch.cat(l1_targets, 0) loss_bbox = self.loss_bbox( flatten_bboxes.view(-1, 4)[pos_masks], bbox_targets) / num_total_samples loss_obj = self.loss_obj(flatten_objectness.view(-1, 1), obj_targets) / num_total_samples loss_cls = self.loss_cls( flatten_cls_preds.view(-1, self.num_classes)[pos_masks], cls_targets) / num_total_samples loss_dict = dict( loss_cls=loss_cls, loss_bbox=loss_bbox, loss_obj=loss_obj) if self.use_l1: loss_l1 = self.loss_l1( flatten_bbox_preds.view(-1, 4)[pos_masks], l1_targets) / num_total_samples loss_dict.update(loss_l1=loss_l1) return loss_dict
@torch.no_grad() def _get_target_single(self, cls_preds, objectness, priors, decoded_bboxes, gt_bboxes, gt_labels): """Compute classification, regression, and objectness targets for priors in a single image. Args: cls_preds (Tensor): Classification predictions of one image, a 2D-Tensor with shape [num_priors, num_classes] objectness (Tensor): Objectness predictions of one image, a 1D-Tensor with shape [num_priors] priors (Tensor): All priors of one image, a 2D-Tensor with shape [num_priors, 4] in [cx, xy, stride_w, stride_y] format. decoded_bboxes (Tensor): Decoded bboxes predictions of one image, a 2D-Tensor with shape [num_priors, 4] in [tl_x, tl_y, br_x, br_y] format. gt_bboxes (Tensor): Ground truth bboxes of one image, a 2D-Tensor with shape [num_gts, 4] in [tl_x, tl_y, br_x, br_y] format. gt_labels (Tensor): Ground truth labels of one image, a Tensor with shape [num_gts]. """ num_priors = priors.size(0) num_gts = gt_labels.size(0) gt_bboxes = gt_bboxes.to(decoded_bboxes.dtype) # No target if num_gts == 0: cls_target = cls_preds.new_zeros((0, self.num_classes)) bbox_target = cls_preds.new_zeros((0, 4)) l1_target = cls_preds.new_zeros((0, 4)) obj_target = cls_preds.new_zeros((num_priors, 1)) foreground_mask = cls_preds.new_zeros(num_priors).bool() return (foreground_mask, cls_target, obj_target, bbox_target, l1_target, 0) # YOLOX uses center priors with 0.5 offset to assign targets, # but use center priors without offset to regress bboxes. offset_priors = torch.cat( [priors[:, :2] + priors[:, 2:] * 0.5, priors[:, 2:]], dim=-1) assign_result = self.assigner.assign( cls_preds.sigmoid() * objectness.unsqueeze(1).sigmoid(), offset_priors, decoded_bboxes, gt_bboxes, gt_labels) sampling_result = self.sampler.sample(assign_result, priors, gt_bboxes) pos_inds = sampling_result.pos_inds num_pos_per_img = pos_inds.size(0) pos_ious = assign_result.max_overlaps[pos_inds] # IOU aware classification score cls_target = F.one_hot(sampling_result.pos_gt_labels, self.num_classes) * pos_ious.unsqueeze(-1) obj_target = torch.zeros_like(objectness).unsqueeze(-1) obj_target[pos_inds] = 1 bbox_target = sampling_result.pos_gt_bboxes l1_target = cls_preds.new_zeros((num_pos_per_img, 4)) if self.use_l1: l1_target = self._get_l1_target(l1_target, bbox_target, priors[pos_inds]) foreground_mask = torch.zeros_like(objectness).to(torch.bool) foreground_mask[pos_inds] = 1 return (foreground_mask, cls_target, obj_target, bbox_target, l1_target, num_pos_per_img) def _get_l1_target(self, l1_target, gt_bboxes, priors, eps=1e-8): """Convert gt bboxes to center offset and log width height.""" gt_cxcywh = bbox_xyxy_to_cxcywh(gt_bboxes) l1_target[:, :2] = (gt_cxcywh[:, :2] - priors[:, :2]) / priors[:, 2:] l1_target[:, 2:] = torch.log(gt_cxcywh[:, 2:] / priors[:, 2:] + eps) return l1_target