Shortcuts

自定义数据预处理流程(待更新)

  1. 在任意文件里写一个新的流程,例如在 my_pipeline.py,它以一个字典作为输入并且输出一个字典:

    import random
    from mmdet.datasets import PIPELINES
    
    
    @PIPELINES.register_module()
    class MyTransform:
        """Add your transform
    
        Args:
            p (float): Probability of shifts. Default 0.5.
        """
    
        def __init__(self, p=0.5):
            self.p = p
    
        def __call__(self, results):
            if random.random() > self.p:
                results['dummy'] = True
            return results
    
  2. 在配置文件里调用并使用你写的数据处理流程,需要确保你的训练脚本能够正确导入新增模块:

    custom_imports = dict(imports=['path.to.my_pipeline'], allow_failed_imports=False)
    
    img_norm_cfg = dict(
        mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
    train_pipeline = [
        dict(type='LoadImageFromFile'),
        dict(type='LoadAnnotations', with_bbox=True),
        dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
        dict(type='RandomFlip', flip_ratio=0.5),
        dict(type='Normalize', **img_norm_cfg),
        dict(type='Pad', size_divisor=32),
        dict(type='MyTransform', p=0.2),
        dict(type='DefaultFormatBundle'),
        dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
    ]
    
  3. 可视化数据增强处理流程的结果

    如果想要可视化数据增强处理流程的结果,可以使用 tools/misc/browse_dataset.py 直观 地浏览检测数据集(图像和标注信息),或将图像保存到指定目录。 使用方法请参考日志分析

Read the Docs v: 3.x
Versions
latest
stable
3.x
v2.27.0
v2.26.0
v2.25.3
v2.25.2
v2.25.1
v2.25.0
v2.24.1
v2.24.0
v2.23.0
v2.22.0
v2.21.0
v2.20.0
v2.19.1
v2.19.0
v2.18.1
v2.18.0
v2.17.0
v2.16.0
v2.15.1
v2.15.0
v2.14.0
v2.13.0
dev-3.x
dev
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.